JPH06100911A - Operation of blast furnace when blowing large quantity of pulverized coal - Google Patents

Operation of blast furnace when blowing large quantity of pulverized coal

Info

Publication number
JPH06100911A
JPH06100911A JP24819892A JP24819892A JPH06100911A JP H06100911 A JPH06100911 A JP H06100911A JP 24819892 A JP24819892 A JP 24819892A JP 24819892 A JP24819892 A JP 24819892A JP H06100911 A JPH06100911 A JP H06100911A
Authority
JP
Japan
Prior art keywords
pulverized coal
hydrogen
amount
oxygen
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24819892A
Other languages
Japanese (ja)
Other versions
JP3483902B2 (en
Inventor
Yutaka Miyagawa
裕 宮川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP24819892A priority Critical patent/JP3483902B2/en
Publication of JPH06100911A publication Critical patent/JPH06100911A/en
Application granted granted Critical
Publication of JP3483902B2 publication Critical patent/JP3483902B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To enable stable operation a blast furnace at the time of blowing a large quantity of fine coal by specifying charged hydrogen rate and oxygen enriching according to a specified pulverized coal blowing rate. CONSTITUTION:In the blast furnace operation blowing the fine coal, the fine coal blowing rate is made to be >=150kg/t-p and the charged hydrogen is made to 15-20kg/t-p, and further, the oxygen is enriched to 3-5%. The charged hydrogen is supplied from moisture in the air in blasting, the hydrogen in a coke and hydrocarbon in the fine coal, etc., and the shortage quantity is charged as the steam from a tuyere. By this hydrogen charge, the raceway is deepened and the ventilation in the furnace is improved and the lowering of thermal efficiency is prevented. Further, the oxygen is supplied by enriching the oxygen rate in the blasting to about 24-26%. By enriching the oxygen, the lowering in the heat flowing ratio is restrained and the lowering in the thermal efficiency can be prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高炉の微粉炭吹き込み
操業に関し、さらに詳しくは、微粉炭を150kg/t-p 以上
吹き込む微粉炭多量吹き込み時の高炉操業方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a blast furnace pulverized coal blowing operation, and more particularly to a method for operating a blast furnace when a large amount of pulverized coal is blown in by blowing pulverized coal at 150 kg / tp or more.

【0002】[0002]

【従来の技術】石油価格の大幅な高騰を契機に、高炉に
おいては補助燃料として吹き込んでいた重油を全面的に
中止するオールコークス操業に移行した。その後、高炉
操業の安定化とコークスの代替として経済効果が高い微
粉炭吹き込みが注目され、現在では、日本国内高炉の過
半数で採用されるまでに至った。
2. Description of the Related Art In response to a sharp rise in oil prices, the blast furnace has shifted to an all coke operation in which heavy oil that had been blown as auxiliary fuel is completely stopped. Since then, pulverized coal injection, which has a high economic effect as a stabilization of blast furnace operation and an alternative to coke, has attracted attention, and it has now been adopted by the majority of Japanese blast furnaces.

【0003】上記のように、エネルギーコスト低減のた
め、微粉炭吹き込み操業を実施する高炉が多いが、それ
らの微粉炭吹き込み量はたかだか150kg/t-p 程度であ
る。欧州ではそれ以上の報告(150〜200kg/t-p)もある
が、ほとんど全てがごく短期間のデータであり、その間
の炉熱、通気、降下性をみても非常に不安定なもので、
長期に安定して150kg/t-p 以上の微粉炭吹き込み操業を
達成する技術はまだない。
As described above, many blast furnaces carry out pulverized coal blowing operation in order to reduce energy costs, but the amount of pulverized coal blowing is at most about 150 kg / tp. In Europe, there are more reports (150-200 kg / tp), but almost all of them are data for a very short period of time, and during that time, the furnace heat, ventilation, and descent are extremely unstable,
There is no technology to achieve stable operation of pulverized coal injection of 150kg / tp or more in the long term.

