JP5561032B2 - Method for producing sintered ore - Google Patents

Method for producing sintered ore Download PDF

Info

Publication number
JP5561032B2
JP5561032B2 JP2010193190A JP2010193190A JP5561032B2 JP 5561032 B2 JP5561032 B2 JP 5561032B2 JP 2010193190 A JP2010193190 A JP 2010193190A JP 2010193190 A JP2010193190 A JP 2010193190A JP 5561032 B2 JP5561032 B2 JP 5561032B2
Authority
JP
Japan
Prior art keywords
water
amount
temperature
raw material
charging layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010193190A
Other languages
Japanese (ja)
Other versions
JP2012052152A (en
Inventor
直幸 竹内
隆英 樋口
伸幸 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010193190A priority Critical patent/JP5561032B2/en
Publication of JP2012052152A publication Critical patent/JP2012052152A/en
Application granted granted Critical
Publication of JP5561032B2 publication Critical patent/JP5561032B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、下方吸引式のドワイトロイド焼結機を用いて、高強度、高品質の焼結鉱を生産性よく製造する焼結鉱の製造方法に関するものである。   The present invention relates to a method for producing a sintered ore that produces a high-strength, high-quality sintered ore with high productivity by using a downward suction type dwytroid sintering machine.

近年、大気中の炭酸ガス量の増加に起因した地球温暖化が問題となっており、高炉等から多量のCOを排出している製鉄業においては、CO排出量の削減が極めて重要な課題となっている。これを受け、最近の高炉操業においては、生産性を高めるのと同時に、使用する還元材の量(溶銑1t製造当たりの、吹き込み燃料と炉頂から装入されるコークスの合計量、以下、「RAR」という)を低くした低RAR操業が推進されている。高炉で低RAR操業を行うためには、原料粒度を小さくして着熱効率を向上させたり、原料の性状を改善して還元性を向上させたり、高炉操業に当たって周辺ガス流を抑制してガス利用率の向上を図ったり、あるいは、高炉炉体からの抜熱量を低減させたりすること等が有効であると考えられている。 In recent years, global warming due to an increase in the amount of carbon dioxide in the atmosphere has become a problem, and in the steel industry that emits large amounts of CO 2 from blast furnaces and the like, it is extremely important to reduce CO 2 emissions. It has become a challenge. In response to this, in recent blast furnace operations, the amount of reducing material to be used (the total amount of injected fuel and coke charged from the top of the furnace per 1 ton of hot metal, hereinafter referred to as “ Low RAR operations with a low RAR) are being promoted. In order to perform low RAR operations in a blast furnace, the raw material particle size is reduced to improve the heat receiving efficiency, the properties of the raw materials are improved to improve the reducibility, and the gas flow is controlled by suppressing the surrounding gas flow during the blast furnace operation. It is considered effective to improve the rate or reduce the amount of heat removed from the blast furnace body.

しかし、低RAR操業時には、高炉内の鉄鉱石類原料とコークスとの存在比(Ore/Coke Ratio)が大きくなり、高炉上部での通気性の悪化や、融着体(高炉内の原料が約1200〜1400℃に達したときに、通気抵抗の高い半溶融状態になった状態)の変形や肥大化による高炉下部での通気性の悪化を招き、安定した操業を行うことが困難となる。それ故、高炉の低RAR操業を安定して実現するためには、鉄鉱石類原料のうちの約7割を占める焼結鉱の被還元性や冷間強度等の品質特性が非常に重要となる。例えば、焼結鉱の被還元性RIは、高炉でのガス利用率とも関連して、上述したRARと負の相関があり、焼結鉱の被還元性を向上させると、高炉のRARを低減することができことが知られている。また、焼結鉱の冷間強度は、高炉の通気性を確保する上で、重要な因子であり、各高炉では、それぞれにおける冷間強度の下限基準を設けて操業を行っている。   However, during low RAR operation, the ratio of iron ore raw material and coke in the blast furnace (Ore / Coke Ratio) increases, resulting in poor air permeability at the top of the blast furnace, When the temperature reaches 1200 to 1400 ° C., the air permeability at the lower part of the blast furnace is deteriorated due to deformation or enlargement in a semi-molten state with high airflow resistance, and it becomes difficult to perform stable operation. Therefore, in order to stably realize the low RAR operation of the blast furnace, quality characteristics such as reducibility and cold strength of sintered ore, which accounts for about 70% of iron ore raw materials, are very important. Become. For example, the reducible RI of sintered ore has a negative correlation with the above-mentioned RAR in relation to the gas utilization rate in the blast furnace, and if the reducibility of the sintered ore is improved, the RAR of the blast furnace is reduced. It is known that you can. In addition, the cold strength of the sintered ore is an important factor in securing the air permeability of the blast furnace, and each blast furnace is operated with a lower limit standard for the cold strength in each blast furnace.

高炉用の鉄鉱石類原料として用いられる焼結鉱は、下方吸引式のドワイトロイド焼結機を用いる場合、一般に、以下のような方法で製造されている。まず、粒径が10mm以下の鉄鉱石、珪石や蛇紋岩および各種の製錬スラグなどからなるSiO含有原料、石灰石などのCaOを含有する石灰石系原料、および、粉コークスや無煙炭などの熱源となる固体燃料(以降、単に「炭材」という。)に適当量の水分(造粒水)を添加してドラムミキサー等を用いて混合し、造粒して、造粒粒子と呼ばれる焼結原料とする。次いで、この焼結原料を、ドワイトロイド焼結機の無端移動するパレット上に適当な厚さ、例えば500〜700mm程度の厚さになるように堆積して装入層を形成し、その後、添加炉で装入層表層部の炭材に点火し、パレット下に配設されたウインドボックスで下方に吸引する空気で固体燃料を燃焼させ、その燃焼熱によって焼結原料を焼結させて焼結ケーキとする。その後、この焼結ケーキを破砕し、整粒して、一定の粒径以上のものを高炉用の成品焼結鉱とし、それ未満のものは返鉱して、再度焼結原料として利用している。 In general, a sintered ore used as a raw material for iron ore for a blast furnace is manufactured by the following method when using a downward suction type dwythroid sintering machine. First, a SiO 2 -containing material composed of iron ore having a particle size of 10 mm or less, silica stone, serpentine and various smelting slags, a limestone-based material containing CaO such as limestone, and a heat source such as powdered coke and anthracite Sintered raw material called granulated particles after adding an appropriate amount of moisture (granulated water) to a solid fuel (hereinafter simply referred to as “carbon material”), mixing with a drum mixer, etc. And Next, this sintering raw material is deposited on a pallet that moves endlessly in a Dwytroid sintering machine so as to have an appropriate thickness, for example, a thickness of about 500 to 700 mm, to form a charging layer, and then added. In the furnace, the carbon material in the surface layer of the charge layer is ignited, the solid fuel is burned by the air drawn downward in the wind box placed under the pallet, and the sintering raw material is sintered by the combustion heat to sinter A cake. After that, this sintered cake is crushed and sized, and those with a certain particle size or more are used as product sinter for blast furnaces, and those less than that are returned to be used again as a sintering raw material. Yes.

