JPH11241109A - Method for injecting pulverized fine coal and reducing gas into blast furnace - Google Patents

Method for injecting pulverized fine coal and reducing gas into blast furnace

Info

Publication number
JPH11241109A
JPH11241109A JP26907498A JP26907498A JPH11241109A JP H11241109 A JPH11241109 A JP H11241109A JP 26907498 A JP26907498 A JP 26907498A JP 26907498 A JP26907498 A JP 26907498A JP H11241109 A JPH11241109 A JP H11241109A
Authority
JP
Japan
Prior art keywords
blast furnace
pulverized coal
reducing gas
lance
tuyere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26907498A
Other languages
Japanese (ja)
Other versions
JP3771728B2 (en
Inventor
Shinroku Matsuzaki
眞六 松崎
Tadashi Ideno
正 出野
Kazuyoshi Yamaguchi
一良 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP26907498A priority Critical patent/JP3771728B2/en
Publication of JPH11241109A publication Critical patent/JPH11241109A/en
Application granted granted Critical
Publication of JP3771728B2 publication Critical patent/JP3771728B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)
  • Blast Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a blast furnace operating method for injecting pulverized fine coal together with reducing gas, at the time of injecting the pulverized fine coal through a tuyere part in the blast furnace. SOLUTION: At the time of injecting the pulverized fine coal through the tuyere 12 in the blast furnace, beforehand the pulverized fine coal is supplied into a gasifying furnace at an outside of the blast furnace, and oxygen is supplied to produce the reducing gas. The reducing gas and the pulverized fine coal are simultaneously supplied from each lance, respectively, in two lances 17, 18 faced to the inner part of a blow pipe 13 in the tuyere in the blast furnace or the pulverized fine coal and the reducing gas are simultaneously supplied through a double tube lance or the reducing gas through a single tube lance and the pulverized fine coal from the inner tube and the oxygen from the outer tube in the double tube lance are simultaneously supplied. The furnace heat in the blast furnace is secured and the rate for tapping molten iron is improved and the lowering of fuel ratio is obtd. and the stable supply of the molten iron can be obtd.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高炉の羽口部から
微粉炭を吹き込む際に、微粉炭と同時に還元ガスを吹き
込む高炉操業方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of operating a blast furnace in which a reducing gas is blown simultaneously with pulverized coal when pulverized coal is blown from a tuyere of a blast furnace.

【0002】[0002]

【従来の技術】高炉操業にあっては、コークス代替とし
て、安価で燃焼性がよい燃料(微粉炭、石油、ナフサ
等)を羽口部より吹き込み、熔銑製造コスト低減、生産
性向上を図ってきており、特公昭40−23763号公
報にその技術が開示されている。特に直近では価格の点
から微粉炭吹き込みが主流となっている。
2. Description of the Related Art In blast furnace operation, inexpensive and highly flammable fuels (pulverized coal, petroleum, naphtha, etc.) are blown from the tuyere as an alternative to coke to reduce hot metal production costs and improve productivity. The technique has been disclosed in Japanese Patent Publication No. 40-23763. Especially recently, pulverized coal injection is the mainstream in terms of price.

【0003】また、微粉炭吹き込みに加えて種々のガス
を吹き込むことが、特開平4−268003号公報に提
示されている。この技術は該公報の記載によれば、羽口
部から微粉炭を高炉の内部に吹き込む場合において、微
粉炭吹き込み位置の手前100〜500mmより天然ガ
ス(LNG)、コークス炉ガス(COG)、プロパンガ
ス(LPG)などを吹き込み、微粉炭吹き込み位置の雰
囲気温度を1500〜2000℃に調整することに主眼
点を置いている。
In addition, Japanese Patent Application Laid-Open No. 4-268003 discloses that various gases are blown in addition to pulverized coal. According to the description of this publication, according to the description of this publication, when pulverized coal is blown into the inside of a blast furnace from a tuyere, natural gas (LNG), coke oven gas (COG), propane gas is injected from 100 to 500 mm before the pulverized coal injection position. The main focus is on blowing gas (LPG) or the like and adjusting the ambient temperature at the pulverized coal blowing position to 1500 to 2000 ° C.

【0004】さらには、特開平4−358014号公報
には、高炉の羽口部から微粉炭を吹き込む際に、その分
解熱によるフレーム温度低下を防止し、高炉の炉熱を確
保し、かつ高炉の炉芯内温度を維持することにより、生
産性を向上させ燃料比を低下させることを目的とし、予
め微粉炭を高炉外にて熱分解し、生成したガス、ター
ル、チャーを全量羽口部から吹き込むか、或いは生成し
たガス、タールを除去し、残ったチャーのみを羽口部か
ら吹き込む技術が開示されている。また、その他にも生
産性を増すために送風中に酸素を富化した操業も通常実
施されている。
Further, Japanese Patent Application Laid-Open No. 4-358014 discloses that when pulverized coal is blown from the tuyere of a blast furnace, a reduction in the frame temperature due to the decomposition heat thereof is prevented, the furnace heat of the blast furnace is secured, and The purpose is to improve productivity and lower the fuel ratio by maintaining the temperature inside the core of the furnace, and pulverized coal is thermally decomposed outside the blast furnace in advance, and all generated gas, tar, and char are A technique is disclosed in which gas or tar is blown from the air, or the generated gas and tar are removed, and only the remaining char is blown from the tuyere. In addition, an operation enriched with oxygen during blowing is usually performed to increase productivity.

【0005】[0005]

【発明が解決しようとする課題】従来の高炉操業におい
ては、微粉炭吹き込み量には自ずから限界があった。す
なわち、微粉炭を多量に吹き込むと、吹き込んだ微粉炭
全量が燃焼せずに一部未燃チャーが発生する。この未燃
チャーは上昇ガス流に乗って炉頂より排出されることも
あり、微粉炭のコークスに対する置換率が低下し、燃料
比上昇、生産量低下を引き起こす。また、この未燃チャ
ーが高炉炉下部中心のコークス層(炉芯と称する)に捕
捉された時は、この部分を流下する熔銑滓の通液性を阻
害し、ひいてはこの部分のガスの通気性を阻害すること
になり、高炉の生産量はさらに低下する。
In the conventional blast furnace operation, the amount of pulverized coal injected was naturally limited. That is, when a large amount of pulverized coal is blown, the unburned char is partially generated without burning the entire amount of the pulverized coal. This unburned char may be discharged from the furnace top along with the rising gas flow, so that the replacement ratio of pulverized coal to coke is reduced, causing an increase in fuel ratio and a decrease in production. Further, when the unburned char is trapped in the coke layer (furnace core) at the center of the lower part of the blast furnace, it impairs the liquid permeability of the molten iron slag flowing down this part, and consequently the gas flow in this part. The blast furnace production is further reduced.