【0004】[0004]

【発明が解決しようとする課題】微粉炭吹き込み操業に
おいて、微粉炭吹き込み量を増加していくためには、以
下のような技術的課題を解決しなければならない。 微粉炭比アップとともにコークス量が減少し、鉱石/
コークスが高くなることによる炉内通気性の悪化。 羽口での微粉炭燃焼量増加とともに、ガス流が周辺流
化し炉体からの放散熱アップによる熱効率低下。 熱流比(固体熱容量/ガス熱容量)が低下することに
より炉内ガス温度が上昇し、炉頂からの顕熱がアップす
ることによる熱効率低下。
In the pulverized coal blowing operation, in order to increase the pulverized coal blowing amount, the following technical problems must be solved. The amount of coke decreases as the pulverized coal ratio increases, and
Poor air permeability due to high coke. As the amount of pulverized coal burned at the tuyere increases, the gas flow becomes a peripheral flow and heat dissipation from the furnace increases, resulting in a decrease in thermal efficiency. A decrease in the heat flow ratio (solid heat capacity / gas heat capacity) raises the temperature of the gas in the furnace, and the sensible heat from the furnace top increases, resulting in a decrease in thermal efficiency.

【0005】すなわち、炉内通気性の悪化による操業不
安定、熱効率の低下、さらに置換率(微粉炭と置き換え
ることができるコークスの量)の低下により150kg/t-p
以上の微粉炭吹き込み操業が達成されていない。
That is, 150 kg / tp due to instability of operation due to deterioration of air permeability in the furnace, reduction of thermal efficiency, and reduction of substitution rate (amount of coke that can be replaced with pulverized coal).
The above pulverized coal blowing operation has not been achieved.

【0006】本発明は、上記の問題点を解決するために
なされたもので、水素投入と酸素富化によって、微粉炭
吹き込み量を150kg/t-p 以上にすることが可能である微
粉炭多量吹き込み時の高炉操業方法を提供することを目
的とする。
The present invention has been made in order to solve the above-mentioned problems, and the amount of pulverized coal injected can be increased to 150 kg / tp or more by supplying hydrogen and enriching oxygen. The purpose of the present invention is to provide a blast furnace operating method.

【0007】[0007]

【課題を解決するための手段】微粉炭吹き込み高炉操業
において、微粉炭吹き込み量を150kg/t-p 以上とし、投
入水素量を15〜20kg/t-pとし、さらに酸素を 3〜5 %富
化する微粉炭多量吹き込み時の高炉操業方法である。
[Means for solving the problems] Pulverized coal blowing blast furnace operation, the pulverized coal blowing amount is 150 kg / tp or more, the input hydrogen amount is 15 to 20 kg / tp, and further oxygen is enriched by 3 to 5%. This is a blast furnace operation method when a large amount of air is blown.

【0008】[0008]

【作用】投入水素は、送風中に含まれる大気中の湿度 3
〜25g/Nm3 、コークス中の水素0.3〜0.5 %、微粉炭中
の炭化水素 3〜6 %等から投入されるが、不足分の水素
量は水蒸気として羽口から投入する。これらの水素量の
全てを投入水素量として、15〜20kg/t-pに限定する。
[Operation] The input hydrogen is the humidity of the air contained in the blast.
~25g / Nm 3, 0.3~0.5% hydrogen in coke, but is turned from a hydrocarbon 3-6%, etc. in pulverized coal, the amount of hydrogen shortage fed through a tuyere as water vapor. All of these hydrogen amounts are limited to 15 to 20 kg / tp as the input hydrogen amount.