図1は、点火炉によって点火された装入層表層の炭材が、吸引される空気によって燃焼して燃焼・溶融帯を形成し、その燃焼・溶融帯はパレットが下流側に移動して行くのに伴い装入層の上層から下層に順次移動していき、燃焼・溶融帯が通過した後には、焼結が完了した焼結ケーキ層(焼結層)が形成されていることを模式的に示したものである。
ここで、上記燃焼・溶融帯は、溶融物がウインドボックスにより吸引される空気の通過を阻害するため、通気抵抗を高める要因となる。また、上記燃焼・溶融帯が上層から下層に移行するのにともない、焼結原料中に含まれる水分は、炭材の燃焼熱で気化し、まだ温度が上昇していない下層の焼結原料中に凝縮して濃縮し、湿潤帯を形成する。そして、上記水分量が増加すると、吸引した空気の流路となる焼結原料粒子間の空隙が水分で埋まり、通気抵抗を増大させる。
Fig. 1 shows that the carbon material in the surface layer of the charging layer ignited by the ignition furnace burns with the sucked air to form a combustion / melting zone, and the pallet moves downstream in the combustion / melting zone. As a result, it gradually moves from the upper layer to the lower layer of the charging layer, and after passing the combustion / melting zone, a sintered cake layer (sintered layer) that has been sintered is formed. It is shown in.
Here, the combustion / melting zone inhibits the passage of the air in which the melt is sucked by the wind box, and thus increases the ventilation resistance. In addition, as the combustion / melting zone shifts from the upper layer to the lower layer, the moisture contained in the sintering raw material is vaporized by the combustion heat of the carbonaceous material, and the temperature in the lower sintering raw material that has not yet risen is increased. Condensed and concentrated to form a wet zone. And if the said moisture content increases, the space | gap between the sintering raw material particles used as the flow path of the attracted air will be filled with moisture, and ventilation resistance will be increased.

図2は、燃焼・溶融帯の最高到達温度域が、厚さが600mmの装入層表層から200mm下方位置に存在するときの装入層内における圧損と温度の分布を示したものである。この図から、装入層内の圧損分布は、湿潤帯におけるものが約60%を占め、残りの40%が燃焼・溶融帯におけるものであり、湿潤帯の圧損が焼結鉱の品質に大きな影響を及ぼしていることがわかる。   FIG. 2 shows the pressure loss and temperature distribution in the charging layer when the highest temperature range of the combustion / melting zone is 200 mm below the surface of the charging layer having a thickness of 600 mm. From this figure, the pressure loss distribution in the charging layer is about 60% in the wet zone, the remaining 40% is in the combustion / melting zone, and the pressure loss in the wet zone is large in the quality of the sintered ore. You can see that it has an influence.

ところで、焼結鉱の冷間強度を高め、被還元性を改善するためには、焼結パレット上に焼結原料を均等に堆積して良好な通気性を確保し、焼結原料中の炭材を効率よく燃焼させて、焼結に必要な所定の温度範囲、具体的には1200〜1380℃の温度に、十分な時間保持してやることが必要である。しかし、近年では、高炉の高出銑比操業により、焼結鉱の使用量が増加傾向にあることや、鉄鉱石品位の低下(高結晶水鉱石の増加、Al鉱石の増加、微粉鉱石の増加等)により、焼結原料堆積層(装入層)内の良好な通気性の確保や、十分な焼結時間の確保が困難な状況となっており、それに起因する焼結機の生産性低下や、焼結鉱の冷間強度の低下、歩留まりの低下が懸念されている。 By the way, in order to increase the cold strength of the sintered ore and improve the reducibility, the sintered raw material is uniformly deposited on the sintering pallet to ensure good air permeability, and the carbon in the sintered raw material It is necessary to burn the material efficiently and hold it in a predetermined temperature range necessary for sintering, specifically, a temperature of 1200 to 1380 ° C. for a sufficient time. However, in recent years, the use of sintered ore has been increasing due to high blast furnace operation at the blast furnace, and iron ore quality has been reduced (increase in high crystal water ore, increase in Al 2 O 3 ore, fine powder Due to the increase in ore, etc., it is difficult to ensure good air permeability in the sintering raw material deposition layer (charging layer) and sufficient sintering time. There are concerns about a decrease in productivity, a decrease in cold strength of sintered ore, and a decrease in yield.

この問題に対する有効な技術として、出願人は、焼結機の点火炉の下流において、各種気体燃料を予め燃焼下限濃度以下に希釈した希釈気体燃料を装入層上方に供給し、あるいは、各種気体燃料を装入層上方の空気中に高速で噴射して瞬時に燃焼下限濃度以下に希釈し、その希釈気体燃料を装入層内に導入し、燃焼させることにより、装入層内の焼結に必要な温度範囲に長時間保持してやる技術を特許文献1や特許文献2に提案している。   As an effective technique for this problem, the applicant supplies the diluted gas fuel, which is prepared by diluting various gaseous fuels below the lower combustion limit concentration in advance, below the ignition furnace of the sintering machine, or various gases. The fuel is injected into the air above the charging layer at high speed and instantly diluted to below the lower combustion limit concentration, and the diluted gas fuel is introduced into the charging layer and burned to sinter the charging layer. Patent Document 1 and Patent Document 2 propose techniques for maintaining the temperature range necessary for a long time.

