JP4992407B2 - Hot metal production method using vertical scrap melting furnace - Google Patents

Hot metal production method using vertical scrap melting furnace Download PDF

Info

Publication number
JP4992407B2
JP4992407B2 JP2006340018A JP2006340018A JP4992407B2 JP 4992407 B2 JP4992407 B2 JP 4992407B2 JP 2006340018 A JP2006340018 A JP 2006340018A JP 2006340018 A JP2006340018 A JP 2006340018A JP 4992407 B2 JP4992407 B2 JP 4992407B2
Authority
JP
Japan
Prior art keywords
furnace
coke
iron
scrap
preheating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006340018A
Other languages
Japanese (ja)
Other versions
JP2008150667A (en
Inventor
義孝 澤
英寿 松野
幸雄 高橋
亮太 村井
睦 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006340018A priority Critical patent/JP4992407B2/en
Publication of JP2008150667A publication Critical patent/JP2008150667A/en
Application granted granted Critical
Publication of JP4992407B2 publication Critical patent/JP4992407B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • Y02W30/54

Description

本発明は、竪型スクラップ溶解炉を用い、コークスの燃焼熱により鉄系スクラップを溶解して溶銑を製造する方法に関する。   The present invention relates to a method for producing hot metal by melting iron scrap with combustion heat of coke using a vertical scrap melting furnace.

従来、竪型溶解炉を用いて鉄系スクラップを溶解するプロセスが知られており(例えば、特許文献1)、このプロセスでは、竪型溶解炉の炉頂部から鉄系スクラップとコークスを装入し、炉下部に設けられた複数の羽口(送風羽口)から熱風を吹き込み、コークスの燃焼熱で鉄系スクラップを溶解することにより溶銑が得られる。
特開昭56−156709号公報
Conventionally, a process for melting iron-based scrap using a vertical melting furnace is known (for example, Patent Document 1). In this process, iron-based scrap and coke are charged from the top of the vertical melting furnace. Hot metal is blown from a plurality of tuyere (blower tuyere) provided at the lower part of the furnace, and iron scrap is melted by the combustion heat of coke to obtain hot metal.
JP-A-56-156709

上記のようなプロセスにおいて鉄系スクラップを溶解し、溶銑を製造する場合、以下のような問題がある。
(1)生産量を高めるには送風酸素富化が有効であるが、この酸素富化を行うと炉頂温度が低下し、腐食性ガスが結露して排ガス管の腐食を引き起こしたり、ダストが排出されずに炉内に蓄積し、ガス通気性が低下するなどの問題を生じる。
(2)使用するコークスの粒径が小さいと、コークスが早く燃焼してしまうため、燃焼により生じたCOが炉内を上昇する過程でコークスと反応する、所謂ソリューションロス反応(吸熱反応)が生じやすくなり、このため発熱量が下がり、出銑量が低下するという問題がある。これを防止するためには、高価な鋳物用コークスの使用比率を高める必要があり、製造コストの上昇を招いてしまう。
When iron-based scrap is melted in the above process to produce hot metal, there are the following problems.
(1) Blowing oxygen enrichment is effective for increasing the production volume. However, when this oxygen enrichment is performed, the furnace top temperature decreases, and corrosive gas is condensed to cause corrosion of the exhaust pipe, and dust is generated. There is a problem that gas is not discharged but accumulates in the furnace and gas permeability is lowered.
(2) If the particle size of the coke used is small, the coke burns quickly, so the so-called solution loss reaction (endothermic reaction) in which CO 2 generated by combustion reacts with coke in the process of rising in the furnace. This is likely to occur, and there is a problem that the amount of heat generation decreases and the amount of output decreases. In order to prevent this, it is necessary to increase the use ratio of expensive casting coke, which leads to an increase in manufacturing cost.

したがって本発明の目的は、以上のような課題を解決し、竪型スクラップ溶解炉を用いて鉄系スクラップを溶解し、溶銑を製造する方法において、安定した操業を行いつつ、溶銑を高い生産性で且つ低コストに製造することができる方法を提供することにある。   Accordingly, the object of the present invention is to solve the above-described problems and to melt iron scrap using a vertical scrap melting furnace to produce hot metal, while maintaining stable operation and high productivity of hot metal. It is another object of the present invention to provide a method that can be manufactured at low cost.

本発明者らは、上記課題を解決すべく検討を重ねた結果、炉装入原料(鉄系スクラップ、コークス)を乾燥・予熱し、好ましくはその条件を最適化することにより、上記課題を適切に解決できることを見出した。
本発明は、このような知見に基づきなされたもので、以下を要旨とするものである。
As a result of repeated studies to solve the above-mentioned problems, the present inventors appropriately dried the materials charged in the furnace (iron-based scrap, coke), preferably by optimizing the conditions to appropriately solve the above-mentioned problems. It was found that it can be solved.
The present invention has been made on the basis of such knowledge and has the following gist.

