JP2002105517A - Method for operating blast furnace - Google Patents

Method for operating blast furnace

Info

Publication number
JP2002105517A
JP2002105517A JP2000299179A JP2000299179A JP2002105517A JP 2002105517 A JP2002105517 A JP 2002105517A JP 2000299179 A JP2000299179 A JP 2000299179A JP 2000299179 A JP2000299179 A JP 2000299179A JP 2002105517 A JP2002105517 A JP 2002105517A
Authority
JP
Japan
Prior art keywords
furnace
amount
blast furnace
coke
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000299179A
Other languages
Japanese (ja)
Other versions
JP3855635B2 (en
Inventor
Shinji Matsubara
真二 松原
Atsushi Sakai
敦 酒井
Akio Shimomura
昭夫 下村
Kimitoshi Mori
侯寿 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP2000299179A priority Critical patent/JP3855635B2/en
Publication of JP2002105517A publication Critical patent/JP2002105517A/en
Application granted granted Critical
Publication of JP3855635B2 publication Critical patent/JP3855635B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for operating a blast furnace by which the ventilation in the furnace is kept satisfactory and a stable operation can be performed in the injecting operation of pulverized fine coal. SOLUTION: In the blast furnace operation performed by injecting >=180 kg/ton of molten iron of pulverized fine coal, the amount of blasted air and the amount of oxygen enrichment supplied into the blasting air, are controlled so as to satisfy the conditions in the following relations (1) and (2) in accordance with a coke strength after hot-reaction (CSR): (1) in the case the CRS of the coke charged into the furnace is <60%, Vbosh/Vin <=2.05, and (2) in the case the CSR of the coke charged into the furnace is >=60%, Vbosh/Vin <=2.20. Here, Vbosh/Vin is the ratio of the amount of gas in the bosh part of the blast furnace to the inner volume of the blast furnace defined by ([the blasting air amount (Nm3/min)]×0.79+2×[the blasting air amount (Nm3/ min)]×0.21+2×[the amount of oxygen enrichment (Nm3/min) into the blasting air]/[the inner volume in the blast furnace (m3)].

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】この発明は、微粉炭を180
kg/溶銑トン以上吹き込んで行う高炉の操業方法に関
する。
BACKGROUND OF THE INVENTION The present invention relates to
The present invention relates to a method for operating a blast furnace by blowing more than kg / ton of hot metal.

【0002】[0002]

【従来の技術】通常、高炉操業では炉頂部から鉱石とコ
ークスを交互に装入し、炉下部の羽口部から吹き込まれ
る1200℃程度の熱風でコークスを燃焼させ、その発
生したガスにより鉱石を還元して溶銑を得るものであ
る。最近の高炉操業では、コークス炉の寿命延長や溶銑
コストの低減などを目的としてコークスの代わりに羽口
部から微粉炭を吹き込む操業が主流となっており、その
吹き込み量も年々増加する傾向にある。
2. Description of the Related Art Normally, in blast furnace operation, ore and coke are charged alternately from the furnace top, and coke is burned with hot air of about 1200 ° C. blown from tuyeres at the bottom of the furnace, and the ore is generated by the generated gas. It is to obtain hot metal by reduction. In recent blast furnace operations, pulverized coal is injected from the tuyere instead of coke for the purpose of extending the life of the coke oven and reducing hot metal cost, and the amount of injection is increasing year by year. .

【0003】微粉炭を溶銑トン当り180kg以上吹き
込む高微粉炭吹込み操業においては、溶銑トン当りの鉱
石装入量とコークス装入量の比(O/C比)の増加によ
る装入物層内の空隙率の低下、溶銑トン当りの装入物と
炉内ガスの熱容量比(熱流比)の低下による炉内ガス温
度の上昇、それに伴う炉内ガス流速の増加といった原因
により、炉内での通気抵抗及び圧損の増加を招くことが
知られている。
[0003] In a high pulverized coal injection operation in which pulverized coal is blown by 180 kg or more per ton of hot metal, the charged material layer is increased by increasing the ratio (O / C ratio) of the amount of ore charged to the amount of coke charged per ton of hot metal. Due to the decrease in the porosity of the furnace, the rise in the furnace gas temperature due to the decrease in the heat capacity ratio (heat flow ratio) between the charge and the furnace gas per ton of hot metal, and the resulting increase in the furnace gas flow velocity. It is known that this causes an increase in ventilation resistance and pressure loss.