【0009】図6に投入水素量とレースウエイ深度との
関係を示す。図6に示すように、投入水素量の増加に伴
いガス密度の低下、ガス粘性の低下によりレースウエイ
近傍の通気性が改善されレースウエイ深度は大きくなる
傾向にある。したがって、投入水素量を15〜20kg/t-pと
することによって、レースウエイを深長することがで
き、かつ水素還元による直接還元率の上昇抑制によっ
て、鉱石/コークスが高くなることによる炉内通気性の
悪化、また、ガス流が周辺流化し炉体からの放散熱アッ
プによる熱効率低下を防止することができる。
FIG. 6 shows the relationship between the amount of hydrogen input and the raceway depth. As shown in FIG. 6, as the amount of input hydrogen increases, the gas density decreases and the gas viscosity decreases, so that the air permeability near the raceway is improved and the raceway depth tends to increase. Therefore, by setting the input hydrogen amount to 15 to 20 kg / tp, it is possible to deepen the raceway, and by suppressing the increase in the direct reduction rate due to hydrogen reduction, the ore / coke increases in the air permeability in the furnace. It is possible to prevent the deterioration of the thermal efficiency due to the deterioration of the gas flow and the increase of the heat dissipated from the furnace body due to the peripheral flow.

【0010】図7に微粉炭170kg/t-p 吹き込み操業での
シミュレーション結果に基づく投入水素量の変化に伴う
炉内融着帯形状の変化を示す。投入水素量の増加ととも
に、レースウエイ1が深長となり、炉心部へのガス量が
増加し融着帯2の形状がW字形から逆V字形へと変化
し、炉内通気性が改善される。
FIG. 7 shows a change in the shape of the cohesive zone in the furnace with a change in the amount of input hydrogen based on the simulation result in the pulverized coal 170 kg / tp blowing operation. The raceway 1 becomes deeper as the amount of input hydrogen increases, the amount of gas to the core increases, and the shape of the cohesive zone 2 changes from a W-shape to an inverted V-shape, improving the air permeability in the furnace.

【0011】通常、送風中の酸素量は21%(容量)で、
本発明では、酸素量を 3〜5 %富化し、送風中の酸素量
を24〜26%にして微粉炭多量吹き込み操業を行うもので
ある。
Normally, the amount of oxygen in the blown air is 21% (volume),
In the present invention, the amount of oxygen is enriched by 3 to 5% and the amount of oxygen in the blast is adjusted to 24 to 26%, and a pulverized coal large amount blowing operation is performed.

【0012】図8に炉頂温度が 160〜200 ℃のときの酸
素富化率と微粉炭比との関係を示す。図8から明らかな
ように、微粉炭比を150kg/t-p 以上に増加した場合で
も、炉頂温度を200 ℃以下に維持するためには、酸素を
3〜5 %富化する必要がある。すなわち、酸素を 3〜5
%富化することによって、熱流比の低下を抑制し、炉頂
温度上昇による熱効率の低下を防止することことができ
るとともに、羽口前温度も確保することができる。
FIG. 8 shows the relationship between the oxygen enrichment ratio and the pulverized coal ratio when the furnace top temperature is 160 to 200 ° C. As is clear from Fig. 8, even if the pulverized coal ratio was increased to 150 kg / tp or higher, oxygen was added to maintain the furnace top temperature below 200 ° C.
Need to enrich 3-5%. That is, 3 to 5 oxygen
% Enrichment makes it possible to suppress a decrease in heat flow ratio, prevent a decrease in thermal efficiency due to an increase in furnace top temperature, and secure a pre-tuyere temperature.

【0013】[0013]