WO2007−052776号公報WO2007-052776 特開2008−291354号公報JP 2008-291354 A

上記特許文献1および2の技術によって、高強度かつ高品質の焼結鉱を安定して製造し得るようになった。また、気体燃料を供給することで焼結原料中に添加する炭材量も低減できるので、CO排出量の削減にも寄与することができる。
しかし、気体燃料として炭化水素系の可燃性ガスあるいは水素ガスを用いる場合には、気体燃料の燃焼によってHO(水蒸気)が発生し、燃焼排ガス中に含まれる水蒸気量が上昇するため、上述した原料装入層内の湿潤帯における水分量が増加し、通気抵抗の上昇を招く。また、湿潤帯における水分量の増加は、造粒粒子の強度を低下させ、造粒粒子の崩壊を助長するため、やはり圧損の上昇を招くという新たな問題が生じるようになった。
The techniques of Patent Documents 1 and 2 have made it possible to stably produce a high-strength and high-quality sintered ore. Moreover, since the amount of carbonaceous material added to the sintering raw material can be reduced by supplying the gaseous fuel, it is possible to contribute to the reduction of CO 2 emission.
However, when a hydrocarbon-based combustible gas or hydrogen gas is used as the gaseous fuel, H 2 O (water vapor) is generated by the combustion of the gaseous fuel, and the amount of water vapor contained in the combustion exhaust gas increases. The moisture content in the wet zone in the raw material charging layer thus increased increases the ventilation resistance. In addition, an increase in the amount of water in the wet zone reduces the strength of the granulated particles and promotes the collapse of the granulated particles, so that a new problem of increasing the pressure loss has arisen.

本発明は、上記問題点に鑑みてなされたものであり、その目的は、炭材とともに気体燃料を供給し、燃焼させて焼結鉱を製造する方法において、通気性の低下を招くことなく高強度、高品質の焼結鉱を生産性よく製造することができる焼結鉱の製造方法を提案することにある。   The present invention has been made in view of the above-described problems, and its object is to produce a sintered ore by supplying a gaseous fuel together with a carbonaceous material and burning it without causing a reduction in air permeability. The object is to propose a method for producing a sintered ore that can produce a high-quality sintered ore with high productivity.

発明者らは、上記課題を解決するため、鋭意検討を重ねた。その結果、水の凝縮現象は、同じ水分量でもその雰囲気温度によって変化し、高温ほど飽和水蒸気量が上昇することから、パレット上に堆積された装入層を構成する焼結原料、即ち、造粒粒子自体の温度を高めてやれば、装入層内の湿潤帯における水分の凝縮量を低減できることに想到し、本発明を開発した。   Inventors repeated earnest examination in order to solve the said subject. As a result, the water condensation phenomenon changes depending on the ambient temperature even with the same amount of water, and the saturated water vapor amount increases as the temperature rises. Therefore, the sintered raw material constituting the charging layer deposited on the pallet, that is, the production The inventors of the present invention have developed the present invention, conceiving that the amount of moisture condensed in the wet zone in the charging layer can be reduced by increasing the temperature of the granular particles themselves.

すなわち、本発明は、循環移動するパレット上に粉鉱石と炭材を含む造粒粒子を堆積して焼結原料の装入層を形成し、その装入層表層の炭材に点火した後、パレット下方に配設されたウインドボックスで装入層上方に供給された希釈気体燃料を空気ともに装入層内に吸引し、装入層内で上記希釈気体燃料と炭材を燃焼させて焼結鉱を製造する方法において、上記造粒粒子の造粒水として80℃以上の高温水を用いることで、装入層内の湿潤帯における飽和水蒸気量を、気体燃料の燃焼により発生する水蒸気量分以上高めることを特徴とする焼結鉱の製造方法である。 That is, the present invention forms a charged layer of sintered raw material by depositing granulated particles containing fine ore and carbonaceous material on a circulating pallet, and after igniting the carbonized material of the charged layer surface layer, The diluted gas fuel supplied to the upper part of the charging layer is sucked into the charging layer together with air in the wind box arranged below the pallet, and the diluted gaseous fuel and the carbonaceous material are burned and sintered in the charging layer. In the method for producing ore, by using high-temperature water at 80 ° C. or higher as the granulated water for the granulated particles , the amount of saturated water vapor in the wet zone in the charging layer is divided by the amount of water vapor generated by combustion of gaseous fuel. This is a method for producing a sintered ore characterized by increasing the above .

また、本発明の焼結鉱の製造方法における上記希釈気体燃料は、燃焼下限濃度以下に希釈された炭化水素系の可燃性ガスあるいは水素ガスであることを特徴とする。   In the method for producing sintered ore according to the present invention, the diluted gas fuel is a hydrocarbon-based combustible gas or hydrogen gas diluted to a concentration lower than the lower limit of combustion.

本発明によれば、高温水を用いて焼結原料を造粒することによって、焼結時の湿潤帯におけるガスの湿度を低減して、気体燃料の燃焼に伴う水分凝縮を抑制することが可能となるので、生産性の低下を招くことなく、高強度、高品質の焼結鉱を製造することが可能となる。   According to the present invention, by granulating a sintering raw material using high-temperature water, it is possible to reduce the humidity of the gas in the wet zone during sintering and suppress moisture condensation accompanying the combustion of gaseous fuel Therefore, it is possible to produce a high-strength, high-quality sintered ore without causing a decrease in productivity.