【0004】[0004]

【発明が解決しようとする課題】このような状態が生じ
ると、送風圧力の著しい上昇や装入物が安定して降下せ
ずに炉上部に吹き上げられる吹き抜け現象が引き起こさ
れ、その結果、高炉の安定操業が大きく阻害され、操業
弾力性が著しく低下する。したがって、高微粉炭吹込み
操業下での安定操業を実現するためには、炉内通気性を
良好に保つことが極めて重要である。したがって本発明
の目的は、高微粉炭吹き込み操業において炉内通気性を
良好に保ち、安定した操業を可能とする高炉の操業方法
を提供することにある。
When such a condition occurs, a remarkable increase in the blowing pressure and a blow-through phenomenon in which the charged material is blown up to the upper portion of the furnace without being stably lowered, and as a result, the blast furnace Stable operation is greatly impaired, and operation elasticity is significantly reduced. Therefore, in order to realize stable operation under high pulverized coal injection operation, it is extremely important to maintain good furnace air permeability. Accordingly, an object of the present invention is to provide a method for operating a blast furnace, which maintains a good air permeability in a furnace in a high pulverized coal blowing operation and enables a stable operation.

【0005】[0005]

【課題を解決するための手段】本発明者らは高微粉炭吹
き込み操業、特に微粉炭を溶銑トン当り180kg以上
吹き込んで行う高微粉炭吹き込み操業における炉内通気
性の改善について詳細な検討を行い、その結果、Vbosh
/Vin すなわち[送風空気量(Nm/分)]×0.
79+2×[送風空気量(Nm/分)]×0.21+
2×[送風空気中への酸素富化量(Nm/分)])/
[高炉内容積(m)]で定義される高炉ボッシュ部
(朝顔部)におけるガス量と高炉内容積の比と炉内通気
抵抗との間に明確な相関関係があり、このVbosh/Vin
を制御することにより炉内通気性の改善が可能であるこ
と、具体的には炉内に装入されたコークスの熱間反応後
強度CSRに応じてVbosh/Vinを所定のレベル以下の
範囲に制御することにより、高微粉炭吹き込み操業にお
ける炉内通気性を良好に保ち、安定した操業を行い得る
ことを見い出した。
Means for Solving the Problems The present inventors have conducted a detailed study on the improvement of air permeability in a furnace in a high pulverized coal injection operation, particularly in a high pulverized coal injection operation in which pulverized coal is injected at 180 kg or more per ton of hot metal. , As a result, Vbosh
/ Vin, ie, [blast air volume (Nm 3 / min)] × 0.
79 + 2 × [blowing air amount (Nm 3 /min)]×0.21+
2 × [oxygen enriched amount in blast air (Nm 3 / min)] /
There is a clear correlation between the ratio of the gas amount in the blast furnace bosh section (morning glory) defined by [Blast furnace internal volume (m 3 )] to the blast furnace internal volume, and the ventilation resistance in the furnace.
The Vbosh / Vin is controlled within a predetermined level or less according to the strength CSR after the hot reaction of the coke charged into the furnace by controlling the air permeability in the furnace. By controlling, it was found that the air permeability in the furnace in the operation of blowing high pulverized coal was kept good and a stable operation could be performed.