【実施例】以下に、微粉炭吹き込み量を増加した高炉操
業データに基づいて本発明法の実施例を詳細に説明す
る。図1に投入水素量を一定(12kg/t-p)として、微粉炭
比を増加させた従来技術の炉内全圧損、炉体放散熱量失
の変化(○印)を示す。従来技術では、微粉炭比が増加
すると、鉱石/コークスの上昇にともなって、通気性が
悪化して炉内全圧損が大きくなり、特に微粉炭比が170k
g/t-p 以上になるとその傾向が強くなる。また、炉内ガ
スの周辺流化による炉体放散熱量が多くなる。一方、投
入水素量を15kg/t-p以上とした本発明法(×印)では、
微粉炭比が増加しても、それほど炉内全圧損が大きく、
また炉体放散熱量が多くなることはない。
EXAMPLE An example of the method of the present invention will be described in detail below based on blast furnace operation data in which the amount of pulverized coal injected is increased. Fig. 1 shows changes (total circles) in the total pressure loss in the furnace and the loss of heat dissipation from the furnace body of the prior art in which the pulverized coal ratio was increased, with the input hydrogen amount being constant (12 kg / tp). In the prior art, when the pulverized coal ratio increases, the air permeability deteriorates and the total pressure loss in the furnace increases as the ore / coke rises.
The tendency becomes stronger at g / tp or higher. In addition, the amount of heat radiated from the furnace body increases due to the peripheral gasification of the gas in the furnace. On the other hand, in the method of the present invention (marked with X) in which the input hydrogen amount is 15 kg / tp or more,
Even if the pulverized coal ratio increases, the total pressure loss in the furnace is so large that
Also, the amount of heat dissipated in the furnace body does not increase.

【0014】図2に微粉炭比と水素ガス利用率、直接還
元率との関係を示す。投入水素量を一定にした従来技術
(○印)では、微粉炭比に関係なく水素ガス利用率は一
定であり、そのため、高微粉炭比では、鉱石/コークス
が上昇するため、直接還元率(吸熱反応)が増大し、そ
の分の熱補償が必要となる。一方、水素投入量を(15〜
20kg/t-p)増加した本発明法(×印)では、水素ガス利
用率が上昇し、それにより直接還元率はほぼ一定であ
る。したがって、水素投入量を増加することによって別
途熱補償は不要となる。
FIG. 2 shows the relationship between the pulverized coal ratio, the hydrogen gas utilization rate and the direct reduction rate. In the conventional technology (circle) in which the amount of input hydrogen is constant, the hydrogen gas utilization rate is constant regardless of the pulverized coal ratio. Therefore, at a high pulverized coal ratio, the ore / coke increases, and the direct reduction rate ( Endothermic reaction) increases, and heat compensation for that amount is required. On the other hand, change the hydrogen input (15 ~
In the method of the present invention (marked with x) increased by 20 kg / tp), the utilization rate of hydrogen gas increases, whereby the direct reduction rate is almost constant. Therefore, by increasing the hydrogen input amount, separate thermal compensation becomes unnecessary.

【0015】図3に微粉炭比と熱流比(固体熱容量/ガ
ス熱容量)との関係を、図4に熱流比と炉頂温度との関
係を示す。酸素富化を行わない従来技術(○印)では、
微粉炭比上昇とともに、熱流比が低下し、それに伴い炉
頂温度が上昇するが、酸素を富化した本発明法(×印)
では、熱流比の低下、炉頂温度の上昇を抑制することが
でき、炉頂温度上昇による熱効率の低下を防止すること
ができる。
FIG. 3 shows the relationship between the pulverized coal ratio and the heat flow ratio (solid heat capacity / gas heat capacity), and FIG. 4 shows the relationship between the heat flow ratio and the furnace top temperature. In the conventional technology (circle) that does not perform oxygen enrichment,
As the pulverized coal ratio increases, the heat flow ratio decreases, and the furnace top temperature increases accordingly, but the oxygen-enriched method of the present invention (marked x)
With, it is possible to suppress a decrease in heat flow ratio and an increase in furnace top temperature, and it is possible to prevent a decrease in thermal efficiency due to a rise in furnace top temperature.