[1]竪型スクラップ溶解炉において、炉頂部から鉄系スクラップとコークスを装入し、炉下部に設けられた複数の羽口から熱風を吹き込み、コークスの燃焼熱で鉄系スクラップを溶解することにより溶銑を製造する方法であって、
前記熱風に酸素を富化し、且つ炉内に装入する鉄系スクラップ及び/又はコークスを事前に乾燥処理及び/又は予熱して水分含有率を低下させることにより、炉頂温度を130℃以上に維持することを特徴とする竪型スクラップ溶解炉を用いた溶銑製造方法。
[2]上記[1]の製造方法において、鉄系スクラップ及び/又はコークスを、下記(1)式を満足するように乾燥処理及び/又は予熱することを特徴とする竪型スクラップ溶解炉を用いた溶銑製造方法。
ΔTs+(2×ΔTc×Co)/1000+50×ΔWs+(50×Co×ΔWc)/1000
≧GTt−GTm …(1)
ただし、
ΔTs(℃):予熱による鉄系スクラップ温度の上昇幅
ΔTc(℃):予熱によるコークス温度の上昇幅
ΔWs(mass%):乾燥処理及び/又は予熱による鉄系スクラップ水分含有率の低下幅
ΔWc(mass%):乾燥処理及び/又は予熱によるコークス水分含有率の低下幅
Co(kg/溶銑ton):コークス比
GTt(℃):炉頂部における目標排ガス温度
GTm(℃):炉頂部における実績排ガス温度
[1] In a vertical scrap melting furnace, iron-based scrap and coke are charged from the top of the furnace, hot air is blown from a plurality of tuyere at the bottom of the furnace, and iron-based scrap is melted by the combustion heat of the coke. A method for producing hot metal by:
The furnace top temperature is increased to 130 ° C. or more by enriching the hot air with oxygen and drying and / or preheating the iron-based scrap and / or coke charged in the furnace in advance to reduce the moisture content. A hot metal production method using a vertical scrap melting furnace, characterized in that it is maintained .
[2] In the manufacturing method of [1] above, a vertical scrap melting furnace characterized in that iron scrap and / or coke is dried and / or preheated so as to satisfy the following formula (1): Hot metal manufacturing method.
ΔTs + (2 × ΔTc × Co) / 1000 + 50 × ΔWs + (50 × Co × ΔWc) / 1000
≧ GTt−GTm… (1)
However,
ΔTs (° C.): Increase width of iron-based scrap temperature due to preheating ΔTc (° C.): Increase width of coke temperature due to preheating ΔWs (mass%): Reduction width of iron-based scrap moisture content due to drying treatment and / or preheating ΔWc ( mass%): Decrease in coke moisture content due to drying and / or preheating Co (kg / molten iron): Coke ratio
GTt (℃): Target exhaust gas temperature at the top of the furnace
GTm (° C): Actual exhaust gas temperature at the top of the furnace

[3]上記[1]又は[2]の製造方法において、算術平均粒径が120mm以下のコークスを用いることを特徴とする竪型スクラップ溶解炉を用いた溶銑製造方法。 [3] A hot metal production method using a vertical scrap melting furnace, wherein coke having an arithmetic average particle size of 120 mm or less is used in the production method of [1] or [2].

本発明によれば、生産性を高めるために排ガス量が増大しても、送風酸素富化を行い且つ炉装入原料を事前に乾燥・予熱することにより、炉内での酸素の供給が適正化されることでコークスの燃焼と鉄系スクラップの溶解が炉全体で適切に生じ、しかも炉頂温度の低下が抑えられることで排ガス管内での腐食性ガスの結露やダストの炉内蓄積などが抑えられる。このため、炉頂温度の低下による操業上のトラブルを生じることなく、溶銑を高い生産性で且つ低コストに製造することができる。また、算術平均粒径が120mm以下の小粒径のコークスを使用しても同様の効果が得られる。   According to the present invention, even if the amount of exhaust gas is increased in order to increase productivity, the oxygen supply in the furnace is adequate by performing blast oxygen enrichment and pre-drying and preheating the furnace charging raw material. As a result, the combustion of coke and the melting of iron-based scrap occur appropriately in the entire furnace, and the decrease in the top temperature of the furnace is suppressed, so that condensation of corrosive gas in the exhaust gas pipe and accumulation of dust in the furnace occur. It can be suppressed. For this reason, hot metal can be manufactured with high productivity and low cost without causing operational troubles due to a decrease in furnace top temperature. The same effect can be obtained even when coke having a small particle size with an arithmetic average particle size of 120 mm or less is used.