【0006】したがって、微粉炭の吹き込み限界をあげ
るためには、微粉炭の燃焼性向上対策や溶銑滓の通液性
確保のためのコークス強度の上昇、高炉燃料比上昇等を
余儀なくされコストアップの要因となっていた。このた
め、多くとも150kg/t−pig(出銑t当りの微
粉炭吹き込み量kgを示すが、以下kg/t・pで表
す)が限度とされていた。そこで、他の還元ガスの併用
も考えられるが前述したLNGは生産地域が偏在してい
るのでその利用に難があり、手近にあるCOGの使用は
製鉄業全体の燃料バランスからみると、他の鋼材加熱炉
等の熱源として用いた方が燃料の熱量を有効に活用でき
るという観点から有利であり、高炉へ用いるとコスト的
に不利益となる。
Therefore, in order to raise the limit of pulverized coal injection, measures must be taken to improve the combustibility of pulverized coal, increase the coke strength for ensuring the liquid permeability of molten iron slag, increase the blast furnace fuel ratio, etc. Was a factor. For this reason, at most 150 kg / t-pig (indicating the amount of pulverized coal injected per t of pig iron (kg), hereinafter referred to as kg / tp) was limited. Therefore, it is conceivable that other reducing gas may be used in combination, but it is difficult to use LNG because the production area is unevenly distributed, and the use of COG at hand is difficult from the viewpoint of the fuel balance of the steel industry as a whole. The use as a heat source such as a steel heating furnace is advantageous from the viewpoint that the calorific value of the fuel can be effectively used, and the use in a blast furnace is disadvantageous in cost.

【0007】また、特開平4−358014号公報にあ
るように微粉炭を炉外で熱分解し、分解生成物を高炉に
吹き込む方法、またはチャーのみを吹き込む方法では、
高炉の羽口での微粉炭の熱分解によるフレーム温度低下
防止には役に立つが、高炉では熱分解に必要な熱を外部
から供給する必要があることや発生ガスのカロリーは高
いが、発生ガス収率が少なく、さらにガス発生と同時に
チャーやタールが多量に発生するために、これら生成物
の分離処理が必要になってくる。また分離しないで直接
高炉に吹き込む場合には、タールやチャーによる詰まり
付着防止対策が必要となること、またスラグ分も高炉に
直接吹き込まれること等の不都合な問題が生じる。
Further, as disclosed in JP-A-4-358014, a method of pyrolyzing pulverized coal outside a furnace and blowing a decomposition product into a blast furnace, or a method of blowing only char,
It is useful for preventing flame temperature drop due to pyrolysis of pulverized coal at the tuyere of a blast furnace, but in a blast furnace it is necessary to supply heat required for pyrolysis from the outside and the calories of generated gas are high, but the generated gas Since the efficiency is low and a large amount of char and tar is generated at the same time as gas generation, a separation treatment of these products is required. In addition, when the blast furnace is directly blown into the blast furnace without being separated, there are inconveniences such as a need to prevent clogging and adhesion of tar and char, and a slag portion being directly blown into the blast furnace.

【0008】さらに、高出銑操業のために一般的に酸素
富化操業を実施しているが、この操業により羽口先温度
(フレーム温度)が上昇する他、熱流比(炉内を通過す
る固体の速度×固体の比熱)/(炉内を通過するガス速
度×ガス比熱)が増加する。これは富化した酸素に相当
する送風量を減じて(窒素量が減少することになる)、
高炉ボッシュガス中のCO濃度を高めて鉱石の還元速度
を上昇させる操業となり、結果としてボッシュガスを減
じることに繋がる。本発明は、このような従来の問題点
の解決を図ることを目的として開発されたもので、微粉
炭の吹き込みに加えて還元ガスを同時に吹き込む方法を
提供するにある。
[0008] Furthermore, an oxygen-enrichment operation is generally carried out for high tapping operation. This operation raises the temperature of the tuyere (flame temperature) and the heat flow ratio (solids passing through the furnace). Speed × specific heat of solid) / (velocity of gas passing through the furnace × specific heat of gas) increases. This reduces the air flow corresponding to the enriched oxygen (which will reduce the amount of nitrogen),
The operation is to increase the CO concentration in the blast furnace bosh gas to increase the ore reduction rate, and as a result, to reduce the bosh gas. The present invention has been developed for the purpose of solving such a conventional problem, and an object of the present invention is to provide a method for simultaneously blowing a pulverized coal and a reducing gas.

【0009】[0009]

【課題を解決するための手段】本発明の要旨とするとこ
ろは下記手段にある。 (1) 高炉羽口からの微粉炭吹き込みに際し、予め微
粉炭を高炉外においてガス化炉に導き酸素を供給して還
元ガスを生成し、該還元ガスを微粉炭と同時に高炉羽口
のブローパイプ内に臨ませた2本のランス通して高炉内
へ供給するに当たり、それぞれのランスを微粉炭と還元
ガスの専用となし、該ランスから微粉炭と還元ガスを同
時に供給する高炉への微粉炭と還元ガスの吹き込み方
法。 (2) 前記高炉羽口のブローパイプ内に臨ませた2本
のランスの先端部において、微粉炭供給ランスより還元
ガス供給ランスが50〜100mm高炉側へ配設されて
いるランスを用いる(1)記載の高炉への微粉炭と還元
ガスの吹き込み方法。
The gist of the present invention lies in the following means. (1) When pulverized coal is blown from the blast furnace tuyere, the pulverized coal is introduced into a gasifier outside the blast furnace in advance and oxygen is supplied to generate a reducing gas. When supplying into the blast furnace through the two lances facing the inside, each lance is dedicated to pulverized coal and reducing gas, and pulverized coal to the blast furnace that simultaneously supplies pulverized coal and reducing gas from the lance. How to blow reducing gas. (2) At the tips of the two lances facing the blowpipe of the blast furnace tuyere, use a lance in which a reducing gas supply lance is disposed 50 to 100 mm closer to the blast furnace side than the pulverized coal supply lance (1). The method of injecting pulverized coal and reducing gas into the blast furnace described in the above).

【0010】(3) 高炉羽口からの微粉炭吹き込みに
際し、予め微粉炭を高炉外においてガス化炉に導き酸素
を供給して還元ガスを生成し、該還元ガスを微粉炭と同
時に高炉羽口のブローパイプ内に臨ませた二重管ランス
を通して高炉内へ供給するに当たり、該ランスの内管へ
微粉炭を、外管へ還元ガスを搬送する高炉への微粉炭と
還元ガスの吹き込み方法。 (4) 前記高炉羽口のブローパイプ内に臨ませたラン
スのの先端部において、外管を内管より10〜30mm
突出させた二重管ランスを用いる(3)記載の高炉への
微粉炭と還元ガスの吹き込み方法。
(3) When pulverized coal is injected from the blast furnace tuyere, the pulverized coal is introduced into a gasifier outside the blast furnace and oxygen is supplied to generate a reducing gas. A method of blowing pulverized coal and reducing gas into a blast furnace that conveys pulverized coal to an inner pipe of the lance and a reducing gas to an outer pipe when supplying the pulverized coal to the blast furnace through a double pipe lance facing a blow pipe. (4) At the tip of the lance facing the blowpipe of the blast furnace tuyere, the outer pipe is 10 to 30 mm from the inner pipe.
The method for injecting pulverized coal and reducing gas into a blast furnace according to (3), wherein the projecting double tube lance is used.

【0011】(5) 高炉羽口からの微粉炭吹き込みに
際し、予め微粉炭を高炉外においてガス化炉に導き酸素
を供給して還元ガスを生成し、該還元ガスを高炉羽口の
ブローパイプ内に臨ませた単管ランスを通して高炉内へ
供給するに当たり、、該単管ランスとは別に二重管ラン
スをブローパイプ内に臨ませ、該二重管ランスの内管へ
微粉炭を、外管へ酸素を搬送する高炉への微粉炭と還元
ガスの吹き込み方法。 (6) 前記高炉羽口のブローパイプ内に臨ませた単管
ランスと二重管ランスの先端部において、単管ランスを
二重管ランスより50〜100mm高炉側へ配設したラ
ンスを用いる(5)記載の高炉への微粉炭と還元ガスの
吹き込み方法。
(5) When pulverized coal is blown from the blast furnace tuyere, the pulverized coal is introduced into a gasifier outside the blast furnace in advance and oxygen is supplied to generate a reducing gas. In supplying to the blast furnace through the single-pipe lance, the double-pipe lance faces the blowpipe separately from the single-pipe lance, and pulverized coal is supplied to the inner pipe of the double-pipe lance, A method of blowing pulverized coal and reducing gas into a blast furnace that transports oxygen to the blast furnace. (6) At the tip of the single-tube lance and the double-tube lance facing the blowpipe of the blast furnace tuyere, use a lance in which the single-tube lance is arranged 50 to 100 mm closer to the blast furnace than the double-tube lance ( 5) The method of injecting pulverized coal and reducing gas into the blast furnace described in the above.

【0012】[0012]

【発明の実施の形態】本発明者らは前述のように高炉へ
吹き込む微粉炭量を如何にして増量できるかについて鋭
意研究検討を重ねた結果、種々の操業条件からみて微粉
炭のみで通常操業で使用されている最大量150kg/
t・pの限界値を超えることは、高炉を安定して操業さ
せるには困難であるとの結論に到達した。そこでこの微
粉炭に代え得る還元材とし、従来法で提案されている種
々の還元材について試行してみたがいずれも望ましい結
果が得られなかった。
DETAILED DESCRIPTION OF THE INVENTION The present inventors have conducted intensive studies and studies on how the amount of pulverized coal injected into a blast furnace can be increased as described above. The maximum amount used in the 150kg /
It was concluded that exceeding the limit value of tp was difficult to operate the blast furnace stably. Then, as a reducing agent which can be substituted for the pulverized coal, various kinds of reducing agents proposed by the conventional method were tried, but none of the desired results were obtained.

【0013】しかし、微粉炭をガス化して使用してみた
結果、微粉炭を増量させるための代替還元材として有効
であり、さらにそのガスの改質をおこなってみたとこ
ろ、よりよい還元材が得られることが判明し、この還元
材の使用によって微粉炭と還元ガス(微粉炭換算)の両
者合算で、約200kg/t・pまで増量できることが
可能となったが、この還元ガスを用いるに当たり、適切
な吹き込みランスを使用すべくその開発を試みた結果、
本発明の完成をみるに至った。
However, as a result of gasifying and using pulverized coal, it is effective as an alternative reducing agent for increasing the amount of pulverized coal, and when the gas is reformed, a better reducing agent is obtained. It has been found that the use of this reducing material can increase the amount of pulverized coal and reducing gas (in pulverized coal conversion) to about 200 kg / tp, but when using this reducing gas, As a result of trying to develop an appropriate blowing lance,
The present invention has been completed.

【0014】以下、本発明を先ず図面に基づいて説明す
る。図1は、微粉炭から還元ガスを製造し高炉羽口に供
給するまでの設備フローを示したものである。まず、石
炭5を粉砕設備2にて100μ程度の微粉状に破砕し、
次いでガス化炉3に装入する。一方、破砕された微粉炭
5を部分燃焼させるための酸素6(空気または酸素富化
空気でもよい)を該ガス化炉3に供給し、炭化水素を主
成分とする微粉炭中の揮発分を揮発させる。炭化水素は
酸素と反応し、主に一酸化炭素(CO)と水素(H2
を生成し、一部二酸化炭素(CO2 )と水蒸気(H2
O)にまで反応が進む。
Hereinafter, the present invention will be described with reference to the drawings. FIG. 1 shows the equipment flow from the production of reducing gas from pulverized coal to the supply to the tuyere of a blast furnace. First, the coal 5 is crushed into fine powder of about 100 μm in the crushing equipment 2,
Next, it is charged into the gasification furnace 3. On the other hand, oxygen 6 (which may be air or oxygen-enriched air) for partially burning the crushed pulverized coal 5 is supplied to the gasification furnace 3 to remove volatile components in the pulverized coal mainly containing hydrocarbons. Evaporate. Hydrocarbons react with oxygen, mainly carbon monoxide (CO) and hydrogen (H 2 )
Is generated, and part of carbon dioxide (CO 2 ) and water vapor (H 2
The reaction proceeds to O).

【0015】しかし、還元ガスの生成を目的とするので
過剰酸素率は、石炭5の炭化水素量に見合った量の供給
に止め、できるだけCO2 、H2 Oの発生を抑制できる
よう考慮する。このようにして生成したガスは1500
〜1600℃の高熱を有しており、このままの状態で高
炉内に供給することもできるが、さらにこのガスをガス
改質炉4に導入して、微粉炭7を供給することにより高
カロリー化・高還元性能のガスとなすことができる。
However, since the purpose is to generate a reducing gas, the excess oxygen ratio is limited to the supply of the amount corresponding to the amount of hydrocarbons of the coal 5 and the generation of CO 2 and H 2 O is considered as much as possible. The gas generated in this way is 1500
It has a high heat of up to 1600 ° C. and can be supplied into the blast furnace as it is. However, this gas is further introduced into the gas reforming furnace 4 and the pulverized coal 7 is supplied to increase the calorie.・ Can be used as a gas with high reduction performance.

【0016】またガス改質炉4において、水蒸気8を供
給すると供給した水蒸気(H2 O)は、高温雰囲気下で
2 とO2 に分解し還元ガス中のCO、H2 濃度を上昇
させることができ、前記した還元ガスの還元力の不足を
補う効果を有する。また、供給された微粉炭中の炭素が
完全燃焼したCO2 およびH2 Oと反応し、還元ガス9
としてのCO、H2 ガスに改質され、還元ガスとしての
潜熱を上昇させることができる。
In the gas reforming furnace 4, when the steam 8 is supplied, the supplied steam (H 2 O) is decomposed into H 2 and O 2 in a high-temperature atmosphere to increase the CO and H 2 concentrations in the reducing gas. And has an effect of compensating for the above-described shortage of the reducing power of the reducing gas. Further, the carbon in the supplied pulverized coal reacts with the completely burned CO 2 and H 2 O, and the reducing gas 9
To CO and H 2 gas, and the latent heat as a reducing gas can be increased.

【0017】このときの上記反応は吸熱反応であるた
め、ガス化炉3で発生する高温のガス温度を高炉使用に
適する温度1200℃程度まで低下させることができ、
還元ガス温度の調整が可能である。このとき供給すべき
還元ガス量が多い場合、または、熱バランス的にガス温
度が高炉で使用すべき温度よりも高い場合、温度によっ
てガス容積が変わってくるので、高炉へ供給するための
ランスでの搬送限界量を超える惧れがある。したがっ
て、熱交換器等を用いることにより、還元ガス温度を5
00℃程度までに温度を低下させることも考慮する必要
がある。例えば、熱交換器によって熱交換された熱は、
ボイラー等の熱源として有効利用に役立つ。このように
して得られた還元ガス9は、ランスを通して熱風10へ
供給され同時に微粉炭19も他のランスを通して熱風1
0へ供給される。
Since the above reaction at this time is an endothermic reaction, the temperature of the high-temperature gas generated in the gasification furnace 3 can be reduced to about 1200 ° C., which is suitable for use in the blast furnace.
Adjustment of the reducing gas temperature is possible. At this time, if the amount of reducing gas to be supplied is large, or if the gas temperature is higher than the temperature to be used in the blast furnace due to thermal balance, the gas volume changes depending on the temperature, so a lance for supplying to the blast furnace is used. May exceed the transport limit. Therefore, by using a heat exchanger or the like, the temperature of the reducing
It is also necessary to consider lowering the temperature to about 00 ° C. For example, the heat exchanged by the heat exchanger
Useful as a heat source for boilers and the like. The reducing gas 9 thus obtained is supplied to the hot air 10 through a lance, and at the same time, the pulverized coal 19 is also passed through another lance to the hot air 1.
0.

【0018】前述したように本発明者らは、微粉炭を空
気や酸素等の酸化剤と反応させてガス化させるが、酸素
と微粉炭の比率を調整し、C+1/2O2 =CO反応で
ある部分燃焼反応を利用して多量の還元ガスを生成さ
せ、さらにガス組成をより高カロリーまたは高還元性能
に変えるため、微粉炭添加、水蒸気添加等によるC+C
2 =2COまたはC+H2 O=CO+H2 反応によ
り、CO、H2 の量を増やせることに着目した。
As described above, the present inventors react pulverized coal with an oxidizing agent such as air or oxygen to gasify it. The ratio of oxygen to pulverized coal is adjusted, and the C + 1 / 2O 2 = CO reaction is performed. In order to generate a large amount of reducing gas using a certain partial combustion reaction and further change the gas composition to higher calorie or higher reducing performance, C + C by pulverized coal addition, steam addition, etc.
Attention was paid to the fact that the amount of CO and H 2 can be increased by the reaction of O 2 = 2CO or C + H 2 O = CO + H 2 .

【0019】本発明によれば、ガス化による温度上昇
(約1500℃)により、タール分のガス化、スラグの
溶融滴下による分離が可能となり、さらには微粉炭添
加、水蒸気添加等を組み合わせることによりガス温度の
調節も可能であり、高炉羽口からの吹き込みが極めて容
易となる。本還元ガスを用いることにより、微粉炭由来
のガスと吹き込み微粉炭量を合わせて実質的に安価な微
粉炭使用量を例えば、200kg/t・pレベルとする
ことができ、コークス比も低減できる。また微粉炭吹き
込み量増時の持ち込み灰分の影響もなくなり、高炉操業
の安定にもつながる。さらに、羽口先温度調整やボッシ
ュガス量確保の点で酸素富化操業との併用も可能とな
り、高出銑比操業の達成も容易となる。
According to the present invention, the temperature rise (about 1500 ° C.) due to gasification enables gasification of tar and separation by melting and dropping of slag, and further, by combining pulverized coal addition, steam addition and the like. The gas temperature can be adjusted, and blowing from the tuyere of the blast furnace becomes extremely easy. By using this reducing gas, the amount of pulverized coal derived from pulverized coal and the amount of pulverized coal to be blown can be substantially reduced to a level of, for example, 200 kg / tp · p, and the coke ratio can be reduced. . In addition, the effect of ash brought in when the pulverized coal injection volume is increased is eliminated, which leads to stable operation of the blast furnace. Furthermore, it is possible to use together with the oxygen enrichment operation in terms of the tuyere tip temperature adjustment and the securing of the amount of Bosch gas, and it is easy to achieve a high iron production ratio operation.

【0020】本発明において、高炉に使用できる還元ガ
スとしては、ガス改質炉で生成される不純物等の夾雑物
を含んだ粗製ガスでもよいが、スラグ分離除去したガ
ス、またはスラグとチャーを分離除去したガス、さらに
はスラグ、チャー、灰分等の夾雑物を全て取り除いた精
製ガスが最も好ましい。しかしこれ等の夾雑物を分離除
去するためには設備的に複雑な装置を必要とし還元ガス
製造コストの上昇にも繋がり、また還元ガス供給ランス
の保全管理にも影響を及ぼす。したがって、還元ガスと
してどの段階のガスを用いるかは、高炉操業上供給され
る還元ガス(供給量にもよるが)からもたらされる影響
の度合いと、還元ガスのコストとの兼ね合いから決める
べきで、徒にクリーンなガスのみしか使用できないとい
うことではない。
In the present invention, the reducing gas that can be used in the blast furnace may be a crude gas containing impurities such as impurities generated in a gas reforming furnace, but may be a gas that has been separated and removed from slag, or a gas that has separated slag and char. The most preferred is a gas that has been removed, and a purified gas from which all impurities such as slag, char, and ash have been removed. However, in order to separate and remove these contaminants, a complicated equipment is required, which leads to an increase in the cost of producing the reducing gas, and also affects the maintenance management of the reducing gas supply lance. Therefore, which stage of the gas to use as the reducing gas should be determined based on the balance between the degree of the effect of the reducing gas (depending on the supply amount) supplied during the blast furnace operation and the cost of the reducing gas. This does not mean that only clean gas can be used.

【0021】図2は還元ガスを微粉炭と共に高炉羽口へ
供給するためのランス配設状態の1例を示した模式図で
ある。図において、高炉炉壁11には羽口12が設けら
れ、羽口12の後端にブローパイプ13が連接されてい
る。ブローパイプ13には加熱空気等が供給されてお
り、ブローパイプ13を介して羽口12から炉内14に
送風される。このような送風羽口において、ランス17
および18がブローパイプ13を貫通して加熱空気の通
路内で開口し、該ランス17を介して微粉炭が、またラ
ンス18を介して還元ガスがブローパイプ13内に吹き
込まれるように構成されており、羽口12の前方にはガ
スにより噴流15が形成され、さらに、炉内14に充填
されたコークスが旋回しながら燃焼する領域、すなわち
レースウエイ16が形成されている。上記ブローパイプ
13内に臨ませたランスの配設に当たっての位置関係
は、微粉炭供給ランス17より還元ガス供給ランス18
を高炉側に設置する。この場合、両ランス先端部間の距
離(L1 )は50〜100mmの間隔を保持するのが望
ましい。
FIG. 2 is a schematic diagram showing an example of a lance arrangement for supplying a reducing gas together with pulverized coal to the tuyere of a blast furnace. In the figure, a tuyere 12 is provided on a blast furnace wall 11, and a blow pipe 13 is connected to a rear end of the tuyere 12. Heated air or the like is supplied to the blow pipe 13, and is blown from the tuyere 12 into the furnace 14 via the blow pipe 13. In such a tuyere, the lance 17
And 18 open through the blowpipe 13 in the passage of the heated air so that pulverized coal is blown into the blowpipe 13 via the lance 17 and reducing gas is blown into the blowpipe 13 via the lance 18. In addition, a gas jet 15 is formed in front of the tuyere 12, and a region where the coke filled in the furnace 14 burns while swirling, that is, a raceway 16 is formed. The positional relationship in disposing the lances facing the blow pipe 13 is as follows.
Is installed on the blast furnace side. In this case, it is desirable that the distance (L 1 ) between the tip ends of the lances is maintained at 50 to 100 mm.

【0022】また、図3(a),(b)に二重管ランス
について、それぞれランスの断面図と側面図を示した。
二重管ランスの外管21の先端部を内管22の先端部よ
り突出させた構造(図3(b))となし、該ランス内管
22から微粉炭を、外管21から還元ガスを供給する。
この場合、突出する外管21の先端部と内管22の先端
部の距離は、10〜30mm(L2 )の間隔を設けるの
が好ましい。
FIGS. 3 (a) and 3 (b) show a sectional view and a side view of the double-tube lance, respectively.
The distal end of the outer tube 21 of the double tube lance is made to protrude from the distal end of the inner tube 22 (FIG. 3B), and pulverized coal is discharged from the inner tube 22 of the lance, and reducing gas is discharged from the outer tube 21. Supply.
In this case, it is preferable that the distance between the distal end of the outer tube 21 and the distal end of the inner tube 22 is 10 to 30 mm (L 2 ).

【0023】また、図4(a),(b)にそれぞれラン
スの断面図と側面図に示したように、二重管ランスと単
管ランスを併用することもよく、二重管ランスの内管2
2から微粉炭を供給し、外管21からは酸素を供給す
る。一方、単管ランス18からは還元ガスを供給する。
この場合、単管ランス18の先端部は二重管ランスの先
端部から50〜100mm(L3 )離して高炉側へ設置
するのが望ましい(図4(b))。
As shown in the sectional view and side view of the lance in FIGS. 4 (a) and 4 (b), a double tube lance and a single tube lance may be used together. Tube 2
Pulverized coal is supplied from 2 and oxygen is supplied from the outer tube 21. On the other hand, a reducing gas is supplied from the single tube lance 18.
In this case, it is desirable that the distal end of the single tube lance 18 be installed on the blast furnace side at a distance of 50 to 100 mm (L 3 ) from the distal end of the double tube lance (FIG. 4B).

【0024】高炉内への微粉炭吹き込み量に対する還元
ガス吹き込み量であるが、前述のように現在の高炉操業
では微粉炭量は、最大限150kg/t・pが限界値と
言われている。しかし、本発明によれば従来の微粉炭に
加え還元ガス(還元ガスは微粉炭換算)を用いることに
より、両者の吹き込み量の合計で200kg/t・pま
では可能となり、この還元ガス量を増大せしめれば微粉
炭の吹き込み量を低下させることができる。
The amount of reducing gas blown into the amount of pulverized coal blown into the blast furnace is, as described above, in the current blast furnace operation, the maximum value of the amount of pulverized coal is said to be 150 kg / tp at the maximum. However, according to the present invention, by using a reducing gas (reducing gas is converted into pulverized coal) in addition to the conventional pulverized coal, the total blowing amount of both can be up to 200 kg / tp. If it is increased, the amount of pulverized coal to be blown can be reduced.

【0025】これら両者の吹き込み量は高炉操業におけ
る炉況の安定性、吹き込み設備の規模によっても当然左
右されるものであり、一概に適正範囲を決めることは困
難であるが、還元ガスの使用量としては、高炉羽口から
吹き込む鉱石の還元に用いられる炭素量および水素量が
微粉炭に含有される量(C)と、還元ガスに含まれる量
(G)(還元ガスは微粉炭に換算してその量を算出)の
間では、(G+C)の絶対量にもよるが(G)/(G+
C)が0.05〜0.75の範囲が実用上好ましい。
The amount of these two injections naturally depends on the stability of the furnace conditions in the operation of the blast furnace and the scale of the injection equipment, and it is difficult to determine the appropriate range in a straightforward manner. The amount of carbon and the amount of hydrogen used for the reduction of ore injected from the blast furnace tuyere are included in pulverized coal (C) and the amount contained in reducing gas (G) (reducing gas is converted to pulverized coal. (G + C) between (G + C), although it depends on the absolute amount of (G + C).
C) is preferably practically 0.05 to 0.75.

【0026】[0026]

【実施例】以下、本発明の効果を実際の高炉に適用した
実施例によって説明する。操業を行った高炉は内容積3
273m3 を有する微粉炭吹き込み実施中の高炉であ
り、この高炉に微粉炭と同時にCO49.2%,H2
5.1%,CO2 9.8%,H2 O4.6%の成分を有
する還元ガスを用いて、ブローパイプより高炉内へ羽口
を通して吹き込みを行った。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the effects of the present invention will be described with reference to embodiments applied to an actual blast furnace. The operating blast furnace has an internal volume of 3
This is a blast furnace in which pulverized coal having a volume of 273 m 3 is being blown, and the pulverized coal and CO 49.2%, H 2 3
Using a reducing gas having a component of 5.1%, 9.8% of CO 2 and 4.6% of H 2 O, air was blown from a blow pipe into a blast furnace through a tuyere.

【0027】還元ガスについてはその製造度合によっ
て、高炉操業へ及ぼす影響度も異なってくるが、実施例
においては、使用ランスの種別、配設位置での差異を明
確にすることに主眼をおいたので、上記1種類の還元ガ
スのみについて実施した。したがって、ランスについて
は図2,3,4に示したそれぞれのランスを用いた。高
炉において微粉炭と還元ガス吹き込みを実施したときの
操業条件を表1に示し、さらにその操業によって得られ
た操業結果を表2に示した。
Although the degree of influence of the reducing gas on the operation of the blast furnace differs depending on the degree of its production, the embodiment focuses on clarifying the difference in the type of lance used and the location of the lance. Therefore, only one kind of the reducing gas was performed. Therefore, the lances shown in FIGS. 2, 3, and 4 were used. The operating conditions when pulverized coal and reducing gas were blown in the blast furnace are shown in Table 1, and the operating results obtained by the operation are shown in Table 2.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【表2】 [Table 2]

【0030】[0030]

【発明の効果】以上説明したように、本発明においては
種々のランスについてそのランス応じ、その設定状態を
最適位置に配設させ、予め微粉炭を高炉外にてガス化炉
で生成した還元ガスを、ブローパイプより高炉内へ羽口
を通して微粉炭と同時に吹き込むことにより、高炉の炉
熱を確保し、出銑比が向上し、燃料比低下が図られ、安
定した溶銑供給が可能となった。
As described above, according to the present invention, various lances are set at the optimum positions according to the lances, and the pulverized coal is previously reduced in the gasification furnace outside the blast furnace. Blown into the blast furnace through the tuyere from the blow pipe at the same time as pulverized coal, ensuring furnace heat of the blast furnace, improving the tapping ratio, lowering the fuel ratio, and enabling stable hot metal supply. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】還元ガス製造のフローを示す図。FIG. 1 is a diagram showing a flow of reducing gas production.

【図2】高炉羽口部のランス配設状態を示す模式図。FIG. 2 is a schematic diagram showing a lance arrangement state of a blast furnace tuyere.

【図3】本発明に用いられる二重管ランスの概略図。FIG. 3 is a schematic view of a double tube lance used in the present invention.

【図4】本発明に用いられる二重管ランスと単管ランス
の配設状態を示した概略図。
FIG. 4 is a schematic diagram showing an arrangement state of a double tube lance and a single tube lance used in the present invention.

【符号の説明】[Explanation of symbols]

1 高炉 2 粉砕設備 3 ガス化炉 4 ガス改質炉 5 石炭 6 酸素 7 微粉炭 8 水蒸気 9 還元ガス 10 熱風 11 炉壁 12 羽口 13 ブローパイプ 14 炉内 15 噴流 16 レースウェイ 17 微粉炭供給ランス 18 還元ガス供給ランス 19 微粉炭 21 外管 22 内管 DESCRIPTION OF SYMBOLS 1 Blast furnace 2 Crushing equipment 3 Gasifier 4 Gas reforming furnace 5 Coal 6 Oxygen 7 Pulverized coal 8 Steam 9 Reducing gas 10 Hot air 11 Furnace wall 12 Tuyere 13 Blow pipe 14 Furnace 15 Jet 16 Raceway 17 Pulverized coal supply lance 18 Reducing gas supply lance 19 Pulverized coal 21 Outer pipe 22 Inner pipe

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 高炉羽口からの微粉炭吹き込みに際し、
予め微粉炭を高炉外においてガス化炉に導き酸素を供給
して還元ガスを生成し、該還元ガスを微粉炭と同時に高
炉羽口のブローパイプ内に臨ませた2本のランス通して
高炉内へ供給するに当たり、それぞれのランスを微粉炭
と還元ガスの専用となし、該ランスから微粉炭と還元ガ
スを同時に供給することを特徴とする高炉への微粉炭と
還元ガスの吹き込み方法。
1. When pulverized coal is blown from a blast furnace tuyere,
The pulverized coal is introduced into the gasification furnace outside the blast furnace in advance to supply oxygen to generate a reducing gas, and the reducing gas passes through the two lances facing the pulverized coal and into the blow pipe of the blast furnace tuyere. A method for injecting pulverized coal and reducing gas into a blast furnace, wherein each lance is exclusively used for pulverized coal and reducing gas, and pulverized coal and reducing gas are simultaneously supplied from the lance.
【請求項2】 前記高炉羽口のブローパイプ内に臨ませ
た2本のランスの先端部において、微粉炭供給ランスよ
り還元ガス供給ランスが50〜100mm高炉側へ配設
されているランスを用いることを特徴とする請求項1記
載の高炉への微粉炭と還元ガスの吹き込み方法。
2. A lance having a reducing gas supply lance 50 to 100 mm closer to the blast furnace side than a pulverized coal supply lance at the tip of two lances facing the blow pipe of the blast furnace tuyere. The method of blowing pulverized coal and reducing gas into a blast furnace according to claim 1, characterized in that:
【請求項3】 高炉羽口からの微粉炭吹き込みに際し、
予め微粉炭を高炉外においてガス化炉に導き酸素を供給
して還元ガスを生成し、該還元ガスを微粉炭と同時に高
炉羽口のブローパイプ内に臨ませた二重管ランスを通し
て高炉内へ供給するに当たり、該ランスの内管へ微粉炭
を、外管へ還元ガスを搬送することを特徴とする高炉へ
の微粉炭と還元ガスの吹き込み方法。
3. When pulverized coal is blown from a blast furnace tuyere,
The pulverized coal is introduced into the gasification furnace outside the blast furnace in advance to supply oxygen to generate a reducing gas, and the reducing gas is introduced into the blast furnace through a double tube lance facing the blowpipe of the blast furnace tuyere at the same time as the pulverized coal. A method for blowing pulverized coal and a reducing gas into a blast furnace, wherein pulverized coal and a reducing gas are transported to an inner pipe of the lance and a reducing gas to an outer pipe.
【請求項4】 前記高炉羽口のブローパイプ内に臨ませ
たランスのの先端部において、外管を内管より10〜3
0mm突出させた二重管ランスを用いることを特徴とす
る請求項3記載の高炉への微粉炭と還元ガスの吹き込み
方法。
4. An outer pipe is connected to an inner pipe by a distance of 10 to 3 at a tip of a lance facing a blow pipe of the blast furnace tuyere.
4. The method for injecting pulverized coal and reducing gas into a blast furnace according to claim 3, wherein a double tube lance protruded by 0 mm is used.
【請求項5】 高炉羽口からの微粉炭吹き込みに際し、
予め微粉炭を高炉外においてガス化炉に導き酸素を供給
して還元ガスを生成し、該還元ガスを高炉羽口のブロー
パイプ内に臨ませた単管ランスを通して高炉内へ供給す
るに当たり、、該単管ランスとは別に二重管ランスをブ
ローパイプ内に臨ませ、該二重管ランスの内管へ微粉炭
を、外管へ酸素を搬送することを特徴とする高炉への微
粉炭と還元ガスの吹き込み方法。
5. When pulverized coal is injected from a blast furnace tuyere,
In leading the pulverized coal to the gasifier outside the blast furnace in advance to supply oxygen to generate a reducing gas, and to supply the reducing gas into the blast furnace through a single pipe lance facing the blow pipe of the blast furnace tuyere, A pulverized coal to a blast furnace characterized by conveying a pulverized coal to the inner pipe of the double pipe lance and oxygen to the outer pipe, with a double pipe lance facing the blow pipe separately from the single pipe lance. How to blow reducing gas.
【請求項6】 前記高炉羽口のブローパイプ内に臨ませ
た単管ランスと二重管ランスの先端部において、単管ラ
ンスを二重管ランスより50〜100mm高炉側へ配設
したランスを用いることを特徴とする請求項5記載の高
炉への微粉炭と還元ガスの吹き込み方法。
6. A lance in which the single tube lance is disposed 50 mm to 100 mm closer to the blast furnace side than the double tube lance at the tip of the single tube lance and the double tube lance facing the blow pipe of the blast furnace tuyere. The method for injecting pulverized coal and reducing gas into a blast furnace according to claim 5, wherein the method is used.
JP26907498A 1997-12-24 1998-09-08 Blowing pulverized coal and reducing gas into the blast furnace Expired - Lifetime JP3771728B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26907498A JP3771728B2 (en) 1997-12-24 1998-09-08 Blowing pulverized coal and reducing gas into the blast furnace

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP36604897 1997-12-24
JP9-366048 1997-12-24
JP26907498A JP3771728B2 (en) 1997-12-24 1998-09-08 Blowing pulverized coal and reducing gas into the blast furnace

Publications (2)

Publication Number Publication Date
JPH11241109A true JPH11241109A (en) 1999-09-07
JP3771728B2 JP3771728B2 (en) 2006-04-26

Family

ID=26548606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26907498A Expired - Lifetime JP3771728B2 (en) 1997-12-24 1998-09-08 Blowing pulverized coal and reducing gas into the blast furnace

Country Status (1)

Country Link
JP (1) JP3771728B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020051016A (en) * 2000-12-22 2002-06-28 신현준 Method for recycling of blast furnace gas
WO2006080563A1 (en) * 2005-01-31 2006-08-03 Jfe Steel Corporation Method for operating blast furnace
JP2006207009A (en) * 2005-01-31 2006-08-10 Jfe Steel Kk Method for operating blast furnace
JP2006241586A (en) * 2004-09-30 2006-09-14 Jfe Steel Kk Device for blowing reducing material into blast furnace, and method for operating blast furnace with the use of the device
JP2006241585A (en) * 2004-09-30 2006-09-14 Jfe Steel Kk Device for blowing reducing material into blast furnace, and method for operating blast furnace with the use of the device
JP2006291251A (en) * 2005-04-06 2006-10-26 Jfe Steel Kk Method for blowing reducing material into blast furnace and device therefor
JP2007162038A (en) * 2005-12-09 2007-06-28 Jfe Steel Kk Method and apparatus for injecting reduction material into blast furnace
JP2009120896A (en) * 2007-11-14 2009-06-04 Jfe Steel Corp Method for utilizing blast furnace gas
JP2011047053A (en) * 2004-07-30 2011-03-10 Posco Apparatus and method for producing molten iron including blowing fine carbonaceous material into melting gasifier
JP2012513007A (en) * 2008-12-22 2012-06-07 莱蕪鋼鉄集団有限公司 Smelting furnace, steel making facility, and steel making method
KR101185134B1 (en) 2009-11-04 2012-09-24 주식회사 포스코 Device for injecting fuel gas into blast furnace and method for operating blast furnace using it
WO2013011661A1 (en) 2011-07-15 2013-01-24 Jfeスチール株式会社 Blast furnace operating method
WO2013011662A1 (en) * 2011-07-15 2013-01-24 Jfeスチール株式会社 Blast furnace operating method
KR101431041B1 (en) * 2013-08-12 2014-08-19 주식회사 포스코 Apparatus and method for injecting natural gas
JP2016153537A (en) * 2016-06-01 2016-08-25 Jfeスチール株式会社 Blast furnace operation method
JP2016160482A (en) * 2015-03-02 2016-09-05 Jfeスチール株式会社 Apparatus for blowing in reductant
JP2016160483A (en) * 2015-03-02 2016-09-05 Jfeスチール株式会社 Method for operating blast furnace
JP2016160484A (en) * 2015-03-02 2016-09-05 Jfeスチール株式会社 Method for operating blast furnace

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020051016A (en) * 2000-12-22 2002-06-28 신현준 Method for recycling of blast furnace gas
JP2011047053A (en) * 2004-07-30 2011-03-10 Posco Apparatus and method for producing molten iron including blowing fine carbonaceous material into melting gasifier
JP2006241586A (en) * 2004-09-30 2006-09-14 Jfe Steel Kk Device for blowing reducing material into blast furnace, and method for operating blast furnace with the use of the device
JP2006241585A (en) * 2004-09-30 2006-09-14 Jfe Steel Kk Device for blowing reducing material into blast furnace, and method for operating blast furnace with the use of the device
JP2006207009A (en) * 2005-01-31 2006-08-10 Jfe Steel Kk Method for operating blast furnace
KR100865218B1 (en) 2005-01-31 2008-10-23 제이에프이 스틸 가부시키가이샤 Method for operating blast furnace
WO2006080563A1 (en) * 2005-01-31 2006-08-03 Jfe Steel Corporation Method for operating blast furnace
JP2006291251A (en) * 2005-04-06 2006-10-26 Jfe Steel Kk Method for blowing reducing material into blast furnace and device therefor
JP4720260B2 (en) * 2005-04-06 2011-07-13 Jfeスチール株式会社 Method and apparatus for injecting reducing material into blast furnace
JP2007162038A (en) * 2005-12-09 2007-06-28 Jfe Steel Kk Method and apparatus for injecting reduction material into blast furnace
JP2009120896A (en) * 2007-11-14 2009-06-04 Jfe Steel Corp Method for utilizing blast furnace gas
JP2012513007A (en) * 2008-12-22 2012-06-07 莱蕪鋼鉄集団有限公司 Smelting furnace, steel making facility, and steel making method
KR101185134B1 (en) 2009-11-04 2012-09-24 주식회사 포스코 Device for injecting fuel gas into blast furnace and method for operating blast furnace using it
US9650689B2 (en) * 2011-07-15 2017-05-16 Jfe Steel Corporation Method for operating a blast furnace
WO2013011662A1 (en) * 2011-07-15 2013-01-24 Jfeスチール株式会社 Blast furnace operating method
JP2013040402A (en) * 2011-07-15 2013-02-28 Jfe Steel Corp Method for operating blast furnace
KR20140028104A (en) * 2011-07-15 2014-03-07 제이에프이 스틸 가부시키가이샤 Blast furnace operating method
KR20140028103A (en) 2011-07-15 2014-03-07 제이에프이 스틸 가부시키가이샤 Blast furnace operating method
CN103649339A (en) * 2011-07-15 2014-03-19 杰富意钢铁株式会社 Blast furnace operating method
US20140159287A1 (en) * 2011-07-15 2014-06-12 Jfe Steel Corporation Method for operating a blast furnace
TWI484041B (en) * 2011-07-15 2015-05-11 Jfe Steel Corp Blast furnace operation method
EP2733223A4 (en) * 2011-07-15 2015-09-02 Jfe Steel Corp Blast furnace operating method
US9410218B2 (en) 2011-07-15 2016-08-09 Jfe Steel Corporation Method for operating a blast furnace
WO2013011661A1 (en) 2011-07-15 2013-01-24 Jfeスチール株式会社 Blast furnace operating method
KR101431041B1 (en) * 2013-08-12 2014-08-19 주식회사 포스코 Apparatus and method for injecting natural gas
WO2016139912A1 (en) * 2015-03-02 2016-09-09 Jfeスチール株式会社 Method for operating blast furnace
RU2695842C2 (en) * 2015-03-02 2019-07-29 ДжФЕ СТИЛ КОРПОРЕЙШН Blast furnace operation method
JP2016160484A (en) * 2015-03-02 2016-09-05 Jfeスチール株式会社 Method for operating blast furnace
JP2016160482A (en) * 2015-03-02 2016-09-05 Jfeスチール株式会社 Apparatus for blowing in reductant
WO2016139913A1 (en) * 2015-03-02 2016-09-09 Jfeスチール株式会社 Blast furnace operating method
US10487370B2 (en) 2015-03-02 2019-11-26 Jfe Steel Corporation Method for operating blast furnace
KR20170107569A (en) * 2015-03-02 2017-09-25 제이에프이 스틸 가부시키가이샤 Blast furnace operating method
KR20170109043A (en) * 2015-03-02 2017-09-27 제이에프이 스틸 가부시키가이샤 Method for operating blast furnace
CN107406894A (en) * 2015-03-02 2017-11-28 杰富意钢铁株式会社 Method for operating blast furnace
CN107406895A (en) * 2015-03-02 2017-11-28 杰富意钢铁株式会社 Method for operating blast furnace
EP3266883A4 (en) * 2015-03-02 2018-01-10 JFE Steel Corporation Blast furnace operating method
EP3266882A4 (en) * 2015-03-02 2018-01-10 JFE Steel Corporation Method for operating blast furnace
AU2016227284B2 (en) * 2015-03-02 2019-03-28 Jfe Steel Corporation Method for Operating Blast Furnace
JP2016160483A (en) * 2015-03-02 2016-09-05 Jfeスチール株式会社 Method for operating blast furnace
US10400292B2 (en) 2015-03-02 2019-09-03 Jfe Steel Corporation Method for operating blast furnace
CN107406895B (en) * 2015-03-02 2019-11-19 杰富意钢铁株式会社 Method for operating blast furnace
JP2016153537A (en) * 2016-06-01 2016-08-25 Jfeスチール株式会社 Blast furnace operation method

Also Published As

Publication number Publication date
JP3771728B2 (en) 2006-04-26

Similar Documents

Publication Publication Date Title
JP3771728B2 (en) Blowing pulverized coal and reducing gas into the blast furnace
US4153426A (en) Synthetic gas production
JP5807786B2 (en) Apparatus and method for producing iron, semi-steel and reducing gas
KR19980701311A (en) METHOD FOR CO-PRODUCING FUEL AND IRON
JP6354962B2 (en) Oxygen blast furnace operation method
JPH11199907A (en) Injection system for high temperature oxygen into blast furnace
CN101448962B (en) Method for manufacturing molten irons by injecting a hydrocarbon gas and apparatus for manufacturing molten irons using the same
TW202100756A (en) Method for operating a blast furnace
KR20150018892A (en) Blast furnace operating method and tube bundle-type lance
AU2008235542B2 (en) Method and device for preparing a reducing agent for use in a metal making process, metal making process and metal making apparatus using said device
JP3176680B2 (en) Blast furnace operation method
RU2586194C2 (en) Method of heating blast-furnace air heater
JPS6184309A (en) Method and apparatus for producing steel from scrap iron
JP4392100B2 (en) Method of injecting reducing gas into the blast furnace
TW304982B (en)
JP3796021B2 (en) Method of blowing pulverized coal from blast furnace tuyere and blowing lance
TW404983B (en) Scrap melting method
JP4720260B2 (en) Method and apparatus for injecting reducing material into blast furnace
JPH11241108A (en) Method for injecting pulverized fine coal into blast furnace
CN113825845B (en) Method for operating a metallurgical furnace
US7883556B1 (en) Dual fuel slagging gasifier
US20050151307A1 (en) Method and apparatus for producing molten iron
JP3664951B2 (en) Solid fuel combustion equipment
JP2005264189A (en) Method for blowing solid fuel into blast furnace
JP3601799B2 (en) Combustion burners used in melting furnaces for steelmaking

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090217

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140217

Year of fee payment: 8

EXPY Cancellation because of completion of term