装入層表層の着火された炭材が、燃焼・溶融帯を形成し、パレットが下流側に移動するのに伴い装入層の上層から下層に移動し、焼結ケーキ層(焼結層)が形成されていく過程を模式的に示した図である。The charcoal material ignited on the surface of the charging layer forms a combustion / melting zone, and as the pallet moves downstream, it moves from the upper layer to the lower layer of the charging layer, and a sintered cake layer (sintered layer) It is the figure which showed typically the process in which is formed. 焼結時における装入層内の温度分布と圧損を説明する模式図である。It is a schematic diagram explaining the temperature distribution and pressure loss in the charging layer at the time of sintering. 空気の温度と飽和水蒸気量との関係を示すグラフである。It is a graph which shows the relationship between the temperature of air, and the amount of saturated water vapor | steam. 焼結原料の製造方法および焼結鍋実験を説明する図である。It is a figure explaining the manufacturing method of a sintering raw material, and a sintering pot experiment. 焼結中断実験の方法を説明する図である。It is a figure explaining the method of sintering interruption experiment. 造粒水の温度が装入層内の湿潤帯の水分量に及ぼす影響を示すグラフである。It is a graph which shows the influence which the temperature of granulation water has on the moisture content of the wet zone in a charging layer. 飽和水蒸気曲線に焼結中断実験の結果をプロットしたグラフである。It is the graph which plotted the result of the sintering interruption experiment on the saturated water vapor curve. 造粒水温度が焼結鉱の品質や生産性に及ぼす影響を示すグラフである。It is a graph which shows the influence which granulation water temperature has on the quality and productivity of sintered ore.

本発明の焼結鉱の製造方法は、循環移動するパレット上に粉鉱石と炭材を含む造粒粒子を堆積して焼結原料の装入層を形成し、その装入層表層の炭材に、添加炉で点火した後、パレット下方に配設されたウインドボックスで装入層上方に供給された希釈気体燃料を空気ともに装入層内に吸引し、装入層内で上記希釈気体燃料と炭材を燃焼させて焼結鉱を製造する方法である。焼結原料中の炭材の燃焼に加えて、上記気体燃料を供給し、装入層内で燃焼させることで、焼結鉱の焼結に必要な1200〜1380℃の温度範囲に長時間に亘って保持することが可能となる。しかも、気体燃料の供給により、焼結原料中の炭材量を削減し、CO排出量の削減も可能となる。 The method for producing a sintered ore according to the present invention comprises depositing granulated particles containing fine ore and a carbonaceous material on a circulating pallet to form a charged layer of a sintered raw material, and a carbonized material on the surface of the charged layer In addition, after igniting in the addition furnace, the diluted gas fuel supplied to the upper part of the charging layer is sucked into the charging layer together with the air in a wind box disposed below the pallet, and the diluted gaseous fuel is introduced into the charging layer. And a method of producing a sintered ore by burning carbonaceous materials. In addition to the combustion of the carbonaceous material in the sintering raw material, the gaseous fuel is supplied and burned in the charging layer, so that the temperature range of 1200 to 1380 ° C. necessary for sintering of the sintered ore can be extended for a long time. It becomes possible to hold over. In addition, by supplying gaseous fuel, the amount of carbonaceous material in the sintered raw material can be reduced, and CO 2 emissions can be reduced.

しかし、上記気体燃料として炭化水素系の可燃性ガスあるいは水素ガスを用いた場合には、気体燃料の燃焼によってHO(水蒸気)が発生し、これが装入層内の未焼結部分である低温の湿潤帯で凝縮して水となって、焼結原料(造粒粒子)の空隙部を閉塞したり、造粒粒子の崩壊を招いたりして、吸引空気の通気性を阻害し、圧損を大きく増大させるという弊害を生じる。 However, when a hydrocarbon-based combustible gas or hydrogen gas is used as the gaseous fuel, H 2 O (water vapor) is generated by the combustion of the gaseous fuel, and this is an unsintered portion in the charging layer. It condenses in water at a low temperature wet zone and becomes water, which closes the voids of the sintered raw material (granulated particles) and causes the granulated particles to collapse, impairing the air permeability of the suction air and causing pressure loss This causes the harmful effect of greatly increasing.

そこで、希釈気体燃料を装入層内に供給して燃焼させたときの水分(HO)発生量について算出する。
ここで、焼結工程における気体燃料の吹き込み条件を、
・焼結時に吸引する平均空気量:1.0m/min
・気体燃料:LNG(ただし、成分は100%CHとする)
・気体燃料吹込濃度:0.8vol%(対空気)
・気体燃料吹込時間:6.7min(焼結平均所要時間18minの約1/3)
と仮定する。
下記式;
CH+2O → CO+2H
から、1molのCHから2molのHOが発生するので、吹き込まれたLNGの燃焼により発生するHO量Wは、
W=1.0×0.8/100×6.7/22.4×2×18×1000=86g
となる。
一方、LNG吹き込み中に発生する吸引される大気のガス総量Vは、
V=1.0×6.7+1.0×0.8/100×6.7=6.75m
である。
したがって、LNG吹き込み中の吸引大気中の湿分増加量Hは、
H=W/V=12.7g/m
となる。
Therefore, the amount of water (H 2 O) generated when the diluted gas fuel is supplied into the charging layer and burned is calculated.
Here, the blowing conditions of the gaseous fuel in the sintering process are
-Average air volume sucked during sintering: 1.0 m 3 / min
Gas fuel: LNG (however, the component is 100% CH 4 )
-Gaseous fuel injection concentration: 0.8 vol% (against air)
-Gaseous fuel injection time: 6.7 min (approximately 1/3 of the average sintering time of 18 min)
Assume that
The following formula:
CH 4 + 2O 2 → CO 2 + 2H 2 O
From 1 mol of CH 4 , 2 mol of H 2 O is generated, so the amount of H 2 O generated by the combustion of the injected LNG is:
W = 1.0 × 0.8 / 100 × 6.7 / 22.4 × 2 × 18 × 1000 = 86 g
It becomes.
On the other hand, the total amount V of the sucked air generated during LNG blowing is
V = 1.0 × 6.7 + 1.0 × 0.8 / 100 × 6.7 = 6.75 m 3
It is.
Therefore, the moisture increase amount H in the suction atmosphere during LNG blowing is
H = W / V = 12.7 g / m 3
It becomes.

