JPS6043403B2 - Blast furnace operation method using pulverized coal injection - Google Patents

Blast furnace operation method using pulverized coal injection

Info

Publication number
JPS6043403B2
JPS6043403B2 JP57052653A JP5265382A JPS6043403B2 JP S6043403 B2 JPS6043403 B2 JP S6043403B2 JP 57052653 A JP57052653 A JP 57052653A JP 5265382 A JP5265382 A JP 5265382A JP S6043403 B2 JPS6043403 B2 JP S6043403B2
Authority
JP
Japan
Prior art keywords
pulverized coal
furnace
blast furnace
tuyere
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57052653A
Other languages
Japanese (ja)
Other versions
JPS58171507A (en
Inventor
正一 原藤
昌喜 馬場
順治 三沢
紀夫 森下
邦義 阿南
義弘 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP57052653A priority Critical patent/JPS6043403B2/en
Publication of JPS58171507A publication Critical patent/JPS58171507A/en
Publication of JPS6043403B2 publication Critical patent/JPS6043403B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/001Injecting additional fuel or reducing agents
    • C21B5/003Injection of pulverulent coal

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)

Description

【発明の詳細な説明】 本発明は高炉操炉方法に係り、特に好適にして実用性
の高い微粉炭(石炭粉及びコークス粉等の微粉炭素)を
空気、炭酸ガス、空気、コークス炉ガス、高炉ガス、天
然ガス等の気体で搬送して吹込む高炉操炉方法に関する
ものてある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a blast furnace operating method, which is particularly suitable and highly practical, in which pulverized coal (pulverized carbon such as coal powder and coke powder) is mixed with air, carbon dioxide, air, coke oven gas, This article relates to a method of operating a blast furnace in which gas such as blast furnace gas or natural gas is transported and blown into the furnace.

従来高炉は、還元剤と熱源の一部としてコークスを用
いていた。
Traditionally, blast furnaces used coke as part of the reducing agent and heat source.

その後、送風羽口から炭化水素類、主としてオイルを吹
込んで炉下部からの熱と還元剤の供給方法を確立し、高
炉操炉方法を飛躍的に進歩せしめた。 近年このオイル
価格の高謄により、製銑コストの上昇が避け得ぬ事態と
なり、従来産炭地においてその立地条件を活用して行な
われていた高炉の送風羽口からの微粉炭吹込み操炉法が
着目されている。
Later, he established a method for supplying heat and reducing agent from the lower part of the furnace by injecting hydrocarbons, mainly oil, through the blast tuyere, making great progress in blast furnace operating methods. In recent years, due to the high price of oil, an increase in ironmaking costs has become unavoidable, and the operation of injecting pulverized coal through the blast furnace's blast tuyere, which had previously been carried out in coal-producing areas by taking advantage of its location, has become more difficult. The law is attracting attention.

しカルながら、これら従来の方法は、炉内反応を前提
にしたものでなく、産炭地の宿命である産炭の吹込みが
前提となつており、従つて極めて合理性に欠け、効率の
低い近代的操炉法にそぐわない方法であつた。
However, these conventional methods are not based on the reaction in the furnace, but on the injection of coal, which is the fate of coal-producing areas, and are therefore extremely unreasonable and have low efficiency. This method was not suitable for modern reactor operation methods.

本発明者はこれらの変遷をふまえて、高炉本来の炉内
反応論と、微粉炭吹込みによつて変化し、かつ操炉に寄
与する作用と、悪影響を及ぼす作用を解明しつつ実験、
解析と、検討を重ね次の知見を得た。
Based on these changes, the present inventor conducted experiments while elucidating the inherent reaction theory in the blast furnace, the effects that change due to pulverized coal injection, and the effects that contribute to furnace operation and the effects that have an adverse effect.
After repeated analysis and consideration, we obtained the following knowledge.

1 微粉炭の粒度と、VMにレースウェイ内の温度分布
(最高温度位置およびまたは全温度レベル)を調整しう
る作用があり、これを利用する と炉頂部からの原料装
入条件(鉱石/コークス比、粒度分布等)が一定でもレ
ースウェイ内温度分布を変化せしめて融着帯の形状、炉
内の伝熱、還元効率、更にそれらのバランスを制御でき
、ひいては良好な炉内反応を維持しつつ生産性を大きく
制御できること。
1 The particle size of pulverized coal and VM have the ability to adjust the temperature distribution within the raceway (the highest temperature position and/or the total temperature level), and by utilizing this, the conditions for charging raw materials from the top of the furnace (ore/coke Even if the ratio (particle ratio, particle size distribution, etc.) is constant, the temperature distribution inside the raceway can be changed to control the shape of the cohesive zone, the heat transfer inside the furnace, the reduction efficiency, and the balance thereof, thereby maintaining a good reaction inside the furnace. productivity can be greatly controlled.