【0016】以上のように、微粉炭吹き込み量を増加さ
せた場合にも、本発明法により高炉の安定操業を行うこ
とができる。すなわち、高炉の安定性が維持される(炉
内圧損の上昇が抑制される)ことは、図1に示した。ま
た、熱効率を低下させずに微粉炭比を増大させ得ること
は、図1、図2、図3および図4に示す通りであるが、
それらを集約した形で微粉炭とコークスの置換率との関
係を図5に示す。従来技術(○印)では、微粉炭比150k
g/t-p 以上で置換率が低下するのに対して、本発明法
(×印)では、ほぼ一定であり、微粉炭の効率が低下す
ることなく、高微粉炭比操業が達成されていることがわ
かる。
As described above, stable operation of the blast furnace can be performed by the method of the present invention even when the amount of pulverized coal blown is increased. That is, it is shown in FIG. 1 that the stability of the blast furnace is maintained (the increase in pressure loss in the furnace is suppressed). Further, it is possible to increase the pulverized coal ratio without lowering the thermal efficiency, as shown in FIGS. 1, 2, 3, and 4,
The relationship between the pulverized coal and the substitution rate of coke is shown in FIG. In the conventional technology (marked with ○), the pulverized coal ratio is 150k
While the substitution rate decreases at g / tp or more, the method of the present invention (marked with x) is almost constant, and the high pulverized coal ratio operation is achieved without reducing the efficiency of the pulverized coal. I understand.

【0017】[0017]

【発明の効果】本発明は、微粉炭吹き込み高炉操業にお
いて、微粉炭吹き込み量を150kg/t-p以上とし、投入水
素量を15〜20kg/t-pとし、さらに酸素を 3〜5 %富化す
る微粉炭多量吹き込み時の高炉操業方法であって、本発
明法によれば、微粉炭吹き込み量の増加による炉内通気
性の悪化による操業不安定、熱効率の低下、さらに置換
率の低下を防止し、150kg/t-p 以上の微粉炭吹き込み操
業が可能となる。
INDUSTRIAL APPLICABILITY The present invention provides a pulverized coal blowing blast furnace operation with a pulverized coal blowing amount of 150 kg / tp or more, an input hydrogen amount of 15 to 20 kg / tp, and an oxygen enrichment of 3 to 5%. A method for operating a blast furnace at the time of blowing in a large amount, and according to the method of the present invention, operation instability due to deterioration of air permeability in the furnace due to an increase in the amount of pulverized coal, deterioration of thermal efficiency, and further prevention of a decrease in the replacement rate are prevented, and a weight of Pulverized coal injection operation of / tp or more is possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】微粉炭比と炉内圧損および炉体熱損失との関係
を示す図である。
FIG. 1 is a diagram showing a relationship between a pulverized coal ratio, a furnace pressure loss, and a furnace body heat loss.

【図2】微粉炭比と水素ガス利用率、直接還元率との関
係を示す図である。
FIG. 2 is a diagram showing a relationship between a pulverized coal ratio, a hydrogen gas utilization rate, and a direct reduction rate.

【図3】微粉炭比と熱流比(固体熱容量/ガス熱容量)
との関係を示す図である。
[Fig. 3] Pulverized coal ratio and heat flow ratio (solid heat capacity / gas heat capacity)
It is a figure which shows the relationship with.

【図4】熱流比と炉頂温度との関係を示す図である。FIG. 4 is a diagram showing a relationship between a heat flow ratio and a furnace top temperature.

【図5】微粉炭とコークスの置換率との関係を示す図で
ある。
FIG. 5 is a diagram showing a relationship between a pulverized coal and a substitution rate of coke.

【図6】投入水素量とレースウエイ深度との関係を示す
図である。
FIG. 6 is a diagram showing a relationship between an input hydrogen amount and a raceway depth.

【図7】シミュレーション結果に基づく投入水素量の変
化に伴う炉内融着帯形状の変化を示す図である。
FIG. 7 is a diagram showing a change in shape of a cohesive zone in a furnace according to a change in the amount of input hydrogen based on a simulation result.

【図8】炉頂温度を一定にしたときの酸素富化率と微粉
炭比との関係を示す図である。
FIG. 8 is a diagram showing the relationship between the oxygen enrichment rate and the pulverized coal ratio when the furnace top temperature is kept constant.