図1は、本発明で用いる竪型スクラップ溶解炉(以下、単に「溶解炉」という)とその基本的な操業形態を模式的に示している。図において、1は炉頂に設けられる原料装入部、2は炉下部の周方向において適当な間隔で設けられる複数の羽口(送風羽口)、3はこの羽口2に熱風を供給する熱風管、4は排ガス出口、5は出銑口である。この溶解炉の大きさ等に本質的な制限はないが、実質的に操業可能若しくは操業上有利なサイズとして、通常は、羽口位置での炉内径が2〜4m程度、炉高が6〜10m程度である。
図2は、羽口2の拡大図であり、この例では、羽口2を構成する羽口管20の先端部が炉内壁6から炉内に突き出ている。この羽口数に制限はないが、通常、4〜10本程度である。
FIG. 1 schematically shows a vertical scrap melting furnace (hereinafter simply referred to as “melting furnace”) used in the present invention and its basic operation mode. In the figure, 1 is a raw material charging portion provided at the top of the furnace, 2 is a plurality of tuyere (blower tuyere) provided at appropriate intervals in the circumferential direction of the lower part of the furnace, and 3 is supplying hot air to the tuyere 2 A hot air pipe, 4 is an exhaust gas outlet, and 5 is an outlet. Although there is no essential limitation on the size of the melting furnace or the like, the furnace inner diameter at the tuyere position is usually about 2 to 4 m and the furnace height is 6 to 6 as a size that is substantially operable or advantageous in operation. It is about 10m.
FIG. 2 is an enlarged view of the tuyere 2, and in this example, the tip of the tuyere tube 20 constituting the tuyere 2 protrudes from the furnace inner wall 6 into the furnace. The number of tuyere is not limited, but it is usually about 4 to 10.

このような溶解炉では、炉頂の原料装入部1から鉄系スクラップとコークスを装入するとともに、複数の羽口2から熱風を吹き込み、コークスの燃焼ガスの熱で鉄系スクラップを溶解し、溶銑とする。生成した溶銑は炉底部の出銑口5から炉外に取り出される。
原料である鉄系スクラップとコークスは、炉内に同時に装入してもよいし、交互に装入してもよい。また、主たる炉装入原料は鉄系スクラップとコークスであるが、それ以外に、例えば、銑鉄、還元鉄、ダスト・スラッジ類の塊成物、鉄鉱石等の鉄源、木炭や無煙炭等の炭材などを装入してもよい。
In such a melting furnace, iron-based scrap and coke are charged from the raw material charging section 1 at the top of the furnace, and hot air is blown from a plurality of tuyere 2 to melt the iron-based scrap by the heat of coke combustion gas. Let ’s use hot metal The produced hot metal is taken out of the furnace through the outlet 5 at the bottom of the furnace.
The raw iron scrap and coke may be charged into the furnace at the same time or alternately. The main furnace charge materials are iron scrap and coke, but other than this, for example, pig iron, reduced iron, agglomerates of dust and sludge, iron sources such as iron ore, charcoal such as charcoal and anthracite Materials may be charged.

生産量を高めるためには送風酸素富化が有効であるが、送風酸素富化を行うと熱風中のNの割合が少なくなるため着熱効率が上昇し、炉頂温度が低下する。炉頂温度が低下すると、先に述べたように腐食性ガスが結露して排ガス管の腐食が引き起こされたり、ダストが排出されずに炉内に蓄積し、ガス通気性が低下するなどの問題を生じる。このような問題に対して、本発明では、熱風に酸素を富化し、且つ炉内に装入する鉄系スクラップ及び/又はコークスを事前に乾燥処理及び/又は予熱する。またその際、好ましくは鉄系スクラップ及び/又はコークスを下記(1)式を満足するように乾燥処理及び/又は予熱する。 Enrichment of blown oxygen is effective for increasing the production amount. However, when blown oxygen enrichment is performed, the ratio of N 2 in the hot air is reduced, so that the heat receiving efficiency is increased and the furnace top temperature is lowered. When the furnace top temperature falls, as mentioned above, the corrosive gas is condensed to cause corrosion of the exhaust pipe, or dust is not discharged but accumulates in the furnace, resulting in a decrease in gas permeability. Produce. In order to solve such a problem, in the present invention, oxygen-enriched hot air and iron-based scrap and / or coke charged in the furnace are dried and / or preheated in advance. At that time, the iron-based scrap and / or coke is preferably dried and / or preheated so as to satisfy the following formula (1).