次に、湿潤帯における水蒸気の凝縮現象について検討する。
図3は、空気の温度と、その空気中に含まれ得る水分(HO)量、すなわち、飽和水蒸気量との関係を示したものである。この図からわかるように、空気の温度上昇と共に、飽和水蒸気量は急激に上昇し、18℃では約15g/mであった飽和水蒸気量が、30℃では約30g/mにも上昇する。
このことは、たとえば、装入層内の湿潤帯におけるガスの温度を平均して18℃から30℃まで12℃高めてやることができれば、湿潤帯における飽和水蒸気量を15g/m高めることができることを示している。そして、この飽和水蒸気量の上昇量は、上述した吹き込まれたLNGの燃焼により排ガス中のHO量の増加分を大きく上回るものである。ただし、実際には、水分の凝縮量は、ガスと固体の温度差によって決まる。したがって、何らかの方法で、湿潤帯での固体温度、即ち、原料温度を高めてやることができれば、LNG燃焼により発生する水分の凝縮を防止し、湿潤帯における水分凝縮量を低減することが可能であることがわかる。
Next, the water vapor condensation phenomenon in the wet zone will be examined.
FIG. 3 shows the relationship between the temperature of air and the amount of water (H 2 O) that can be contained in the air, that is, the amount of saturated water vapor. As can be seen from this figure, as the temperature of the air rises, the saturated water vapor amount rises rapidly, and the saturated water vapor amount, which was about 15 g / m 3 at 18 ° C., rises to about 30 g / m 3 at 30 ° C. .
For example, if the average temperature of the gas in the wet zone in the charging layer can be increased by 12 ° C. from 18 ° C. to 30 ° C., the saturated water vapor amount in the wet zone can be increased by 15 g / m 3. It shows what you can do. The amount of increase in the saturated water vapor amount greatly exceeds the increase in the amount of H 2 O in the exhaust gas due to the combustion of the LNG blown in as described above. In practice, however, the amount of moisture condensation is determined by the temperature difference between the gas and the solid. Therefore, if the solid temperature in the wet zone, that is, the raw material temperature can be increased by some method, it is possible to prevent condensation of water generated by LNG combustion and to reduce the amount of moisture condensation in the wet zone. I know that there is.

次いで、発明者らは、湿潤帯の温度を上昇させる手段として、焼結原料である造粒粒子を製造する際、配合原料に添加する造粒水を、従来から使用している常温水に替えて、高温水を用いることを検討した。
粒径が10mm以下の鉄鉱石と、SiO含有原料と、CaOを含有する石灰石系原料と、炭材として粉コークスを4.8mass%配合し、これらに造粒水として13℃の常温水または85℃の高温水を添加し、図4の左側に示したように、ミキサーを用いて180秒間混合し、さらにドラムミキサーで360秒間造粒して、造粒粒子を形成し、造粒前後の配合原料の温度変化を測定し、その結果を表1に示した。
Next, as a means of increasing the temperature of the wet zone, the inventors replaced the granulated water added to the blended raw material with the conventionally used room temperature water when producing granulated particles that are sintering raw materials. Therefore, the use of hot water was studied.
An iron ore having a particle size of 10 mm or less, a SiO 2 -containing raw material, a limestone-based raw material containing CaO, and 4.8 mass% of powdered coke as a carbonaceous material are mixed with room temperature water at 13 ° C. as granulated water or Add high-temperature water at 85 ° C., mix as shown in the left side of FIG. 4 for 180 seconds using a mixer, and further granulate with a drum mixer for 360 seconds to form granulated particles. The temperature change of the blended raw materials was measured, and the results are shown in Table 1.

Figure 0005561032
Figure 0005561032

表1からわかるように、常温水を使用した場合には原料温度は16℃から18℃へと2℃上昇し、高温水を使用した場合には16℃から30℃へと14℃上昇した。なお、上記造粒水の添加による温度上昇の中には、生石灰(CaO)と水との反応熱も含まれる。図3中に、湿潤帯におけるガスの温度が、上記原料温度に等しいと仮定した場合の結果を点線で示したが、常温水に替えて高温水を用いたことによる飽和水蒸気量の増加量は14.9g/mであり、先に説明した0.8vol%に希釈したLNGを吹き込んで燃焼させたときの水分発生量(12.7g/m)以上の飽和水蒸気量の増加が得られることが期待できる。 As can be seen from Table 1, the raw material temperature increased by 2 ° C. from 16 ° C. to 18 ° C. when normal temperature water was used, and increased by 14 ° C. from 16 ° C. to 30 ° C. when high temperature water was used. In addition, the heat of reaction of quick lime (CaO) and water is included in the temperature rise by the addition of the granulated water. In FIG. 3, the results when the gas temperature in the wet zone is assumed to be equal to the raw material temperature are indicated by dotted lines, but the amount of increase in the saturated water vapor amount due to the use of high-temperature water instead of room-temperature water is It is 14.9 g / m 3 , and an increase in the amount of saturated water vapor when the LNG diluted to 0.8 vol% as described above is blown and burned is increased by 12.7 g / m 3 or more. I can expect that.