【0006】本発明はこのような知見に基づきなされた
もので、その特徴は以下のとおりである。 [1] 微粉炭を180kg/溶銑トン以上吹き込んで行う
高炉の操業において、コークスの熱間反応後強度CSR
に応じて、下記(1)及び(2)の条件を満足するように送風
空気量と送風空気中への酸素富化量を制御することを特
徴とする高炉の操業方法。 (1)炉内装入されるコークスの熱間反応後強度CSRが
60%未満の場合 Vbosh/Vin≦2.05 (2)炉内装入されるコークスの熱間反応後強度CSRが
60%以上の場合 Vbosh/Vin≦2.20 ここで、Vbosh/Vin:下式で定義される、高炉
ボッシュ部におけるガス量と高炉内容積の比 ([送風空気量(Nm/分)]×0.79+2×[送
風空気量(Nm/分)]×0.21+2×[送風空気
中への酸素富化量(Nm/分)])/[高炉内容積
(m)]
The present invention has been made based on such findings, and the features thereof are as follows. [1] In the operation of a blast furnace in which pulverized coal is blown at a rate of 180 kg / ton or more of hot metal, strength after hot reaction of coke CSR
A method for operating a blast furnace, comprising controlling the amount of blown air and the amount of oxygen enriched in the blown air so as to satisfy the following conditions (1) and (2) according to (1) When the strength of the coke introduced into the furnace after hot reaction is less than 60% CSR Vbosh / Vin ≦ 2.05 (2) When the strength of the coke after hot reaction of the coke introduced into the furnace is 60% or more Case Vbosh / Vin ≦ 2.20 Here, Vbosh / Vin: ratio of the gas amount in the blast furnace bosh portion and the internal volume of the blast furnace, which is defined by the following formula ([air volume of blown air (Nm 3 /min))×0.79+2 × [blown air amount (Nm 3 / min)] [oxygen enrichment of the blast air (Nm 3 / min)] × 0.21 + 2 ×) / [ blast furnace volume (m 3)

【0007】[2] 上記[1]の操業方法において、羽口先
理論燃焼温度が1950℃以上となるよう、送風空気中
への酸素富化量、送風温度、送風湿分の少なくとも1つ
を制御することを特徴とする高炉の操業方法。
[2] In the operation method according to the above [1], at least one of the oxygen enrichment amount in the blast air, the blast temperature, and the blast humidity is controlled so that the theoretical tuyere tip combustion temperature becomes 1950 ° C. or more. A method for operating a blast furnace, comprising:

【0008】[0008]

【発明の実施の形態】本発明は、微粉炭を180kg/
溶銑トン以上吹き込んで行う高炉の操業において、炉内
装入コークスの熱間強度指数に応じてVbosh/Vin、す
なわち下式、 ([送風空気量(Nm/分)]×0.79+2×[送
風空気量(Nm/分)]×0.21+2×[送風空気
中への酸素富化量(Nm/分)])/[高炉内容積
(m)] により定義される高炉ボッシュ部(朝顔部)におけるガ
ス量と高炉内容積(高炉内全容積)の比が、下記(1)及
び(2)の条件を満足するよう送風空気量と送風空気中へ
の酸素富化量を制御する。 (1)炉内装入コークスの熱間反応後強度CSRが60%
未満の場合 Vbosh/Vin≦2.05 (2)炉内装入コークスの熱間反応後強度CSRが60%
以上の場合 Vbosh/Vin≦2.20
BEST MODE FOR CARRYING OUT THE INVENTION According to the present invention, 180 kg /
In the operation of a blast furnace in which more than a ton of hot metal is blown, Vbosh / Vin, that is, the following equation, according to the hot strength index of coke charged into the furnace interior, ([blast air volume (Nm 3 /min)]×0.79+2×[blast Blast furnace Bosch portion defined by (air amount (Nm 3 /min))×0.21+2×[oxygen enrichment amount in blown air (Nm 3 / min)] / [blast furnace inner volume (m 3 )] ( Control the amount of air blown and the amount of oxygen enriched in the blown air so that the ratio of the gas volume in the morning glory to the volume inside the blast furnace (total volume inside the blast furnace) satisfies the following conditions (1) and (2): . (1) Strength CSR after hot reaction of coke in furnace interior is 60%
If less than Vbosh / Vin ≦ 2.05 (2) The strength CSR after hot reaction of coke inside furnace is 60%
In the above case, Vbosh / Vin ≦ 2.20

【0009】本発明において炉内装入コークスの熱間反
応後強度CSR(以下、単に“CSR”という)に応じ
てVbosh/Vinを異なる条件に制御するのは、炉内装入
コークスは、そのCSRにより炉内での粉コークスの発
生量及び粒径低下の程度が異なるためである。ここで、
コークスのCSR(coke strength after reaction)
は、粒径20±1mmのコークスをCO雰囲気中にて
1100℃で2時間加熱した後、室温でI型ドラム試験
(20rpm×60分)を行い、試験後の粒径9.5m
m以上のコークスの割合(%)で表わされる。
In the present invention, Vbosh / Vin is controlled under different conditions in accordance with the post-hot-strength CSR (hereinafter, simply referred to as “CSR”) of the coke contained in the furnace interior. This is because the amount of coke breeze generated in the furnace and the degree of particle size reduction are different. here,
Coke's CSR (coke strength after reaction)
After heating coke having a particle size of 20 ± 1 mm in a CO 2 atmosphere at 1100 ° C. for 2 hours, an I-type drum test (20 rpm × 60 minutes) was performed at room temperature, and the particle size after the test was 9.5 m
It is represented by the ratio (%) of coke of m or more.