ΔTs+(2×ΔTc×Co)/1000+50×ΔWs+(50×Co×ΔWc)/1000
≧GTt−GTm …(1)
ただし、
ΔTs(℃):予熱による鉄系スクラップ温度の上昇幅
ΔTc(℃):予熱によるコークス温度の上昇幅
ΔWs(mass%):乾燥処理及び/又は予熱による鉄系スクラップ水分含有率の低下幅
ΔWc(mass%):乾燥処理及び/又は予熱によるコークス水分含有率の低下幅
Co(kg/溶銑ton):コークス比
GTt(℃):炉頂部における目標排ガス温度
GTm(℃):炉頂部における実績排ガス温度
ΔTs + (2 × ΔTc × Co) / 1000 + 50 × ΔWs + (50 × Co × ΔWc) / 1000
≧ GTt−GTm… (1)
However,
ΔTs (° C.): Increase width of iron-based scrap temperature due to preheating ΔTc (° C.): Increase width of coke temperature due to preheating ΔWs (mass%): Reduction width of iron-based scrap moisture content due to drying treatment and / or preheating ΔWc ( mass%): Decrease in coke moisture content due to drying and / or preheating Co (kg / molten iron): Coke ratio
GTt (℃): Target exhaust gas temperature at the top of the furnace
GTm (° C): Actual exhaust gas temperature at the top of the furnace

このように熱風に酸素富化を行い且つ炉装入原料を事前に乾燥・予熱することにより、炉内での酸素の供給が適正化されることでコークスの燃焼と鉄系スクラップの溶解が炉全体で適切に生じ、しかも炉頂温度の低下が抑えられることで排ガス管内での腐食性ガスの結露やダストの炉内蓄積などが抑えられることになる。
酸素富化の形態としては、例えば、(a)予め熱風に酸素を添加し、これを羽口に供給する方法、(b)羽口内に酸素を供給し、羽口内で熱風と混合する方法、(c)羽口内に酸素噴射ノズルを配置し、この酸素噴射ノズルから炉内に向けて酸素を噴射し、その外側から熱風を噴射する方法、など任意の方法を採ることができる。
In this way, oxygen is enriched in hot air and the raw materials charged in the furnace are dried and preheated in advance, so that the supply of oxygen in the furnace is optimized, so that the combustion of coke and the melting of iron-based scrap are performed in the furnace. Appropriately occurring as a whole, and by suppressing the decrease in furnace top temperature, condensation of corrosive gas in the exhaust gas pipe and accumulation of dust in the furnace can be suppressed.
Examples of forms of oxygen enrichment include, for example, (a) a method of adding oxygen to hot air in advance and supplying this to the tuyere, (b) a method of supplying oxygen into the tuyere and mixing with hot air in the tuyere, (C) Arbitrary methods such as a method in which an oxygen injection nozzle is disposed in the tuyere, oxygen is injected from the oxygen injection nozzle into the furnace, and hot air is injected from the outside thereof can be employed.

酸素富化率(=送風中の酸素濃度の増加分)に特に制限はないが、送風酸素富化の効果を得るためには、一般には2vol%以上の酸素富化率とすることが好ましい。一方、酸素富化率が過剰であると、羽口前温度の上昇によって羽口抜熱量が徒に増大するとともに、羽口耐火物の溶損頻度が増大するおそれがある。また、炉径方向での温度分布が大きくなってガス流れの制御が困難になる等の問題を生じやすい。このため酸素富化率は50vol%程度を上限とするのが好ましい。   Although there is no restriction | limiting in particular in oxygen enrichment rate (= increase part of the oxygen concentration in ventilation), In order to acquire the effect of ventilation oxygen enrichment, it is preferable to set it as an oxygen enrichment rate of 2 vol% or more generally. On the other hand, if the oxygen enrichment rate is excessive, the amount of heat extracted from the tuyere increases easily due to the increase in the temperature before the tuyere, and the frequency of melting of the tuyere refractory may increase. In addition, the temperature distribution in the furnace radial direction becomes large, and problems such as difficulty in controlling the gas flow tend to occur. For this reason, the oxygen enrichment rate is preferably about 50 vol% as the upper limit.

本発明では、炉頂温度を確保するために、鉄系スクラップ及び/又はコークスを事前に乾燥処理及び/又は予熱する。炉頂温度とは炉頂出口における排ガス温度のことであり、炉装入時における原料(鉄系スクラップ及び/又はコークス)の水分含有率が低いほど、また原料温度が高いほど、炉頂温度を高くすることができる。炉頂温度が130℃を下回ると腐食性ガス(NOx,SOx)の結露などが生じやすくなるため、炉頂温度は130℃以上に維持されることが好ましい。したがって本発明では、例えば、炉頂温度が130℃以上に維持されるよう、鉄系スクラップ及び/又はコークスを乾燥処理及び/又は予熱する。   In the present invention, in order to secure the furnace top temperature, the iron-based scrap and / or coke is dried and / or preheated in advance. The furnace top temperature is the exhaust gas temperature at the furnace top outlet. The lower the moisture content of the raw material (iron scrap and / or coke) at the time of furnace charging, the higher the raw material temperature, Can be high. When the furnace top temperature is lower than 130 ° C., condensation of corrosive gases (NOx, SOx) and the like are likely to occur. Therefore, the furnace top temperature is preferably maintained at 130 ° C. or higher. Therefore, in the present invention, for example, iron-based scrap and / or coke is dried and / or preheated so that the furnace top temperature is maintained at 130 ° C. or higher.