そこで、原料温度の上昇に伴う湿潤帯での水分凝縮量の低減効果を確認するため、焼結中断実験を行って湿潤帯における原料水分、ガス湿度を測定した。
実験は、粒径が10mm以下の鉄鉱石に、SiO含有原料、石灰石系原料および炭材を配合した原料に、水温が13℃の常温水または85℃の高温水を7.8mass%となるよう添加し、ミキサーとドラムミキサーを用いて造粒粒子とし、図4の右側に示したように、その造粒粒子を焼結原料として内径が150mmφ、高さが300mmの焼結試験鍋に充填し、上記焼結原料表層に点火後、試験鍋の上方に気体燃料としてLNGを吸引空気に対して0.8vol%となるよう供給し、試験鍋の下方から空気を吸引して焼結実験を開始し、点火してから2分経過後あるいは4分経過後に、焼結試験を中断して、図5に示したように、試験鍋内部の未焼結原料、即ち、湿潤帯部分の原料を高さ方向に一定間隔で採取し、水分量の分布を測定した。
Therefore, in order to confirm the effect of reducing the amount of moisture condensation in the wet zone accompanying an increase in the raw material temperature, a sintering interruption experiment was conducted to measure the raw material moisture and gas humidity in the wet zone.
In the experiment, a raw material obtained by mixing an iron ore having a particle size of 10 mm or less with a SiO 2 -containing raw material, a limestone-based raw material, and a carbonaceous material, water temperature of 13 ° C. or 85 ° C. high-temperature water becomes 7.8 mass%. And add granulated particles using a mixer and a drum mixer, and as shown on the right side of FIG. 4, the granulated particles are filled into a sintering test pot having an inner diameter of 150 mmφ and a height of 300 mm as a sintering raw material. After igniting the surface layer of the sintering raw material, supply LNG as a gaseous fuel to the upper portion of the test pan to 0.8 vol% with respect to the suction air, and suck the air from below the test pan to perform a sintering experiment. After starting and igniting, after 2 minutes or 4 minutes have elapsed, the sintering test is interrupted, and as shown in FIG. Sampling at regular intervals in the height direction and measuring the moisture distribution It was.

図6は、上記結果を示したものであり、点火してから2分経過後および4分経過後とも、常温水より85℃の高温水を用いた方が、湿潤帯における水分量が0.5〜1%程度低減しており、高温水使用による造粒粒子温度上昇の効果が得られている。
さらに、添加2分後および4分後における湿潤帯の水分含有量の差から、平均蒸発速度は、常温水を使用した時は85g/min、高温水を使用した時は107g/minが得られた。また、平均風量は、常温水では1.24m/min、高温水では1.69m/minとなり、これより、湿潤帯におけるガス湿度はそれぞれ69g/m,63g/mと推察された。ただし、上記計算ではガス温度が原料温度に等しいと仮定した。
FIG. 6 shows the above results. The water content in the wet zone is 0.degree. C. when 85.degree. C. high-temperature water is used rather than room temperature water after 2 minutes and 4 minutes since ignition. It is reduced by about 5 to 1%, and the effect of increasing the temperature of the granulated particles by using high temperature water is obtained.
Furthermore, from the difference in moisture content in the wet zone after 2 minutes and 4 minutes after addition, the average evaporation rate is 85 g / min when using room temperature water and 107 g / min when using high temperature water. It was. The average air volume at normal temperature water 1.24m 3 / min, 1.69m 3 / min becomes a high-temperature water, than this, gas humidity in the wet zone was inferred respectively 69g / m 3, 63g / m 3 . However, in the above calculation, it was assumed that the gas temperature was equal to the raw material temperature.

上記の結果を、図3の飽和水蒸気曲線にプロットしたのが図7である。これより、どちらの場合もガス湿度が過飽和領域にあるが、高温水を使用した時に比べて常温水を用いた場合は水分が凝縮しやすい状態にあることがわかる。ガス温度は、湿潤帯の形成にともない、60〜70℃程度まで上昇して一定となるが、水分凝縮量は、初期の原料温度、ガス湿度の量によって大きく異なることがわかる。   FIG. 7 is a plot of the above results on the saturated water vapor curve of FIG. From this, it can be seen that in both cases, the gas humidity is in the supersaturated region, but when room temperature water is used compared to when high temperature water is used, moisture is more likely to condense. The gas temperature rises to about 60 to 70 ° C. and becomes constant with the formation of the wet zone, but it is understood that the moisture condensation amount varies greatly depending on the initial raw material temperature and the amount of gas humidity.

上記の試験結果から、湿潤帯の原料温度を高める手段として、焼結原料を造粒する際の造粒水に高温水を用いることは極めて有効であることがわかる。気体燃料を燃焼させることを前提とする本発明においては、気体燃料の燃焼により発生するHOによる湿潤帯での圧損上昇の弊害を回避する観点から、気体燃料の燃焼により発生する水分量の増加に対応して、造粒粒子の温度を上昇させ、湿潤帯におけるガスの湿度を低減するのが好ましい。さらに、湿潤帯におけるガスの湿度を気体燃料の燃焼により生ずる水蒸気量分だけ低減した場合には、湿潤帯における水分凝縮量を、気体燃料を吹き込まない場合よりもさらに低減できるので、湿潤帯における圧損を低減し、通気性を改善する上ではより好ましい。 From the above test results, it can be seen that it is extremely effective to use high-temperature water as granulated water when granulating the sintered raw material as a means for increasing the raw material temperature of the wet zone. In the present invention based on the premise that gas fuel is burned, the amount of moisture generated by combustion of gaseous fuel is reduced from the viewpoint of avoiding the adverse effect of increased pressure loss in the wet zone due to H 2 O generated by combustion of gaseous fuel. Corresponding to the increase, it is preferable to increase the temperature of the granulated particles and reduce the humidity of the gas in the wet zone. Furthermore, if the humidity of the gas in the wet zone is reduced by the amount of water vapor generated by the combustion of the gaseous fuel, the amount of moisture condensation in the wet zone can be further reduced than when no gaseous fuel is blown in, so the pressure loss in the wet zone Is more preferable in reducing air permeability and improving air permeability.

また、上記したように、造粒粒子の温度を高めるには、造粒水として、常温水以上の温度の高温水を用いることが有効であるが、少なくとも湿潤帯におけるガスの湿度の低減量を気体燃料の燃焼により生ずる水蒸気量に相当する分以上とするためには、80℃以上の高温水を造粒水として用いることが好ましい。より好ましくは95℃以上である。なお、原料温度が異なる夏季と冬季とでは、温度差が大きくなるように造粒水の温度を変えることが好ましく、夏季ほど高くするのが好ましい。   In addition, as described above, in order to increase the temperature of the granulated particles, it is effective to use high-temperature water having a temperature equal to or higher than room temperature water as the granulated water. In order to make it more than the amount corresponding to the amount of water vapor generated by the combustion of the gaseous fuel, it is preferable to use high-temperature water of 80 ° C. or higher as the granulated water. More preferably, it is 95 ° C. or higher. In addition, it is preferable to change the temperature of granulated water so that a temperature difference may become large in the summer and winter in which raw material temperatures differ, and it is preferable to make it higher in the summer.