【0010】図1は、微粉炭を180kg/溶銑トン以
上吹き込んで行った高炉の実操業のデータに基づくVbo
sh/Vinと炉内通気抵抗との関係の一例を示したもので
ある。ここで、送風圧力Pb(kg/cm)と炉頂圧
力Pt(kg/cm)との差であるPb−Ptは炉内
通気抵抗を示す指標である。図1によれば、炉内装入さ
れるコークスのCSRが60%未満の場合にはVbosh/
Vin≦2.05、炉内装入されるコークスのCSRが6
0%以上の場合にはVbosh/Vin≦2.20を満足する
ことにより、炉内通気抵抗の指標であるPb−Ptを
1.6kg/cm 以下に抑えることができる。また、
CSRが60%以上のコークスを用いた場合にはPb−
Ptが全体的に低下し、通気抵抗の改善に有効であるこ
とが判る。
FIG. 1 shows that pulverized coal is weighed at 180 kg / tonne of hot metal or less.
Vbo based on the data of the actual operation of the blast furnace that was blown up
An example of the relationship between sh / Vin and the ventilation resistance in the furnace
is there. Here, the blowing pressure Pb (kg / cm2) And furnace top pressure
Force Pt (kg / cm2Pb-Pt, which is the difference from
This is an index indicating the ventilation resistance. According to FIG.
If the coke CSR is less than 60%, Vbosh /
Vin ≦ 2.05, coke CSR inside furnace is 6
In the case of 0% or more, Vbosh / Vin ≦ 2.20 is satisfied
Thereby, Pb-Pt which is an index of the ventilation resistance in the furnace is
1.6kg / cm 2It can be suppressed to the following. Also,
When coke with CSR of 60% or more is used, Pb-
Pt is reduced overall and is effective for improving airflow resistance.
I understand.

【0011】ここで、Vbosh/Vinの制御は、例えば送
風空気中への酸素富化量を調整することにより行うこと
ができる。一般に、高炉操業においては溶銑生産量に応
じて酸素原単位が決まるため、仮に生産量を一定とした
場合には、送風空気中への酸素富化率が高いほどVbosh
/Vinの値は小さくなる。本発明ではVbosh/Vinの下
限は特に規定しないが、高炉内でのガス流れの安定性を
確保するという観点からは、1.50程度を下限とする
ことが好ましい。
Here, Vbosh / Vin can be controlled, for example, by adjusting the amount of oxygen enrichment in the blown air. In general, in the blast furnace operation, the oxygen consumption rate is determined according to the hot metal production volume. Therefore, if the production volume is fixed, the higher the oxygen enrichment rate in the blast air, the higher the Vbosh
The value of / Vin decreases. In the present invention, the lower limit of Vbosh / Vin is not particularly specified, but from the viewpoint of ensuring the stability of gas flow in the blast furnace, it is preferable to set the lower limit to about 1.50.

【0012】高炉内への微粉炭の吹き込み量を増大させ
た場合、一般に以下のような要因により炉内通気抵抗が
増大するものと考えられる。 微粉炭吹き込み量を増大させると、微粉炭吹き込み
密度が上昇するため微粉炭と酸素との接触効率が低下
し、微粉炭の燃焼効率が低下する。このため多量の未燃
炭(未燃チャー)が生じることになるが、この未燃炭に
よるソリューションロス反応(CO+C→2CO)に
よって炉内のCOが消費されるため、コークスの粉化
により生じたコークス粉がソリューションロス反応によ
って消費されにくくなる。このためコークス粉が炉芯部
に滞留・蓄積され、炉内通気抵抗が増大することにな
る。
When the amount of pulverized coal blown into the blast furnace is increased, it is generally considered that the ventilation resistance in the furnace increases due to the following factors. When the pulverized coal injection amount is increased, the pulverized coal injection density increases, so that the contact efficiency between pulverized coal and oxygen decreases, and the combustion efficiency of pulverized coal decreases. As a result, a large amount of unburned coal (unburned char) is generated. However, since the solution loss reaction (CO 2 + C → 2CO) by the unburned coal consumes CO 2 in the furnace, it is generated by coke pulverization. Coke powder is less likely to be consumed by the solution loss reaction. For this reason, coke powder stays and accumulates in the furnace core, and the ventilation resistance in the furnace increases.