鉄系スクラップ及び/又はコークスを事前に乾燥処理及び/又は予熱するに当たり、炉頂温度を測定し、この実績炉頂温度に基づいて上記(1)式にしたがい乾燥処理及び/又は予熱することにより、炉頂温度を目標温度、すなわち腐食性ガスが結露しない温度或いはダストの排出が円滑になされる温度とすることができる。
ここで、上記(1)式は、炉装入物の潜顕熱の差(炉装入物温度、水分蒸発熱)が排ガス温度の差になって現れることを関連づけたものである。上記(1)式において、左辺第一項は予熱による鉄系スクラップ顕熱上昇分であり、1℃の上昇で排ガス温度は1℃の上昇が見込まれる。左辺第二項は予熱によるコークス顕熱上昇分であり、これも1℃の上昇で排ガス温度は1℃の上昇が見込まれる。但し、このコークス顕熱上昇分はコークス比により変化するため、コークス比を考慮するとともに、排ガス温度への影響も考慮して係数を掛けている。左辺第三項は乾燥処理又は予熱による鉄系スクラップの水分蒸発熱分であり、排ガス温度への影響を考慮して係数を掛けている。左辺第四項は乾燥処理又は予熱によるコークスの水分蒸発熱分であり、コークス比により変化するためコークス比を考慮するとともに、排ガス温度への影響も考慮して係数を掛けている。
When iron-based scrap and / or coke is dried and / or preheated in advance, the furnace top temperature is measured, and then dried and / or preheated according to the above equation (1) based on this actual furnace top temperature. The furnace top temperature can be set to a target temperature, that is, a temperature at which corrosive gas does not condense or a temperature at which dust is smoothly discharged.
Here, the above equation (1) relates that the difference in latent sensible heat of the furnace charge (furnace charge temperature, moisture evaporation heat) appears as a difference in exhaust gas temperature. In the above equation (1), the first term on the left side is the increase in sensible heat of iron-based scrap due to preheating. As the temperature rises by 1 ° C, the exhaust gas temperature is expected to rise by 1 ° C. The second term on the left side is the increase in sensible heat of coke due to preheating, which is also expected to rise by 1 ° C as the exhaust gas temperature rises by 1 ° C. However, since this sensible heat rise of coke changes depending on the coke ratio, the coke ratio is taken into consideration and the coefficient is multiplied in consideration of the influence on the exhaust gas temperature. The third term on the left side is the heat of water evaporation of iron-based scrap due to drying or preheating, and is multiplied by a coefficient in consideration of the effect on the exhaust gas temperature. The fourth term on the left side is the moisture evaporation heat of coke due to drying treatment or preheating. Since it changes depending on the coke ratio, the coke ratio is taken into consideration, and the coefficient is multiplied taking into consideration the effect on the exhaust gas temperature.

鉄系スクラップやコークスを事前に乾燥処理又は予熱する方法に特別な制限はなく、例えば、乾燥処理は、適当な熱源を用いて乾燥してもよいし、屋根付きヤードで長期間保管して自然乾燥を行ってもよい。また、予熱はロータリーキルン等の加熱設備を用いて行ってもよい。   There is no particular restriction on the method of pre-drying or preheating iron-based scrap or coke. For example, the drying treatment may be performed using an appropriate heat source, or may be stored for a long time in a covered yard for natural use. Drying may be performed. Moreover, you may perform preheating using heating equipment, such as a rotary kiln.

鉄系スクラップの溶解を低コストに行うためには、製鉄用コークスのような粒径の小さい安価なコークスの使用比率を高める必要がある。このような観点からは、本発明でも算術平均粒径が120mm以下のコークスを用いるのが好ましい。しかし、使用するコークスの径が小さいとコークスが早く燃焼してしまうために、コークスの燃焼で生じたCOが炉内を上昇する過程でコークス(C)と反応する、所謂ソリューションロス反応(CO+C→2CO:吸熱反応)が生じやすくなり、このソリューションロス反応により発熱量が下がり、出銑量が低下するという問題がある。図3は、算術平均粒径がそれぞれ160mmと65mmのコークスを用いて操業を行った場合の炉高方向でのガス組成分布の一例を示したものであり、これによれば、大粒径のコークスを用いると、コークスの燃焼速度が遅いため、羽口から炉中段にかけて徐々にO濃度が低下し、一方、CO濃度は上昇する。O濃度が相当分低下した炉中段より上方ではソリューションロス反応が起こり得るが、コークス粒径が大きいため反応速度が遅く、このため炉中段より上方ではCO濃度がピークを維持し、CO濃度は低レベルを維持する。これに対して小径のコークスを用いると、CO濃度は炉下部でピークとなり、そこから炉中段にかけてソリューションロス反応によって急激に低下(したがって、CO濃度が急増)している。 In order to melt iron scrap at a low cost, it is necessary to increase the use ratio of inexpensive coke having a small particle diameter such as iron-making coke. From such a viewpoint, it is preferable to use coke having an arithmetic average particle size of 120 mm or less in the present invention. However, if the diameter of the coke used is small, the coke burns quickly, so that the CO 2 generated by the combustion of the coke reacts with the coke (C) in the process of rising in the furnace, so-called solution loss reaction (CO 2 + C → 2CO: endothermic reaction) is likely to occur, and this solution loss reaction causes a problem that the calorific value is reduced and the amount of output is reduced. FIG. 3 shows an example of the gas composition distribution in the furnace height direction when the operation is performed using cokes having arithmetic average particle sizes of 160 mm and 65 mm, respectively. When coke is used, since the combustion speed of coke is slow, the O 2 concentration gradually decreases from the tuyere to the middle stage of the furnace, while the CO 2 concentration increases. A solution loss reaction may occur above the middle furnace stage where the O 2 concentration has dropped considerably, but the reaction rate is slow due to the large coke particle size, so the CO 2 concentration maintains a peak above the middle furnace stage, and the CO concentration Maintains a low level. On the other hand, when small-diameter coke is used, the CO 2 concentration peaks at the lower part of the furnace, and from there to the middle stage of the furnace, the CO2 concentration rapidly decreases due to the solution loss reaction (therefore, the CO concentration rapidly increases).