また、本発明は、基本的に、燃焼によってHO(水蒸気)を発生する炭化水素系の可燃性ガスあるいは水素ガスを希釈気体燃料として吹き込む焼結鉱の製造方法に用いる技術であるが、気体燃料を吹き込まない焼結鉱の製造方法に用いてよいことはもちろんである。上記炭化水素系の可燃性ガスとして実用的なものとしては、例えば、メタン(CH)、エタン(C)、プロパン(C)、ブタン(C10)やLNG、LPG、都市ガス、Cガス等を挙げることができる。 In addition, the present invention is basically a technique used in a method for producing a sintered ore in which a hydrocarbon-based combustible gas that generates H 2 O (water vapor) by combustion or hydrogen gas is blown as a diluted gas fuel, Of course, it may be used for the manufacturing method of the sintered ore which does not blow gaseous fuel. Examples of practical hydrocarbon-based combustible gases include methane (CH 4 ), ethane (C 2 H 6 ), propane (C 3 H 8 ), butane (C 4 H 10 ), LNG, Examples include LPG, city gas, C gas, and the like.

なお、気体燃料を供給し、燃焼させて焼結鉱を製造する本発明の方法では、上記気体燃料は、燃焼や爆発を防止しつつ装入層内で燃焼を起こさせるため、その気体燃料が有する燃焼下限濃度以下、好ましくは燃焼可燃濃度の75%、より好ましくは50%以下、さらに好ましくは20%以下に希釈した希釈気体燃料として装入層内に導入するのが好ましい。また、上記希釈気体燃料の供給方法としては、特許文献1のように、予め燃焼下限濃度以下に希釈した気体燃料を装入層の上方の空気中に供給する方法、特許文献2のように、気体燃料を装入層上方の空気中に高速で噴出して瞬時に燃焼下限濃度以下に希釈して供給する方法のいずれを用いてもよい。   In addition, in the method of the present invention in which gaseous fuel is supplied and burned to produce sintered ore, the gaseous fuel causes combustion in the charging layer while preventing combustion and explosion. It is preferably introduced into the charging layer as a diluted gaseous fuel diluted to below the lower combustion limit concentration, preferably 75% of the combustible combustible concentration, more preferably 50% or less, and even more preferably 20% or less. In addition, as a method for supplying the diluted gaseous fuel, as in Patent Document 1, a method of supplying gaseous fuel diluted in advance to a combustion lower limit concentration or less into the air above the charging layer, as in Patent Document 2, Any method may be used in which gaseous fuel is jetted into the air above the charging layer at a high speed and is instantaneously diluted below the lower combustion limit concentration.

先述した13℃の常温水または85℃の高温水を造粒水として用いて造粒し、得られた18℃および30℃の造粒粒子のそれぞれを焼結原料として、図4の右側に示した内径が300mmφ、高さが400mmの焼結試験鍋に均一に充填し、装入原料表層の炭材に点火後、試験鍋の上方にLNGを吸引空気に対して0.8vol%となるよう供給し、試験鍋下方で圧力700mmHOで吸引しつつ焼結実験を行い、焼結に要した時間、焼結による装入原料の収縮量、焼結時の平均風量および焼結鉱の歩留を測定し、生産率(t/hr・m)を算出し、それらの結果を、造粒水として常温水を用いた場合と高温水を用いた場合とで比較して図8に示した。なお、焼結鉱の歩留は、焼結後の焼結ケーキを2mの高さから1回落下させ、得られた10mm以上ものを成品とし、この成品の焼結ケーキに対する割合とした。 The above-mentioned granulated particles of 18 ° C. and 30 ° C. are granulated using the above-mentioned normal temperature water of 13 ° C. or high temperature water of 85 ° C. as the granulated water, and the obtained granulated particles are shown on the right side of FIG. After filling the sintered test pan with an inner diameter of 300 mmφ and a height of 400 mm uniformly and igniting the charcoal on the surface layer of the charged raw material, LNG is set to 0.8 vol% with respect to the suction air above the test pan. Sintering experiment was conducted while suctioning at a pressure of 700 mmH 2 O below the test pan. The time required for sintering, the amount of shrinkage of the raw material charged by sintering, the average air volume during sintering, and the step of sintered ore , The production rate (t / hr · m 2 ) was calculated, and the results are shown in FIG. 8 in comparison with the case of using normal temperature water as the granulated water and the case of using high temperature water. It was. In addition, the yield of the sintered ore was obtained by dropping the sintered cake once from a height of 2 m and making the obtained product 10 mm or more into a product, and the ratio of this product to the sintered cake.

図8(a)は、試験鍋中に充填した焼結原料の高さ変化から焼結による装入層の収縮量を測定し、常温水を用いた場合と高温水を用いた場合とを比較して示したものであり、高温水を用いた方が収縮量が少ない。また、図8(b)は、同じく常温水を用いた場合と高温水を用いた場合とで、焼結中における平均風量を比較して示したものであり、高温水を用いた方が、平均風量が約18%増加している。これらの結果は、造粒水として高温水を用いることにより、湿潤帯における水分凝縮量が低減し、あるいは、造粒粒子の崩壊が抑制されたことを示している。
また、図8(c)は、常温水を用いた場合と高温水を用いた場合とで、焼結鉱の生産率を比較した結果を示したものであり、やはり、造粒水として高温水を用いることにより、生産率が約15%向上している。この原因は、高温水を用いたことにより、平均風量が増加し、焼結所要時間が短縮されたためであると考えられる。
図8の結果から、造粒水として高温水を用いて湿潤帯における水分の凝縮を抑制することにより、高強度で高品質の焼結鉱を、高い生産性で製造し得ることが確認された。
Fig. 8 (a) shows the amount of shrinkage of the charging layer by sintering from the change in the height of the sintering raw material filled in the test pan, and compares the case of using normal temperature water and the case of using high temperature water. The amount of shrinkage is smaller when high temperature water is used. FIG. 8 (b) shows a comparison of the average air volume during sintering in the case of using normal temperature water and the case of using high temperature water. Average air volume has increased by about 18%. These results indicate that the use of high-temperature water as the granulated water reduced the amount of moisture condensation in the wet zone or suppressed the collapse of the granulated particles.
FIG. 8 (c) shows the result of comparison of the production rates of sintered ore between the case of using room temperature water and the case of using high temperature water. The production rate is improved by about 15%. This is probably because the use of high-temperature water increased the average air volume and shortened the time required for sintering.
From the result of FIG. 8, it was confirmed that high strength and high quality sintered ore can be produced with high productivity by suppressing the condensation of moisture in the wet zone using high temperature water as granulated water. .