【0013】 微粉炭によるコークスの置換には限界
があるため、微粉炭の吹き込み量を増加させると必然的
に燃料比(コークス比+微粉炭比)は増加する。したが
って、これに伴い送風原単位が上昇するため炉内ガス流
量が増大し、この結果、炉内通気抵抗が増大することに
なる。 上記のように燃料比と送風原単位が上昇する結果、
熱供給量が大きくなるので融着帯が炉の上部領域側に移
行し、これに伴い融着帯の表面積が増大するため炉内通
気抵抗が増大する。 溶銑トン当りの鉱石装入量とコークス装入量の比
(O/C比)が増加するため装入物層内の空隙率が低下
し、炉内通気抵抗が増大する。 燃料比の増大に伴ってスラグ比も増大するため、そ
の分炉内通気抵抗が増大する。
[0013] Since the replacement of coke with pulverized coal has a limit, increasing the amount of pulverized coal blow inevitably increases the fuel ratio (coke ratio + pulverized coal ratio). Accordingly, the unit air volume for blowing increases, so that the gas flow rate in the furnace increases, and as a result, the ventilation resistance in the furnace increases. As mentioned above, as a result of the increase in the fuel ratio and the basic unit of blast,
Since the heat supply amount is large, the cohesive zone shifts to the upper region side of the furnace, and accordingly, the surface area of the cohesive zone increases, so that the ventilation resistance in the furnace increases. Since the ratio (O / C ratio) of the charged amount of ore to the charged amount of coke per ton of hot metal increases, the porosity in the charged layer decreases, and the ventilation resistance in the furnace increases. Since the slag ratio increases with an increase in the fuel ratio, the ventilation resistance in the furnace increases accordingly.

【0014】このような要因による炉内通気抵抗の増大
に対し、本発明法においてVbosh/Vinを上記(1)及び
(2)の条件に制御することにより、以下のような作用に
よって炉内通気抵抗が低減され、炉内通気性が改善され
るものと考えられる。 (a) 送風空気中の酸素富化率が相対的に高められる結
果、炉内における微粉炭の燃焼効率が改善されて未燃炭
量が減少し、未燃炭によるソリューションロス反応が抑
えられる。この結果、コークスの粉化により生じたコー
クス粉(コークス粉の発生量は炉内装入コークスのCS
Rにより異なる)がソリューションロス反応によって消
費され易くなり、炉芯部でのコークス粉の滞留・蓄積量
が減少し、炉内通気抵抗が低下する。
In the present invention, Vbosh / Vin is adjusted to the above (1) and
By controlling to the condition (2), it is considered that the in-furnace airflow resistance is reduced by the following actions, and the in-furnace air permeability is improved. (a) As a result of relatively increasing the oxygen enrichment rate in the blast air, the combustion efficiency of pulverized coal in the furnace is improved, the amount of unburned coal is reduced, and the solution loss reaction due to unburned coal is suppressed. As a result, the coke powder generated by the coke pulverization (the amount of coke
(Depending on R) is easily consumed by the solution loss reaction, the amount of stagnation and accumulation of coke powder in the furnace core decreases, and the ventilation resistance in the furnace decreases.