このようなコークスの小径化に伴う問題に対しては、本発明のように熱風に酸素を富化することが有効である。コークスの小径化によりソリューションロス(吸熱反応)の増加は避けられず、このような吸熱の増加による出銑量の低下への対応としては、吸熱を補うべく燃焼を増加させる必要がある。この時、単に送風量を増加させると排ガス量が増加し、排ガス処理系の許容量を超えてしまう。これに対して、送風量自体は増加させずに送風酸素富化を行えば、排ガス量を抑えつつ燃焼を増加させることができる。したがって、コークス小径化に伴う熱量不足を補うことができる。   For the problem associated with such a reduction in the diameter of coke, it is effective to enrich the hot air with oxygen as in the present invention. An increase in solution loss (endothermic reaction) is unavoidable due to a reduction in the diameter of coke, and in order to cope with a decrease in the amount of output due to such an increase in endotherm, it is necessary to increase combustion in order to compensate for the endotherm. At this time, if the amount of blast is simply increased, the amount of exhaust gas increases and exceeds the allowable amount of the exhaust gas treatment system. On the other hand, if the blast oxygen enrichment is performed without increasing the blast amount itself, the combustion can be increased while suppressing the exhaust gas amount. Therefore, the shortage of heat accompanying the reduction in the diameter of coke can be compensated.

本発明において算術平均粒径が120mm以下の安価なコークスを用いる場合、コークスの粒径があまりに小さいと、送風酸素富化を行って出銑量の低下が避けられないため、使用するコークスの算術平均粒径は40mm以上であることが好ましい。算術平均粒径が120mm以下のコークスとしては、通常、製鉄用コークス(通常、算術平均粒径:25〜80mm程度)と鋳物用コークス(通常、算術平均粒径:150〜250mm程度)を適宜混合して用いる。
なお、算術平均粒径とは、平均粒径=(Σai×Xi)/(Σai)(但し、Xi:代表粒径、ai:割合)で求められる粒径である。
When using an inexpensive coke having an arithmetic average particle size of 120 mm or less in the present invention, if the particle size of the coke is too small, a reduction in the amount of brewing is unavoidable due to blast oxygen enrichment. The average particle size is preferably 40 mm or more. As the coke having an arithmetic average particle size of 120 mm or less, usually, iron coke (usually arithmetic average particle size: about 25 to 80 mm) and casting coke (usually arithmetic average particle size: about 150 to 250 mm) are appropriately mixed. And use.
The arithmetic average particle size is a particle size obtained by the average particle size = (Σai × Xi) / (Σai) (where Xi: representative particle size, ai: ratio).

図4は、羽口高さ位置での炉内径Dが2.1mの溶解炉を用いた操業(コークス比:130kg/t)における操業条件及び操業結果(送風圧力、炉頂温度、出銑量、酸素富化率、スクラップ装入温度)の推移を示したものである。本実施例では、操業途中の段階から予熱した鉄系スクラップ(予熱スクラップ)の炉内装入を行った。
本実施例では、ベース操業条件での操業中、A時点で出銑量増加の要求があり、酸素富化率の増加で出銑量を増加させた。しかし、酸素富化率の増加により炉頂温度が低下するとともに、送風圧力も次第に増加し且つ変動量も大きくなった。この送風圧力の増加や圧力変動の増加は、ダストの炉外への排出(排ガスに随伴した排出)が阻害されたことによるものと考えられる。そこで、B時点から炉装入スクラップをそれまでの常温スクラップ(公称温度25℃)から予熱スクラップ(公称温度65℃)に切り替えた。スクラップの予熱は、実効内容積が3mの容器内にスクラップを入れ、容器側壁に設けられた熱風導入口から熱風(300℃)を吹き込むことにより行い、予熱後直ちに炉内に装入した。また、スクラップの予熱温度は、現状の炉頂温度よりも40℃高い目標炉頂温度を設定して、上記(1)式に従い計算して調整した。その結果、炉頂温度は次第に上昇して目標炉頂温度に達し、これに伴い送風圧力も次第に低下し且つ変動量も小さくなった。
Fig. 4 shows the operating conditions and results (blast pressure, furnace top temperature, amount of tapping) in operation using a melting furnace with a furnace inner diameter D of 2.1 m at the tuyere height (coke ratio: 130 kg / t). , Oxygen enrichment rate, scrap charging temperature). In the present example, the furnace interior of iron-based scrap (preheated scrap) preheated from the stage during operation was performed.
In this example, during operation under the base operating conditions, there was a demand for an increase in the amount of output at time A, and the amount of output was increased by increasing the oxygen enrichment rate. However, as the oxygen enrichment rate increased, the furnace top temperature decreased, the blast pressure gradually increased, and the fluctuation amount increased. The increase in the blowing pressure and the increase in pressure fluctuation are thought to be due to the inhibition of the discharge of dust to the outside of the furnace (discharge accompanying the exhaust gas). Therefore, the furnace charging scrap was switched from the normal temperature scrap (nominal temperature 25 ° C.) to the preheated scrap (nominal temperature 65 ° C.). The scrap was preheated by putting the scrap into a container having an effective internal volume of 3 m 3 , blowing hot air (300 ° C.) from a hot air inlet provided on the side wall of the container, and charging the furnace immediately after preheating. The preheating temperature of the scrap was calculated and adjusted according to the above equation (1) by setting a target furnace top temperature 40 ° C. higher than the current furnace top temperature. As a result, the furnace top temperature gradually increased to reach the target furnace top temperature, and accordingly, the blowing pressure gradually decreased and the fluctuation amount became small.

本発明で使用する竪型スクラップ溶解炉とその基本的な操業形態を模式的に示す説明図Explanatory drawing schematically showing a vertical scrap melting furnace used in the present invention and its basic operation mode 図1の竪型スクラップ溶解炉の羽口の拡大図Enlarged view of the tuyere of the vertical scrap melting furnace of Fig. 1 算術平均粒径がそれぞれ160mmと65mmのコークスを用いて操業を行った場合の炉高方向でのガス組成分布の一例を示す説明図Explanatory drawing showing an example of gas composition distribution in the furnace height direction when operation is performed using coke with arithmetic average particle sizes of 160 mm and 65 mm, respectively. 実施例の操業における操業条件及び操業結果(送風圧力、炉頂温度、出銑量、酸素富化率、スクラップ装入温度)の推移を示すグラフThe graph which shows transition of the operation conditions in the operation of an Example, and the operation result (Blasting pressure, furnace top temperature, amount of tapping, oxygen enrichment rate, scrap charging temperature).

符号の説明Explanation of symbols

1 原料装入部
2 羽口
3 熱風管
4 排ガス出口
5 出銑口
6 炉内壁
20 羽口管
DESCRIPTION OF SYMBOLS 1 Raw material charging part 2 Tuyere 3 Hot air pipe 4 Exhaust gas outlet 5 Outlet 6 Furnace wall 20 Tuyere pipe

Claims (3)

竪型スクラップ溶解炉において、炉頂部から鉄系スクラップとコークスを装入し、炉下部に設けられた複数の羽口から熱風を吹き込み、コークスの燃焼熱で鉄系スクラップを溶解することにより溶銑を製造する方法であって、
前記熱風に酸素を富化し、且つ炉内に装入する鉄系スクラップ及び/又はコークスを事前に乾燥処理及び/又は予熱して水分含有率を低下させることにより、炉頂温度を130℃以上に維持することを特徴とする竪型スクラップ溶解炉を用いた溶銑製造方法。
In a vertical scrap melting furnace, iron scrap and coke are charged from the top of the furnace, hot air is blown from a plurality of tuyere at the bottom of the furnace, and iron scrap is melted by the combustion heat of the coke. A method of manufacturing comprising:
The furnace top temperature is increased to 130 ° C. or more by enriching the hot air with oxygen and drying and / or preheating the iron-based scrap and / or coke charged in the furnace in advance to reduce the moisture content. A hot metal production method using a vertical scrap melting furnace, characterized in that it is maintained .
鉄系スクラップ及び/又はコークスを、下記(1)式を満足するように乾燥処理及び/又は予熱することを特徴とする請求項1に記載の竪型スクラップ溶解炉を用いた溶銑製造方法。
ΔTs+(2×ΔTc×Co)/1000+50×ΔWs+(50×Co×ΔWc)/1000
≧GTt−GTm …(1)
ただし、
ΔTs(℃):予熱による鉄系スクラップ温度の上昇幅
ΔTc(℃):予熱によるコークス温度の上昇幅
ΔWs(mass%):乾燥処理及び/又は予熱による鉄系スクラップ水分含有率の低下幅
ΔWc(mass%):乾燥処理及び/又は予熱によるコークス水分含有率の低下幅
Co(kg/溶銑ton):コークス比
GTt(℃):炉頂部における目標排ガス温度
GTm(℃):炉頂部における実績排ガス温度
The hot metal production method using a vertical scrap melting furnace according to claim 1, wherein the iron-based scrap and / or coke is dried and / or preheated so as to satisfy the following formula (1).
ΔTs + (2 × ΔTc × Co) / 1000 + 50 × ΔWs + (50 × Co × ΔWc) / 1000
≧ GTt−GTm… (1)
However,
ΔTs (° C.): Increase width of iron-based scrap temperature due to preheating ΔTc (° C.): Increase width of coke temperature due to preheating ΔWs (mass%): Reduction width of iron-based scrap moisture content due to drying treatment and / or preheating ΔWc ( mass%): Decrease in coke moisture content due to drying and / or preheating Co (kg / molten iron): Coke ratio
GTt (℃): Target exhaust gas temperature at the top of the furnace
GTm (° C): Actual exhaust gas temperature at the top of the furnace
算術平均粒径が120mm以下のコークスを用いることを特徴とする請求項1又は2に記載の竪型スクラップ溶解炉を用いた溶銑製造方法。   Coke having an arithmetic average particle size of 120 mm or less is used. The hot metal production method using the vertical scrap melting furnace according to claim 1 or 2.
JP2006340018A 2006-12-18 2006-12-18 Hot metal production method using vertical scrap melting furnace Active JP4992407B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006340018A JP4992407B2 (en) 2006-12-18 2006-12-18 Hot metal production method using vertical scrap melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006340018A JP4992407B2 (en) 2006-12-18 2006-12-18 Hot metal production method using vertical scrap melting furnace

Publications (2)

Publication Number Publication Date
JP2008150667A JP2008150667A (en) 2008-07-03
JP4992407B2 true JP4992407B2 (en) 2012-08-08

Family

ID=39653155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006340018A Active JP4992407B2 (en) 2006-12-18 2006-12-18 Hot metal production method using vertical scrap melting furnace

Country Status (1)

Country Link
JP (1) JP4992407B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5315732B2 (en) * 2008-03-17 2013-10-16 Jfeスチール株式会社 Blast furnace operation method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5339918A (en) * 1976-09-24 1978-04-12 Sumitomo Metal Ind Ltd Production of cast iron and steel by combination of shaft furnace, bupola and converter
JP2933808B2 (en) * 1993-09-01 1999-08-16 新日本製鐵株式会社 Raw material charging method for moving bed type scrap melting furnace
JPH10158709A (en) * 1996-11-29 1998-06-16 Kawasaki Steel Corp Method for charging raw material into vertical type iron scrap melting surface
JP5211637B2 (en) * 2006-10-27 2013-06-12 Jfeスチール株式会社 How to operate a vertical furnace

Also Published As

Publication number Publication date
JP2008150667A (en) 2008-07-03

Similar Documents

Publication Publication Date Title
JP4697340B2 (en) Blast furnace operation method
CA2698888C (en) Method for manufacturing molten iron
WO2019150204A1 (en) Nitrogen-free pig iron smelting technology with oxygen and carbon dioxide blown into a blast furnace
JP2008111172A (en) Method for operating blast furnace
EP2202324A1 (en) Vertical furnace and method of operating the same
JP4992407B2 (en) Hot metal production method using vertical scrap melting furnace
JP4893291B2 (en) Hot metal production method using vertical scrap melting furnace
JP4893290B2 (en) Hot metal production method using vertical scrap melting furnace
JP4894949B2 (en) Blast furnace operation method
KR101322903B1 (en) Apparatus for manufacturing molten iron and method for manufacturing the same
JP5181877B2 (en) Hot metal production method using vertical scrap melting furnace
JP2010275623A (en) Method for operating blast furnace
JP5439756B2 (en) Hot metal production method using vertical melting furnace
JP5708029B2 (en) Blast furnace operation method
JP5082678B2 (en) Hot metal production method using vertical scrap melting furnace
JP3629740B2 (en) Hot metal production method
JP2004263258A (en) Method for operating blast furnace
JP5251296B2 (en) Hot metal production method using vertical melting furnace
JP5251297B2 (en) Hot metal production method using vertical melting furnace
JP2002105517A (en) Method for operating blast furnace
JPH09118907A (en) Vertical type quick melting furnace
JPH06108132A (en) Cylindrical furnace and production of molten iron using this furnace
SU1530639A1 (en) Method of flushing blast furnace hearth
JP2021188073A (en) Producing method of molten iron using electric furnace
RU2042714C1 (en) Blast-furnace melting process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120410

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120423

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4992407

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250