Claims (2)

循環移動するパレット上に粉鉱石と炭材を含む造粒粒子を堆積して焼結原料の装入層を形成し、その装入層表層の炭材に点火した後、パレット下方に配設されたウインドボックスで装入層上方に供給された希釈気体燃料を空気ともに装入層内に吸引し、装入層内で上記希釈気体燃料と炭材を燃焼させて焼結鉱を製造する方法において、上記造粒粒子の造粒水として80℃以上の高温水を用いることで、装入層内の湿潤帯における飽和水蒸気量を、気体燃料の燃焼により発生する水蒸気量分以上高めることを特徴とする焼結鉱の製造方法。 A granulated particle containing fine ore and carbonaceous material is deposited on a circulating pallet to form a charged layer of sintered raw material. After igniting the carbonized material on the surface of the charged layer, it is placed under the pallet. In the method of producing a sintered ore by sucking the diluted gas fuel supplied to the upper part of the charging layer in the wind box into the charging layer together with air and burning the diluted gas fuel and the carbonaceous material in the charging layer. The use of high-temperature water at 80 ° C. or higher as the granulated water for the granulated particles increases the amount of saturated water vapor in the wet zone in the charging layer by the amount of water vapor generated by combustion of gaseous fuel. A method for producing sintered ore. 上記希釈気体燃料は、燃焼下限濃度以下に希釈された炭化水素系の可燃性ガスあるいは水素ガスであることを特徴とする請求項に記載の焼結鉱の製造方法。 The method for producing a sintered ore according to claim 1 , wherein the diluted gas fuel is a hydrocarbon-based combustible gas or hydrogen gas diluted to a lower combustion limit concentration or less.
JP2010193190A 2010-08-31 2010-08-31 Method for producing sintered ore Active JP5561032B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010193190A JP5561032B2 (en) 2010-08-31 2010-08-31 Method for producing sintered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010193190A JP5561032B2 (en) 2010-08-31 2010-08-31 Method for producing sintered ore

Publications (2)

Publication Number Publication Date
JP2012052152A JP2012052152A (en) 2012-03-15
JP5561032B2 true JP5561032B2 (en) 2014-07-30

Family

ID=45905803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010193190A Active JP5561032B2 (en) 2010-08-31 2010-08-31 Method for producing sintered ore

Country Status (1)

Country Link
JP (1) JP5561032B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114480839A (en) * 2021-12-24 2022-05-13 武汉悟拓科技有限公司 Sintering mixture magnetized water granulation process based on electrostatic dispersion of powder fuel
JP2023145996A (en) * 2022-03-29 2023-10-12 スチールプランテック株式会社 Heating sintering machine and heating sintering method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5838494B2 (en) * 1980-06-26 1983-08-23 日本鋼管株式会社 Manufacturing method of sintered ore
JPS5831375B2 (en) * 1981-05-15 1983-07-05 日本鋼管株式会社 Manufacturing method of sintered ore
JPS6250419A (en) * 1985-08-28 1987-03-05 Nippon Steel Corp Manufacture of sintered ore
JP4735660B2 (en) * 2007-04-27 2011-07-27 Jfeスチール株式会社 Method for producing sintered ore and sintering machine
JP2010047812A (en) * 2008-08-22 2010-03-04 Jfe Steel Corp Method for operating sintering machine for blowing dilute gaseous fuel, and the same machine

Also Published As

Publication number Publication date
JP2012052152A (en) 2012-03-15

Similar Documents

Publication Publication Date Title
JP4911163B2 (en) Method for producing sintered ore
JP4605142B2 (en) Method for producing sintered ore and sintering machine
JP5428193B2 (en) Method for producing sintered ore and sintering machine
JP2010126773A (en) Method for producing sintered ore
JP5699453B2 (en) Sintering machine and method for producing sintered ore
JP5561032B2 (en) Method for producing sintered ore
JP5359012B2 (en) Sintering machine and operation method thereof
JP5815196B2 (en) Method for producing sintered ore
JP5428195B2 (en) Sintering machine
JP5561443B2 (en) Method for producing sintered ore
JP6213734B2 (en) Method for producing sintered ore
JP2010133615A (en) Sintering machine and manufacturing method of sintered ore
JP6885238B2 (en) How to operate the blast furnace
JP6870426B2 (en) How to operate the blast furnace
JP5428196B2 (en) Method for producing sintered ore and sintering machine
WO2024116778A1 (en) Method for producing sintered ore
JP5987772B2 (en) Blast furnace operation method
JP5439982B2 (en) Method for producing sintered ore
JP6037145B2 (en) Method for producing sintered ore
JP5803454B2 (en) Oxygen-gas fuel supply device for sintering machine
JP5825478B2 (en) Sintering machine
JP2018024942A (en) Blast furnace operation method
JP2010106341A (en) Method for manufacturing sintered ore
JP5428194B2 (en) Sintering machine
JP2010106342A (en) Method for manufacturing sintered ore

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140513

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140526

R150 Certificate of patent or registration of utility model

Ref document number: 5561032

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250