【0015】(b) 炉内における微粉炭の燃焼効率が改善
されるため微粉炭によるコークスの置換率が向上し、燃
料比(コークス比+微粉炭比)を低減させることができ
る。これに伴い送風原単位が低減するため炉内ガス流量
が減少し、この結果炉内通気抵抗が低下する。 (c) 上記のように燃料比と送風原単位が低減される結
果、熱供給量が小さくなるため融着帯を炉の下部領域側
に維持することができ、この結果炉内通気抵抗が低下す
るる。 (d) 燃料比が低減することにともなってスラグ比も低減
するため、その分炉内通気抵抗が低下する。
(B) Since the combustion efficiency of pulverized coal in the furnace is improved, the replacement ratio of coke by pulverized coal is improved, and the fuel ratio (coke ratio + pulverized coal ratio) can be reduced. Along with this, the unit air volume decreases, so that the gas flow rate in the furnace decreases, and as a result, the ventilation resistance in the furnace decreases. (c) As described above, as a result of reducing the fuel ratio and the basic unit of air blowing, the heat supply amount is reduced, so that the cohesive zone can be maintained at the lower region side of the furnace, and as a result, the ventilation resistance in the furnace is reduced. I do. (d) Since the slag ratio also decreases as the fuel ratio decreases, the ventilation resistance in the furnace decreases accordingly.

【0016】さらに、本発明の高炉操業では、羽口先理
論燃焼温度(以下、TFTという)が1950℃以上と
なるように送風空気中への酸素富化量、送風温度、送風
湿分の少なくとも1つを制御することが好ましい。ここ
で、TFTとは羽口先でコークス及び微粉炭が燃焼する
時のフレーム温度であり、このフレーム温度は炉熱に大
きな影響を及ぼす。このTFTは下式(ラムの式)によ
り計算される。 TFT=(2450+Qf+Qb+Qc)/(Cg・V
g) 但し Qf:送風燃料反応熱(kcal/kgC,C:
羽口先で燃焼するC) Qb:送風顕熱(kcal/kgC,C:羽口先で燃焼
するC) Qc:羽口先の燃焼帯に流入するコークス顕熱(kca
l/kgC,C:羽口先で燃焼するC) Cg:生成ガス定圧比熱(kcal/Nm・℃) Vg:生成ガス量(Nm/kgC,C:羽口先で燃焼
するC)
Further, in the blast furnace operation of the present invention, at least one of the oxygen enrichment amount, the blowing temperature, and the blowing humidity in the blown air is adjusted so that the tuyere tip combustion temperature (hereinafter referred to as TFT) becomes 1950 ° C. or more. It is preferable to control one. Here, the TFT is a flame temperature when coke and pulverized coal burn at the tuyere tip, and this flame temperature has a great influence on furnace heat. This TFT is calculated by the following equation (ram's equation). TFT = (2450 + Qf + Qb + Qc) / (Cg · V
g) However, Qf: blast fuel reaction heat (kcal / kgC, C:
Cb burning at the tuyere tip) Qb: Sensing blast heat (kcal / kgC, C: C burning at the tuyere tip) Qc: Coke sensible heat flowing into the combustion zone at the tuyere tip (kca)
l / kgC, C: tuyere burned in C) Cg: product gas pressure specific heat (kcal / Nm 3 · ℃) Vg: the product gas volume (Nm 3 / kgC, C: C to burn at tuyere)

【0017】このTFTを1950℃以上とすることに
より微粉炭の燃焼性が維持され、炉内通気性の改善がよ
り効果的に促進されるとともに、供給熱量の確保も促進
される。図2はTFTと微粉炭吹込量との関係を示すも
ので、微粉炭の吹き込み量を増大させるとVM(揮発
分)の分解熱のためにQfが減少し、TFTが低下す
る。そして、TFTが1950℃以下になると炉況の不
安定化が顕在化する。
By setting the temperature of the TFT to 1950 ° C. or higher, the flammability of the pulverized coal is maintained, the improvement of the air permeability in the furnace is more effectively promoted, and the securing of the supplied heat is also promoted. FIG. 2 shows the relationship between the TFT and the amount of pulverized coal blown. When the amount of pulverized coal blown is increased, Qf decreases due to VM (volatile matter) decomposition heat, and the TFT decreases. When the temperature of the TFT becomes 1950 ° C. or lower, the instability of the furnace condition becomes apparent.