2炉内の直接還元と間接還元の反応熱バランスと、還元
剤である炭素の利用効率の変化の関係が従来のコークス
操炉法及びオイル吹込み操炉法と異る特性を活用すると
、燃料比(全装入燃料原単位)を最も低減しつつ良好な
炉内反応が得られること、又、この好ましい炉内還元反
応形態を維持しつつ装入水素量を制御すると、更に燃料
比の低減域での操炉が安定すること。
The relationship between the reaction heat balance of direct reduction and indirect reduction in the two furnaces and the change in the utilization efficiency of carbon, which is a reducing agent, is different from the conventional coke oven operation method and oil injection furnace operation method. Good in-furnace reaction can be obtained while minimizing ratio (total charged fuel consumption rate), and if the amount of charged hydrogen is controlled while maintaining this preferable form of in-furnace reduction reaction, the fuel ratio can be further reduced. The operation of the reactor in the area is stable.

3羽口先温度(レースウェイ内温度)をある範囲に維持
すると、鉱石割合を増加した装入物であつても、羽口先
溶融滴下域で安定して、充分に溶解させつつVMのの低
い、かつ粒度の大きい微粉石炭を吹込んでも微粉炭中灰
分もレースウェイ内で充分に溶融滴下でき、レースウェ
イ内面及びその上方の塊状帯ての付着、通気性阻害を防
止できること。
3.If the tuyere tip temperature (temperature inside the raceway) is maintained within a certain range, even if the charge has an increased ore ratio, it will be stable in the tuyere tip melting and dripping region, and will have a low VM while sufficiently melting. Furthermore, even when pulverized coal with a large particle size is injected, the ash content in the pulverized coal can be sufficiently melted and dripped within the raceway, and it is possible to prevent the adhesion of lumpy bands on the inner surface of the raceway and above it, and obstruction of air permeability.

本発明は、上記知見をもとになされたものでその特徴と
するところは、送風羽口から熱風と共に微粉炭を吹込む
高炉の操炉法において、微粉炭の粒度範囲を40〜18
0μ、揮発分(以下VMと称す)を0〜50%の範囲で
単独または複合して調製し、レースウェイ(送風時羽口
前方に生ずる空洞部)の温度分布を制御して高炉炉内反
応熱バランスを制御すると共に、装入水素量(送風コー
クス、微粉炭等から持込む全装入水素原単位)を4.5
〜8.0k9/t−pの範囲て炉況制御することを特徴
とする微粉炭吹込みによる高炉操炉方法にある。
The present invention has been made based on the above knowledge, and is characterized by a blast furnace operation method in which pulverized coal is blown in with hot air from the blast tuyere, and the particle size range of pulverized coal is 40 to 18.
0μ, volatile matter (hereinafter referred to as VM) is prepared singly or in combination in the range of 0 to 50%, and the reaction inside the blast furnace is controlled by controlling the temperature distribution of the raceway (the cavity created in front of the tuyere when air is blown). In addition to controlling the heat balance, the amount of hydrogen charged (total hydrogen consumption rate brought in from blown coke, pulverized coal, etc.) is reduced to 4.5
A method of operating a blast furnace by pulverized coal injection, which is characterized by controlling the furnace condition in the range of ~8.0k9/t-p.

以下、本発明の実験、検討例をもとに説明する。The present invention will be explained below based on experiments and study examples.

第1図は、次の表1に示す条件でレースウェイ内のガス
の温度分布に及ぼす微粉炭粒度の関係を示したものであ
る。
FIG. 1 shows the relationship of pulverized coal particle size to the temperature distribution of gas in the raceway under the conditions shown in Table 1 below.

粒度はA,b,cの順に大きくなつており、それについ
て最高温度の位置は、炉内側に移動している。
The particle size increases in the order of A, b, and c, and the position of the highest temperature moves toward the inside of the furnace.

この現象は微粉炭を40k9/t−p程度吹込む時は顕
著でなく、50k9/t−p以上吹込むと明らかに発生
し、制御性が得られる。これに加えてVMを変化させる
と全体の温度レベルを調整することができ、しかも最高
温度位置も制御でき、高〜1Mはレベルを高め、かつ最
高位置を粒度aと同様変化せしめ、低VMはその逆に変
化せしめる。従つて、粒度と■Mを単味又は複合して変
化せしめると、最高温度位置及び温度レベルの調整は広
い範囲で実施できる。しかもこの制御調整方法は、オイ
ル吹込み法とは異なり、装入燃料の量の変化を伴わない
ので、炉頂からの装入原料の鉱石/コークス比の変更を
必要としないので、操炉上は原料条件の変化しない、つ
まり外乱の発生の全くない炉反応制御方法であり、この
確立によつてはじめて微粉炭吹込み法は、その制御性と
実用性と経済性が他の何れの方法よりも優れたものとな
つたのである。
This phenomenon is not noticeable when pulverized coal is injected at about 40k9/t-p, but clearly occurs when pulverized coal is injected at 50k9/t-p or more, and controllability is obtained. In addition to this, by changing the VM, the overall temperature level can be adjusted, and the maximum temperature position can also be controlled.High to 1M increases the level and changes the maximum position in the same way as the grain size a, and low VM On the contrary, it changes. Therefore, by changing the particle size and (M) singly or in combination, the maximum temperature position and temperature level can be adjusted over a wide range. Moreover, unlike the oil injection method, this control adjustment method does not involve changing the amount of charged fuel, so it does not require changing the ore/coke ratio of the charging material from the top of the furnace. is a furnace reaction control method in which the raw material conditions do not change, that is, there is no disturbance at all. With the establishment of this method, the pulverized coal injection method became more controllable, more practical, and more economical than any other method. It also became excellent.

第2図はレースウェイ内の温度分布を調整することによ
つて、融着帯Uの形状が変化する様子を示した模式図で
ある。
FIG. 2 is a schematic diagram showing how the shape of the cohesive zone U changes by adjusting the temperature distribution within the raceway.

第1図と同様にA,b,cと最高温度は順次、炉内側に
移行する。aは最高温度が羽口上部での最高の溶解能力
を発揮し、融着帯Uの形状がこの例では最も安定してい
るが、B,cと次第に最高温度位置が炉内側に移動する
と、融着帯Uの根部(壁際の部分)が下り始め、cにな
るとそれが大きく、時折未還元鉱石が炉床部に落下し、
不安定な炉況を招くと共に後述する径緯を経て銑鉄中の
〔Si〕のバラツキを呼ぶ。
As in FIG. 1, the maximum temperatures A, b, and c sequentially shift to the inside of the furnace. In case a, the maximum temperature exhibits the highest melting ability at the upper part of the tuyere, and the shape of the cohesive zone U is the most stable in this example, but as the maximum temperature position gradually moves to the inside of the furnace in cases B and c, The root of the cohesive zone U (the part near the wall) begins to descend, and when it reaches C, it becomes large, and occasionally unreduced ore falls into the hearth.
This leads to unstable furnace conditions and also causes variations in [Si] in the pig iron through the radial and latitude described later.

図中1は羽口、2はレースウェイ、3は炉芯コークスの
法面である。又第2図aで、極端に温度最高位置が炉壁
羽口側に近い時は、融着帯Uの根部が極めて高温を示し
、ここを通過するガス温度の上昇によつて、羽口上部の
ステーブ、冷却函等の耐火物及び本体を損傷し溶損する
懸念が生ずる。
In the figure, 1 is the tuyere, 2 is the raceway, and 3 is the slope of the furnace core coke. In addition, in Fig. 2a, when the highest temperature position is extremely close to the tuyere side of the furnace wall, the root of the cohesive zone U exhibits an extremely high temperature, and as the temperature of the gas passing through this increases, the upper part of the tuyere There is a risk that refractories such as staves and cooling boxes, as well as the main body, may be damaged and melted.

このような時は粒度と■Mを調整して、最高温度位置を
炉内へ移動するか、全体の温度レベルを低下せしめるこ
とが望ましい。第3図は、送風羽口から微粉炭を吹込ん
だ時に炉内における装入水素量と、水素還元率との関係
及び水素還元率と直接還元率との関係並びに直接還元率
と燃料比の関係を示した図である。
In such a case, it is desirable to adjust the particle size and M to move the highest temperature position into the furnace or to lower the overall temperature level. Figure 3 shows the relationship between the amount of hydrogen charged in the furnace and the hydrogen reduction rate when pulverized coal is blown into the blast tuyere, the relationship between the hydrogen reduction rate and the direct reduction rate, and the relationship between the direct reduction rate and the fuel ratio. It is a diagram showing the relationship.

ます直接還元率と燃料比の関係を見ると、知見の所で前
述した様に直接還元との反応熱バランスと還元剤として
の炭素の利用効率の変化から、燃料比が低減する領域が
直接還元率(全還元反応に対する割合)の33.5〜3
6.0%の飯囲内にある。
If we look at the relationship between the direct reduction rate and the fuel ratio, we can see that the area where the fuel ratio decreases is the direct reduction due to changes in the reaction heat balance with direct reduction and the utilization efficiency of carbon as a reducing agent, as mentioned above in the knowledge section. rate (ratio to total reduction reaction) of 33.5 to 3
6.0% is within Iiwa.

図中の実線5は、直接還元率が増大する際、反応熱バラ
ンスでは吸熱側に移行するにもかかわらず、炭素の利用
効率における直接還元反応の間接還元反応に対する優位
性により燃料比が低下する関係を示すもので、実線5は
逆に直接還元反応の炭素の利用効率における優位性より
、吸熱反応の増大による熱補償が燃料比の増加によつて
行なわれる関係を示している。次に直接還元率と水素還
元率との関係を見ると、実績より推定し、直接還元率が
図中の実線8に示すように水素還元率により調整できる
Solid line 5 in the figure shows that when the direct reduction rate increases, the fuel ratio decreases due to the superiority of the direct reduction reaction over the indirect reduction reaction in terms of carbon utilization efficiency, even though the reaction heat balance shifts to the endothermic side. Contrary to this, solid line 5 shows a relationship in which heat compensation due to an increase in the endothermic reaction is achieved by increasing the fuel ratio, rather than the direct reduction reaction being superior in carbon utilization efficiency. Next, looking at the relationship between the direct reduction rate and the hydrogen reduction rate, it is estimated from the actual results, and the direct reduction rate can be adjusted by the hydrogen reduction rate as shown by the solid line 8 in the figure.

そこで、直接還元率の適正領域33.5〜36%を実線
dの関係で水素還元率に換算すると、5.5〜8.0%
の範囲となる。又、水素還元率と装入水素量との関係は
、図中の実線4に示す様な正相関にある。
Therefore, when converting the appropriate range of direct reduction rate of 33.5 to 36% into hydrogen reduction rate using the relationship shown by solid line d, it is 5.5 to 8.0%.
The range is . Further, the relationship between the hydrogen reduction rate and the amount of hydrogen charged is a positive correlation as shown by the solid line 4 in the figure.

水素還元率を実線4の関係て装入水素量に置きなおすと
、4.5〜8.0kg/t−pとなる。すなわち、第2
図全体として、装入水素量を−4.5〜8.0k9/t
−pとすることによつて、炉内の反応形態を燃料費がよ
り低減できる領域に操炉できることを示している。
If the hydrogen reduction rate is replaced with the amount of hydrogen charged in relation to the solid line 4, it becomes 4.5 to 8.0 kg/t-p. That is, the second
As a whole, the amount of hydrogen charged is -4.5 to 8.0k9/t.
It is shown that by setting -p, the reactor can be operated in a region where the reaction mode in the reactor can further reduce fuel costs.

したがつて、装入水素量を上記の範囲に設定するとが、
微粉炭吹込操業においては極めて重要である。第4図は
、羽口先温度と銑中〔Si〕のバラツキを示したもので
ある。
Therefore, if the amount of hydrogen charged is set within the above range,
This is extremely important in pulverized coal injection operations. FIG. 4 shows the variation in the tuyere tip temperature and the pig iron [Si].

羽口先温度が2300℃以下になると銑中〔Si〕のバ
ラツキが増加傾向にある。これは、羽口先温度がレース
ウェイ部での溶解能力を示す指標であり、微粉炭吹込み
時の鉱石の重量割合が高い装入物に対しては、羽口先温
度が2300℃以下では、レースウェイ上部での鉱石の
溶解が十分ないため、、未還元の鉱石が炉床部に落下し
、銑中〔Si〕のバラツキを助長していると考えられる
。第5図は、羽口先温度と通気抵抗指数との関係を示し
たものである。
When the tuyere tip temperature falls below 2300°C, the variation in the pig iron [Si] tends to increase. This is because the tuyere tip temperature is an indicator of the melting ability in the raceway section, and for a charge with a high weight ratio of ore during pulverized coal injection, if the tuyere tip temperature is below 2300℃, the raceway It is thought that because the ore is not sufficiently dissolved in the upper part of the way, unreduced ore falls to the hearth, contributing to the dispersion of [Si] in the pig iron. FIG. 5 shows the relationship between the tuyere tip temperature and the ventilation resistance index.

羽口先温度が2300′C以下になると、通気抵抗指数
が増大している。これは、羽口先温度が230σC以下
では、微粉炭中の灰分が、レースウェイ内部で十分溶融
滴下できず、そのままガス流に集り、融着帯に付着たり
、塊状帯内に到つてガス通路を遮断するような現象が発
生し始めるものと考えられる。したがつて、微粉炭吹込
み操業においては、溶解能力の確保および微粉炭中の灰
分の溶解の点からも羽口先温度を2300℃以上にする
ことが極めて重要である。
When the tuyere tip temperature falls below 2300'C, the ventilation resistance index increases. This is because when the tuyere tip temperature is below 230σC, the ash in the pulverized coal cannot sufficiently melt and drip inside the raceway, and instead collects in the gas flow, adheres to the cohesive zone, or reaches the lumpy zone and flows through the gas passage. It is thought that a phenomenon similar to a blockage will begin to occur. Therefore, in the pulverized coal injection operation, it is extremely important to keep the tuyere tip temperature at 2300° C. or higher in terms of ensuring the dissolving ability and dissolving the ash in the pulverized coal.

次に本発明の実施例について説明する。Next, examples of the present invention will be described.

炉容積が4000dの対象高炉における操業条件および
その結果について、本発明例と従来例を対比して表2に
示す。
Table 2 shows the operating conditions and results of the target blast furnace having a furnace capacity of 4000 d, comparing the present invention example and the conventional example.

上表から明らかなように、本発明例1,2,3,4,5
,6,7は微粉炭の粒度及び■Mを装入条件に対して制
御し、装入水素量を4.5〜&0k9/t−Pの範囲と
し羽口先温度を2300℃から2400゜Cの範囲で制
御した。
As is clear from the above table, invention examples 1, 2, 3, 4, 5
, 6, and 7 control the particle size of pulverized coal and ■M according to the charging conditions, set the amount of hydrogen charged in the range of 4.5 to &0k9/t-P, and set the tuyere tip temperature from 2300°C to 2400°C. Controlled within range.

その結果、燃料比及び銑中〔Si〕の低減が達成され、
併せて銑中〔Si〕のバラツキも低下し、良好な炉況の
もとに円滑、安定な生産が継続できた。これに比べて円
滑、安定な生産が継続できた。これに比べて比較例は、
微粉炭による炉況制御が行われないので、8.5k9/
t−Pの装入水素量のもとに羽口先温度も2300℃を
超えることができず、炉内反応状態の変化、装入原料の
基本条件の変更、生産条件の変化に応じて充分な迫縦が
できず、融着帯の位置と形状及び還元反応系態と熱の良
好なバランスの維持が難しく、風圧変動や炉熱変動を伴
なう炉況となり、燃料比及び銑中〔Si〕の悪化は避け
られず、その変化巾も大きい不安定な操炉となつた。以
上説明した本発明は、従来の融着帯の制御が炉頂からの
装入物分布制御に強く依存していたのに対し羽口からの
制御補助手段として、従来から用いていた羽口先風速、
羽口先ガスの運動エネルギー、羽口角度などの制御要素
に加え、新たに微粉炭の有する特性を活用して開発した
強力な調整手段即ち、微粉炭の粒度及び■Mの調整によ
る炉内反応制御方法を用いたので、これまでの高炉操業
方法を大きく一新し、好ましい装入水素量及び羽口先温
度の範囲を活用しつつ、微粉炭の粒度とVMを調整する
ことにより、羽口からのオイル吹込み法を用いることな
く、この方法に優るとも劣らない燃料比455kg/t
−p以下、銑中〔Si〕35×10−2%以下で高位に
安定した操炉を可能にした。これは銑鋼一貫工程の省エ
ネルギー、コスト低減に多大の効果がある。又、本発明
方法による融着帯の積極的制御は炉命の重要ポイントで
あるシャフト下部から炉腹部1のステーブ、又は冷却盤
の熱負荷の調整を可能とするので、これらの損耗防止に
も有効であり、炉命の延長対策にも優れた効果を発揮し
高炉改修周期の延長を可能にする等、もたらす産業上の
効果は大きい。
As a result, reductions in fuel ratio and pig iron [Si] were achieved,
At the same time, the dispersion of pig iron (Si) was reduced, and smooth and stable production could continue under favorable furnace conditions. Compared to this, smooth and stable production continued. In comparison, the comparative example is
Since the furnace condition is not controlled by pulverized coal, 8.5k9/
Based on the amount of hydrogen charged in t-P, the temperature at the tuyere tip cannot exceed 2300℃, and the temperature at the tuyere tip cannot exceed 2300℃, and the It is difficult to maintain a good balance between the position and shape of the cohesive zone, the reduction reaction system, and heat, resulting in furnace conditions accompanied by wind pressure fluctuations and furnace heat fluctuations, and the fuel ratio and pig iron [Si ] deterioration was unavoidable, and the reactor operation became unstable with a wide range of changes. The present invention as described above has been developed as an auxiliary means for controlling the tuyere tip, whereas conventional cohesive zone control has been strongly dependent on controlling the burden distribution from the top of the furnace. ,
In addition to control elements such as the kinetic energy of the tuyere tip gas and the tuyere angle, powerful adjustment means newly developed by utilizing the characteristics of pulverized coal, i.e., in-furnace reaction control by adjusting the particle size of pulverized coal and ■M. By using this method, the conventional blast furnace operating method has been significantly changed, and by adjusting the particle size and VM of the pulverized coal while utilizing the preferable hydrogen charge amount and tuyere tip temperature range, Without using the oil injection method, the fuel ratio is 455 kg/t, which is as good as this method.
- p or less and pig iron [Si] 35 x 10-2% or less, making it possible to operate the furnace in a highly stable manner. This has a great effect on energy saving and cost reduction in the integrated pig steel process. In addition, the active control of the cohesive zone by the method of the present invention makes it possible to adjust the heat load from the lower part of the shaft to the staves in the furnace belly 1 or the cooling plate, which are important points in the life of the reactor. It is effective and has great industrial effects, such as being highly effective in extending the life of the furnace and making it possible to extend the blast furnace refurbishment cycle.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は微粉炭の粒度の変化がレースウェイ内の温度分
布におよぼす影響を示す図、第2図A,b,cはレース
ウェイ内の温度分布調整による融着帯形状の制御状況を
示す模式図、第3図は微粉”炭吹込操業時における装入
水素量と水素還元率との関係、水素還元率と直接還元率
との関係及び直接還元率と燃料比の関係を連結して示す
図、第4図は羽口先温度と銑中〔Si〕のバラツキの関
係を示す図、第5図は羽口先温度と通気抵抗指数の関係
を示す図である。 1・・・・・・羽口、2・・・・・ルースウエイ、3・
・・・・・炉芯コークスの法面。
Figure 1 shows the influence of changes in the particle size of pulverized coal on the temperature distribution inside the raceway, and Figures 2A, b, and c show how the shape of the cohesive zone is controlled by adjusting the temperature distribution inside the raceway. The schematic diagram, Figure 3, shows the relationship between the amount of charged hydrogen and the hydrogen reduction rate, the relationship between the hydrogen reduction rate and the direct reduction rate, and the relationship between the direct reduction rate and the fuel ratio during the fine coal injection operation. Figure 4 is a diagram showing the relationship between the tuyere tip temperature and the variation in pig iron [Si], and Figure 5 is a diagram showing the relationship between the tuyere tip temperature and the ventilation resistance index. Mouth, 2... Ruthway, 3.
・・・・・・Slope of furnace core coke.