【符号の説明】[Explanation of symbols]

1…レースウエイ、2…融着帯。 1 ... Raceway, 2 ... Cohesive zone.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 微粉炭吹き込み高炉操業において、微粉
炭吹き込み量を150kg/t-p 以上とし、投入水素量を15〜
20kg/t-pとし、さらに酸素を 3〜5 %富化することを特
徴とする微粉炭多量吹き込み時の高炉操業方法。
1. A pulverized coal blowing blast furnace operation, in which the pulverized coal blowing amount is 150 kg / tp or more, and the input hydrogen amount is 15 to
A blast furnace operating method when a large amount of pulverized coal is blown, characterized by 20 kg / tp and further enriching oxygen by 3 to 5%.
JP24819892A 1992-09-17 1992-09-17 Blast furnace operation method when pulverized coal is injected in large quantities Expired - Lifetime JP3483902B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24819892A JP3483902B2 (en) 1992-09-17 1992-09-17 Blast furnace operation method when pulverized coal is injected in large quantities

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24819892A JP3483902B2 (en) 1992-09-17 1992-09-17 Blast furnace operation method when pulverized coal is injected in large quantities

Publications (2)

Publication Number Publication Date
JPH06100911A true JPH06100911A (en) 1994-04-12
JP3483902B2 JP3483902B2 (en) 2004-01-06

Family

ID=17174659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24819892A Expired - Lifetime JP3483902B2 (en) 1992-09-17 1992-09-17 Blast furnace operation method when pulverized coal is injected in large quantities

Country Status (1)

Country Link
JP (1) JP3483902B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006124769A (en) * 2004-10-28 2006-05-18 Jfe Steel Kk Method for operating blast furnace
JP2008214735A (en) * 2007-03-08 2008-09-18 Jfe Steel Kk Method for operating blast furnace
JP2011127176A (en) * 2009-12-17 2011-06-30 Kobe Steel Ltd Method for operating blast furnace

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006124769A (en) * 2004-10-28 2006-05-18 Jfe Steel Kk Method for operating blast furnace
JP2008214735A (en) * 2007-03-08 2008-09-18 Jfe Steel Kk Method for operating blast furnace
JP4702309B2 (en) * 2007-03-08 2011-06-15 Jfeスチール株式会社 Blast furnace operation method
JP2011127176A (en) * 2009-12-17 2011-06-30 Kobe Steel Ltd Method for operating blast furnace

Also Published As

Publication number Publication date
JP3483902B2 (en) 2004-01-06

Similar Documents

Publication Publication Date Title
US4917727A (en) Method of operating a blast furnace
JPH0778252B2 (en) Improvements in or related to iron making with a melting shaft furnace
JP2003286511A (en) Method for improving flammability of low-volatile pulverized coal in blast furnace
AU2008301651B2 (en) Process for producing molten iron
JPH0680167B2 (en) Method for producing carbon-containing molten iron from sponge iron
JPH06100911A (en) Operation of blast furnace when blowing large quantity of pulverized coal
US5437706A (en) Method for operating a blast furnace
JPH08188811A (en) Method for melting scrap
JP2003247008A (en) Method for operating blast furnace injecting a large amount of pulverized fine coal
JP4061135B2 (en) Blast furnace operation method with pulverized coal injection
JP2001234213A (en) Blast furnace operation method
JPH06128614A (en) Operation of blast furnace
JP2002105517A (en) Method for operating blast furnace
JPS63171807A (en) Operation method for oxygen blast furnace
JP3286114B2 (en) Method for producing high carbon molten iron from scrap iron
JP4325128B2 (en) Low silicon operation method in blast furnace mass injection into blast furnace.
US2216727A (en) Blast furnace process
KR20240011169A (en) Method for producing reduced iron
JPH03249105A (en) Method for operating blast furnace
JP3590543B2 (en) How to inject iron-containing powder into the blast furnace
KR100389240B1 (en) Gas density control method of blast furnace bottom
JP2023067695A (en) Blast furnace operation method
JPS6043403B2 (en) Blast furnace operation method using pulverized coal injection
US1756349A (en) Iron smelting
Cordier Blast Furnace Injections

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20081017

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081017

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20091017

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091017

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20101017

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20121017

EXPY Cancellation because of completion of term