【0018】TFTを高めて炉況の不安定化を回避する
には酸素富化率を高めることが有効であり、送風空気中
の酸素濃度の上昇によりCO燃焼熱の発生が促進される
結果、微粉炭吹き込み量の増大に伴うQfの減少が抑え
られる。また、TFTを上昇させるには送風温度の上
昇、送風添加湿分の低減化なども有効であり、これらの
1つ以上を制御することにより、所望のTFTを得るこ
とができる。
In order to avoid the instability of the furnace condition by increasing the TFT, it is effective to increase the oxygen enrichment rate. As a result, the increase in the oxygen concentration in the blast air promotes the generation of CO combustion heat. A decrease in Qf due to an increase in the amount of pulverized coal injected is suppressed. It is also effective to raise the temperature of the blown air, to reduce the moisture added to the blown air, and the like to raise the TFT. By controlling one or more of these, a desired TFT can be obtained.

【0019】[0019]

【実施例】実機高炉において、表1に示す条件で高微粉
炭吹き込み操業を実施した。その結果を表1に併せて示
す。
EXAMPLE In a blast furnace of an actual machine, a high-pulverized coal injection operation was carried out under the conditions shown in Table 1. The results are shown in Table 1.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【発明の効果】以上述べたように本発明法によれば、高
炉内に微粉炭を180kg/溶銑トン以上吹き込んで行
う高微粉炭吹き込み操業において、炉内通気抵抗を効果
的に低減させ、安定した操業を実施することができる。
As described above, according to the method of the present invention, in a high pulverized coal blowing operation in which pulverized coal is blown into a blast furnace at 180 kg / ton or more of hot metal, airflow resistance in the furnace is effectively reduced and stable Operation can be implemented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】高炉の実操業のデータに基づくVbosh/Vinと
炉内通気抵抗との関係を示すグラフ
FIG. 1 is a graph showing the relationship between Vbosh / Vin based on actual operation data of a blast furnace and the ventilation resistance in the furnace.

【図2】微粉炭吹込量とTFTとの関係を示すグラフFIG. 2 is a graph showing a relationship between a pulverized coal injection amount and a TFT.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 下村 昭夫 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 森 侯寿 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 Fターム(参考) 4K012 BE01 BE06 BE09  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Akio Shimomura 1-1-2 Marunouchi, Chiyoda-ku, Tokyo Inside Nihon Kokan Co., Ltd. (72) Inventor Hoshihisa Mori 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nippon Kokan Co., Ltd. F-term (reference) 4K012 BE01 BE06 BE09

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 微粉炭を180kg/溶銑トン以上吹き
込んで行う高炉の操業において、コークスの熱間反応後
強度CSRに応じて、下記(1)及び(2)の条件を満足する
ように送風空気量と送風空気中への酸素富化量を制御す
ることを特徴とする高炉の操業方法。 (1)炉内装入されるコークスの熱間反応後強度CSRが
60%未満の場合 Vbosh/Vin≦2.05 (2)炉内装入されるコークスの熱間反応後強度CSRが
60%以上の場合 Vbosh/Vin≦2.20 ここで、Vbosh/Vin:下式で定義される、高炉
ボッシュ部におけるガス量と高炉内容積の比 ([送風空気量(Nm/分)]×0.79+2×[送
風空気量(Nm/分)]×0.21+2×[送風空気
中への酸素富化量(Nm/分)])/[高炉内容積
(m)]
In a blast furnace operation in which pulverized coal is blown in at a rate of 180 kg / tonne of hot metal or more, blast air is supplied so as to satisfy the following conditions (1) and (2) in accordance with the post-hot reaction strength CSR of coke. A method for operating a blast furnace, characterized by controlling the amount and oxygen enrichment in the blast air. (1) When the strength of the coke introduced into the furnace after hot reaction is less than 60% CSR Vbosh / Vin ≦ 2.05 (2) When the strength of the coke after hot reaction of the coke introduced into the furnace is 60% or more Case Vbosh / Vin ≦ 2.20 Here, Vbosh / Vin: ratio of the gas amount in the blast furnace bosh portion and the internal volume of the blast furnace, which is defined by the following formula ([air volume of blown air (Nm 3 /min))×0.79+2 × [blown air amount (Nm 3 / min)] [oxygen enrichment of the blast air (Nm 3 / min)] × 0.21 + 2 ×) / [ blast furnace volume (m 3)
【請求項2】 羽口先理論燃焼温度が1950℃以上と
なるよう、送風空気中への酸素富化量、送風温度、送風
湿分の少なくとも1つを制御することを特徴とする請求
項1に記載の高炉の操業方法。
2. The method according to claim 1, wherein at least one of the amount of oxygen enrichment in the blown air, the blown temperature, and the blown humidity is controlled so that the tuyere tip theoretical burning temperature is 1950 ° C. or more. Operating method of the blast furnace described.
JP2000299179A 2000-09-29 2000-09-29 Blast furnace operation method Expired - Fee Related JP3855635B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000299179A JP3855635B2 (en) 2000-09-29 2000-09-29 Blast furnace operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000299179A JP3855635B2 (en) 2000-09-29 2000-09-29 Blast furnace operation method