Claims (1)

【特許請求の範囲】 1 送風羽口から熱風と共に微粉炭を吹込む高炉の操炉
法において、微粉炭の粒度範囲を40〜180μ、揮発
分(以下VMと称す)を0〜50%の範囲で単独または
複合して調整し、レースウェイ(送風時羽口前方に生ず
る空洞部)の温度分布を制御して高炉炉内反応熱バラン
スを制御すると共に装入水素量(送風、コークス、微粉
炭等から持込む全装入水素原単位)を4.5〜8.0k
g/(t−p)の範囲で炉況制御することを特徴とする
微粉炭吹込みによる高炉操炉方法。 2 羽口先温度を2300℃以上とすることを特徴とす
る特許請求の範囲第1項記載の微粉炭吹込みによる高炉
操炉方法。
[Claims] 1. In a blast furnace operation method in which pulverized coal is blown in with hot air from the blast tuyeres, the pulverized coal has a particle size range of 40 to 180μ and a volatile content (hereinafter referred to as VM) in a range of 0 to 50%. are adjusted individually or in combination to control the temperature distribution in the raceway (the cavity created in front of the tuyere when air is blown) to control the reaction heat balance in the blast furnace. The total hydrogen consumption rate brought in from etc.) is 4.5 to 8.0k.
A method for operating a blast furnace by injection of pulverized coal, characterized by controlling the furnace condition within the range of g/(t-p). 2. A blast furnace operating method by pulverized coal injection according to claim 1, characterized in that the tuyere tip temperature is 2300° C. or higher.
JP57052653A 1982-03-31 1982-03-31 Blast furnace operation method using pulverized coal injection Expired JPS6043403B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57052653A JPS6043403B2 (en) 1982-03-31 1982-03-31 Blast furnace operation method using pulverized coal injection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57052653A JPS6043403B2 (en) 1982-03-31 1982-03-31 Blast furnace operation method using pulverized coal injection

Publications (2)

Publication Number Publication Date
JPS58171507A JPS58171507A (en) 1983-10-08
JPS6043403B2 true JPS6043403B2 (en) 1985-09-27

Family

ID=12920809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57052653A Expired JPS6043403B2 (en) 1982-03-31 1982-03-31 Blast furnace operation method using pulverized coal injection

Country Status (1)

Country Link
JP (1) JPS6043403B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0689382B2 (en) * 1986-02-26 1994-11-09 株式会社神戸製鋼所 Powder injection blast furnace operation method
JPH0660328B2 (en) * 1987-05-02 1994-08-10 住友金属工業株式会社 Blast furnace pulverized coal injection operation method
AU2013284587B2 (en) * 2012-07-03 2015-05-14 Jfe Steel Corporation Method for operating blast furnace
JP6885238B2 (en) * 2017-07-12 2021-06-09 日本製鉄株式会社 How to operate the blast furnace

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RRINCIPLES OF BLAST FURNACE IRONMAKING=1981 *

Also Published As

Publication number Publication date
JPS58171507A (en) 1983-10-08

Similar Documents

Publication Publication Date Title
Liu et al. Low carbon operation of super-large blast furnaces in China
CN104878147A (en) Method for making iron by smelting reduction
KR100661878B1 (en) Process for producing molten iron
Gupta et al. Burden distribution control and its optimisation under high pellet operation
CN113174449A (en) Smelting method for efficiently discharging zinc metal in blast furnace
WO1996015277A1 (en) Method of operating blast furnace
JPS6043403B2 (en) Blast furnace operation method using pulverized coal injection
US3615351A (en) Direct gaseous reduction of iron oxide
US2349688A (en) Method of producing low carbon iron or steel
JP2001234213A (en) Blast furnace operation method
US1921212A (en) Operation of furnaces
CN105969925B (en) A kind of smelting process of controllable pig iron carburizing amount
US2735758A (en) strassburger
JP2002105517A (en) Method for operating blast furnace
JP2004027265A (en) Method for operating blast furnace performing blow-in of pulverlized fine coal
JP2983087B2 (en) Operation method of smelting reduction
JP2881840B2 (en) Blast furnace tuyere powder injection method
JP4598256B2 (en) Blast furnace operation method
JPS63171809A (en) Control method for furnace heat in oxygen blast furnace
CN117106999A (en) Regulating method for stable smelting of blast furnace
CN115948630A (en) Smelting reduction furnace of hydrogen-rich high-oxygen high-air-temperature iron-making fluidized bed
JPH10306303A (en) Operation of vertical type melting furnace
Ostrowski et al. Blast Furnace Enrichment Investigations
JPH0913109A (en) Operation of blowing large quantity of pulverized fine coal into blast furnace
US1756349A (en) Iron smelting