Publications (2)

Publication Number Publication Date
JP2002105517A true JP2002105517A (en) 2002-04-10
JP3855635B2 JP3855635B2 (en) 2006-12-13

Family

ID=18781025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000299179A Expired - Fee Related JP3855635B2 (en) 2000-09-29 2000-09-29 Blast furnace operation method

Country Status (1)

Country Link
JP (1) JP3855635B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007308732A (en) * 2006-05-16 2007-11-29 Nippon Steel Corp Method for operating blast furnace
KR101246436B1 (en) 2011-09-28 2013-03-21 현대제철 주식회사 Prediction method for product measuring of pig iron
JP2015221928A (en) * 2014-05-23 2015-12-10 新日鐵住金株式会社 Operation method of blast furnace
JP2022054397A (en) * 2020-09-25 2022-04-06 Jfeスチール株式会社 Blast furnace operation method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101477385B1 (en) * 2013-04-30 2015-01-06 현대제철 주식회사 Method for controlling blow of blast furnace

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007308732A (en) * 2006-05-16 2007-11-29 Nippon Steel Corp Method for operating blast furnace
JP4669439B2 (en) * 2006-05-16 2011-04-13 新日本製鐵株式会社 Blast furnace operation method
KR101246436B1 (en) 2011-09-28 2013-03-21 현대제철 주식회사 Prediction method for product measuring of pig iron
JP2015221928A (en) * 2014-05-23 2015-12-10 新日鐵住金株式会社 Operation method of blast furnace
JP2022054397A (en) * 2020-09-25 2022-04-06 Jfeスチール株式会社 Blast furnace operation method
JP7310858B2 (en) 2020-09-25 2023-07-19 Jfeスチール株式会社 Blast furnace operation method

Also Published As

Publication number Publication date
JP3855635B2 (en) 2006-12-13

Similar Documents

Publication Publication Date Title
CN106011341B (en) The method that blast furnace process schreyerite carries high-coal ratio
CN108913831A (en) A kind of pulverized coal injection into blast furna method for determination of amount
EP2202324A1 (en) Vertical furnace and method of operating the same
JP2002105517A (en) Method for operating blast furnace
JP2003247008A (en) Method for operating blast furnace injecting a large amount of pulverized fine coal
JP4061135B2 (en) Blast furnace operation method with pulverized coal injection
JP2004263258A (en) Method for operating blast furnace
JP5614517B1 (en) Blast furnace operation method
JP4893291B2 (en) Hot metal production method using vertical scrap melting furnace
KR100356156B1 (en) A method for promoting combustibility in balst furnace
JP2001234213A (en) Blast furnace operation method
JP2983087B2 (en) Operation method of smelting reduction
JP7310858B2 (en) Blast furnace operation method
JP2933809B2 (en) Operating method of moving bed type scrap melting furnace
JP5855536B2 (en) Blast furnace operation method
JP7167652B2 (en) Blast furnace operation method
JP4893290B2 (en) Hot metal production method using vertical scrap melting furnace
JP4992407B2 (en) Hot metal production method using vertical scrap melting furnace
JP3651443B2 (en) Blast furnace operation method
JP4598256B2 (en) Blast furnace operation method
CN117106999A (en) Regulating method for stable smelting of blast furnace
JP3590543B2 (en) How to inject iron-containing powder into the blast furnace
JPH0723503B2 (en) Hot metal manufacturing method
JPWO2003062473A1 (en) Manufacturing method of low silicon hot metal
Ostrowski et al. Blast Furnace Enrichment Investigations

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060904

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees