JP2018024942A - Blast furnace operation method - Google Patents

Blast furnace operation method Download PDF

Info

Publication number
JP2018024942A
JP2018024942A JP2017144248A JP2017144248A JP2018024942A JP 2018024942 A JP2018024942 A JP 2018024942A JP 2017144248 A JP2017144248 A JP 2017144248A JP 2017144248 A JP2017144248 A JP 2017144248A JP 2018024942 A JP2018024942 A JP 2018024942A
Authority
JP
Japan
Prior art keywords
blast furnace
pulverized coal
reducing material
blown
coal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017144248A
Other languages
Japanese (ja)
Other versions
JP6551471B2 (en
Inventor
明紀 村尾
Akinori Murao
明紀 村尾
尚貴 山本
Naoki Yamamoto
尚貴 山本
晃太 盛家
Kota MORIYA
晃太 盛家
深田 喜代志
Kiyoshi Fukada
喜代志 深田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2018024942A publication Critical patent/JP2018024942A/en
Application granted granted Critical
Publication of JP6551471B2 publication Critical patent/JP6551471B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a blast furnace operation method in which the reduction material ratio of blast furnace can be reduced.SOLUTION: Provided is a blast furnace operation method by blowing a solid reduction material from blast furnace tuyere and in which a solid reduction material adsorbed with oxygen of 0.022 kg/kg-coal or more is blown into the blast furnace from the blast furnace tuyere through one of the inner tube or the outer tube of a double tube lance, and a flammable reduction material is blown into the blast furnace from the blast furnace tuyere through the other of the inner tube or the outer tube of the double tube lance in which the solid reduction material is not blown.SELECTED DRAWING: None

Description

本発明は、酸素を吸着させた固体還元材を高炉羽口から吹込み、還元材比を低減させる高炉操業方法に関する。   The present invention relates to a method for operating a blast furnace in which a solid reducing material having adsorbed oxygen is blown from a blast furnace tuyere to reduce the reducing material ratio.

近年、炭酸ガス排出量の増加による地球温暖化が問題となっており、製鉄業においても排出COの抑制は重要な課題である。これを受け、最近の高炉操業では、低還元材比(低RAR:Reduction Agent Ratioの略で、銑鉄1t製造当りの、羽口からの吹込み還元材と炉頂から装入されるコークスの合計量)操業が強力に推進されている。高炉は、主にコークスおよび羽口から吹込む微粉炭を還元材として使用しており、低還元材比、ひいては、炭酸ガス排出抑制を達成するために微粉炭の燃焼性を改善させて、コークスの使用量を低減する方策が有効である。 In recent years, global warming due to an increase in carbon dioxide emission has become a problem, and the suppression of exhausted CO 2 is an important issue even in the steel industry. In response to this, in the recent blast furnace operation, the ratio of low reducing material (low RAR: Abbreviation for Reduction Agent Ratio), the sum of the reducing material injected from the tuyere and the coke charged from the top of the furnace per 1 ton of pig iron. Volume) Operation is being strongly promoted. Blast furnaces use pulverized coal mainly injected from coke and tuyere as a reducing material, and improve the flammability of pulverized coal to achieve a low reducing material ratio and, in turn, to suppress carbon dioxide emission. Measures to reduce the amount of use are effective.

特許文献1には、50〜150℃の温度範囲のO含有雰囲気に吹込み炭を曝し、Oを吹込み炭に化学吸着させて未燃炭素量を減少させる技術が開示されている。また、特許文献2には、平均揮発分が25mass%以下の微粉炭と同時に吹込まれる気体中の酸素濃度を微粉炭吹込みランス先端部近傍周辺で70vol%以上、または、微粉炭搬送ガス中の酸素濃度を70vol%以上として低揮発分微粉炭の燃焼性を向上させる技術が開示されている。 Patent Document 1 discloses a technique in which blown coal is exposed to an O 2 -containing atmosphere in a temperature range of 50 to 150 ° C., and O 2 is chemisorbed on the blown coal to reduce the amount of unburned carbon. Patent Document 2 discloses that the oxygen concentration in the gas blown simultaneously with the pulverized coal having an average volatile content of 25 mass% or less is 70 vol% or more in the vicinity of the tip of the pulverized coal blowing lance, or in the pulverized coal carrier gas. Has disclosed a technique for improving the combustibility of low volatile pulverized coal with an oxygen concentration of 70 vol% or more.

また、特許文献3には、羽口から還元材を吹込むランスを2重管とし、2重管ランスの内管から都市ガスまたは微粉炭を吹込み、2重管ランスの外側から微粉炭または都市ガスを吹込んで微粉炭の燃焼性を改善させる技術が開示されている。   In Patent Document 3, a lance that blows the reducing material from the tuyere is a double pipe, city gas or pulverized coal is blown from the inner pipe of the double pipe lance, and pulverized coal or A technique for improving the combustibility of pulverized coal by blowing city gas is disclosed.

特許第5843968号公報Japanese Patent No. 5844968 特開2003−286511号公報JP 2003-286511 A 特開2013−19007号公報JP 2013-19007 A

特許文献1に開示された発明炭は、O原子含有割合が高く、かつOが化学吸着しているため、燃焼温度が高くなることが記載されている。しかし、従来炭と比較してO含有割合が高いことからCの含有割合が低く、燃焼により発生するCOガス発生量も低下する。高炉において鉄鉱石から銑鉄への還元はCOガスによるガス還元が主である。吹込み炭からのCOガス発生量が低下した場合、それを補うために必要なコークス原単位を増加させることが必要になり、結果的に還元材原単位が増加する可能性がある。また、O原子含有割合が高いために通常の高炉に吹込む微粉炭よりも発熱量が小さく高炉内の炉熱が低下しコークス比および還元材比も低下しない可能性がある。 It is described that the invention charcoal disclosed in Patent Document 1 has a high O atom content ratio and O 2 is chemically adsorbed, so that the combustion temperature becomes high. However, since the O content is higher than that of conventional charcoal, the C content is low, and the amount of CO gas generated by combustion is also reduced. In blast furnaces, the reduction of iron ore to pig iron is mainly gas reduction with CO gas. When the amount of CO gas generated from the blown coal decreases, it is necessary to increase the coke basic unit necessary to compensate for this, and as a result, the reducing material basic unit may increase. In addition, since the O atom content ratio is high, the calorific value is smaller than that of pulverized coal injected into a normal blast furnace, and the furnace heat in the blast furnace may decrease, and the coke ratio and reducing material ratio may not decrease.

また、特許文献2に開示された技術は、微粉炭と同時に吹込まれるガス中の酸素濃度を一定以上にするように記載しているが、微粉炭の燃焼においては微粉炭周囲に酸素が近接して存在することが重要である。特に、微粉炭がランスから吐出される場合は微粉炭粒子群として吹込まれるため、粒子群内部では酸素濃度が低下する。したがって、ガス中の酸素濃度を上げても、微粉炭の粒子群内部の酸素濃度を向上できないので、粒子群の外側に存在する一部の微粉炭の燃焼性は改善できるとしても、微粉炭全体の燃焼性を改善することはできない。   Moreover, although the technique disclosed in Patent Document 2 describes that the oxygen concentration in the gas injected at the same time as the pulverized coal is equal to or higher than a certain level, in the combustion of the pulverized coal, oxygen is in the vicinity of the pulverized coal. It is important to exist. In particular, when pulverized coal is discharged from the lance, since it is blown as a pulverized coal particle group, the oxygen concentration is reduced inside the particle group. Therefore, even if the oxygen concentration in the gas is increased, the oxygen concentration inside the pulverized coal particle group cannot be improved, so even if the flammability of some pulverized coal existing outside the particle group can be improved, the entire pulverized coal The flammability cannot be improved.

また、特許文献3に開示された技術は、微粉炭のみを羽口から吹込む方法に比べれば微粉炭の燃焼温度の向上や還元材原単位の低減に効果がある。しかしながら、内管または外管から独立して都市ガスと微粉炭とを吹込んでいることから都市ガスの燃焼により微粉炭周囲の酸素が欠乏してしまい、微粉炭の燃焼反応が遅延するおそれがある。   In addition, the technique disclosed in Patent Document 3 is effective in improving the combustion temperature of pulverized coal and reducing the reducing material basic unit as compared with the method of blowing only pulverized coal from the tuyere. However, since city gas and pulverized coal are blown independently from the inner pipe or the outer pipe, oxygen around the pulverized coal may be deficient due to combustion of the city gas, and the combustion reaction of the pulverized coal may be delayed. .

本発明は、上記課題を鑑みてなされたものであり、その目的は、所定量の酸素を固体還元材に吸着させ、2重管のランスの内管および外管の一方から当該固体還元材を高炉内へ吹込み、固体還元材を吹込んでいない2重管ランスの内管または外管から易燃性還元材を高炉内へ吹込むことで固体還元材全体の燃焼性を改善させ、これにより、高炉の還元材比を低減させることにある。   The present invention has been made in view of the above problems, and its purpose is to adsorb a predetermined amount of oxygen to a solid reducing material, and to dispose the solid reducing material from one of an inner tube and an outer tube of a lance of a double pipe. Blowing flammable reducing material into the blast furnace from the inner tube or outer tube of a double pipe lance that is blown into the blast furnace and not blowing solid reducing material, thereby improving the flammability of the entire solid reducing material. The purpose is to reduce the reducing material ratio of the blast furnace.

このような課題を解決するための本発明の特徴は、以下の通りである。
(1)高炉羽口から固体還元材を吹込む高炉操業方法であって、2重管ランスの内管および外管の一方から、酸素を0.022kg/kg−coal以上吸着させた固体還元材を前記高炉羽口から高炉内へ吹込み、前記固体還元材を吹込んでいない前記2重管ランスの内管または外管から易燃性還元材を前記高炉羽口から前記高炉内へ吹込むことを特徴とする高炉操業方法。
(2)高炉羽口から固体還元材を吹込む高炉操業方法であって、2重管ランスの内管および外管の一方から、比表面積が2.0m/g以上であり、ドライベースの酸素原子含有割合が10.0質量%未満の固体還元材を前記高炉羽口から高炉内へ吹込み、前記固体還元材を吹込んでいない前記2重管ランスの内管または外管から易燃性還元材を前記高炉羽口から前記高炉内へ吹込むことを特徴とする高炉操業方法。
(3)高炉羽口から固体還元材を吹込む高炉操業方法であって、2重管ランスの内管および外管の一方から、比表面積が2.0m/g以上であり、ドライベースの酸素原子含有割合が10.0質量%未満であり、酸素を0.022kg/kg−coal以上吸着させた固体還元材を前記高炉羽口から高炉内へ吹込み、前記固体還元材を吹込んでいない前記2重管ランスの内管または外管から易燃性還元材を前記高炉羽口から前記高炉内へ吹込むことを特徴とする高炉操業方法。
(4)高炉羽口から固体還元材を吹込む高炉操業方法であって、2重管ランスの内管および外管の一方から、酸素の吸着量が0.022kg/kg−coal未満の固体還元材に、酸素を0.022kg/kg−coal以上吸着させた固体還元材を、全固体還元材量に対して50質量%以上となるように配合して前記高炉羽口から高炉内へ吹込み、
前記固体還元材を吹込んでいない前記2重管ランスの内管または外管から易燃性還元材を前記高炉羽口から前記高炉内へ吹込むことを特徴とする高炉操業方法。
(5)高炉羽口から固体還元材を吹込む高炉操業方法であって、2重管ランスの内管および外管の一方から、酸素の吸着量が0.022kg/kg−coal未満の固体還元材に、比表面積が2.0m/g以上であり、ドライベースの酸素原子含有割合が10.0質量%未満であり、酸素を0.022kg/kg−coal以上吸着させた固体還元材を、全固体還元材量に対して10質量%以上となるように配合して前記高炉羽口から高炉内に吹込み、前記固体還元材を吹込んでいない前記2重管ランスの内管または外管から易燃性還元材を前記高炉羽口から前記高炉内へ吹込むことを特徴とする高炉操業方法。
(6)前記固体還元材は、微粉炭であることを特徴とする(1)から(5)の何れか1つに記載の高炉操業方法。
(7)前記微粉炭に、廃プラスチック、廃棄物固形燃料、有機性資源、および、廃材の少なくとも1つを混合することを特徴とする(6)に記載の高炉操業方法。
The features of the present invention for solving such problems are as follows.
(1) A blast furnace operating method in which a solid reducing material is blown from a blast furnace tuyere, wherein 0.022 kg / kg-coal or more of oxygen is adsorbed from one of an inner tube and an outer tube of a double pipe lance. Is blown into the blast furnace from the blast furnace tuyere, and a flammable reducing material is blown into the blast furnace from the inner or outer pipe of the double pipe lance not blown with the solid reducing material. Blast furnace operation method characterized by.
(2) A blast furnace operation method in which a solid reducing material is blown from a blast furnace tuyere, a specific surface area of 2.0 m 2 / g or more from one of an inner pipe and an outer pipe of a double pipe lance, A solid reducing material having an oxygen atom content of less than 10.0% by mass is blown into the blast furnace from the blast furnace tuyere, and is easily flammable from the inner pipe or the outer pipe of the double pipe lance not blown with the solid reducing material. A method for operating a blast furnace, wherein a reducing material is blown into the blast furnace from the blast furnace tuyere.
(3) A blast furnace operation method in which a solid reducing material is blown from a blast furnace tuyere, a specific surface area of 2.0 m 2 / g or more from one of an inner pipe and an outer pipe of a double pipe lance, A solid reducing material having an oxygen atom content of less than 10.0% by mass and adsorbing oxygen of 0.022 kg / kg-coal or more is blown into the blast furnace from the blast furnace tuyere, and the solid reducing material is not blown. A blast furnace operating method, wherein a flammable reducing material is blown into the blast furnace from the blast furnace tuyere through an inner pipe or an outer pipe of the double pipe lance.
(4) A blast furnace operating method in which a solid reducing material is blown from a blast furnace tuyere, wherein the amount of oxygen adsorbed from one of the inner pipe and the outer pipe of the double pipe lance is less than 0.022 kg / kg-coal. A solid reducing material in which oxygen is adsorbed in an amount of 0.022 kg / kg-coal or more is mixed with the material so as to be 50% by mass or more with respect to the total amount of the solid reducing material, and injected into the blast furnace from the blast furnace tuyere. ,
A blast furnace operating method, wherein a flammable reducing material is blown into the blast furnace from the blast furnace tuyere through an inner tube or an outer tube of the double pipe lance not blown with the solid reducing material.
(5) A blast furnace operation method in which a solid reducing material is blown from a blast furnace tuyere, wherein the amount of oxygen adsorbed from one of the inner pipe and the outer pipe of the double pipe lance is less than 0.022 kg / kg-coal. A solid reducing material having a specific surface area of 2.0 m 2 / g or more, a dry base oxygen atom content ratio of less than 10.0% by mass, and oxygen adsorbed by 0.022 kg / kg-coal or more. The inner tube or the outer tube of the double pipe lance which is blended so as to be 10% by mass or more with respect to the total amount of the solid reducing material and blown into the blast furnace from the blast furnace tuyere, and does not blow the solid reducing material. A flammable reducing material is injected into the blast furnace from the blast furnace tuyere.
(6) The blast furnace operating method according to any one of (1) to (5), wherein the solid reducing material is pulverized coal.
(7) The blast furnace operating method according to (6), wherein the pulverized coal is mixed with at least one of waste plastic, waste solid fuel, organic resources, and waste material.

本発明の高炉操業方法を実施することで、高炉羽口から吹込む固体還元材の全体の燃焼性を改善させることができる。全体の燃焼性が改善された固体還元材は、部分的に燃焼性が改善された固体還元材と比較して、より少ない固体還元材量で高炉の炉内温度を高めることができるので、本発明の高炉操業方法を実施することで高炉の還元材比の低減が実現できる。   By implementing the blast furnace operating method of the present invention, the entire flammability of the solid reducing material injected from the blast furnace tuyere can be improved. Since the solid reducing material with improved overall flammability can increase the in-furnace temperature of the blast furnace with a smaller amount of solid reducing material compared to the solid reducing material with partially improved flammability, By implementing the inventive blast furnace operating method, a reduction in the reducing material ratio of the blast furnace can be realized.

燃焼実験装置10の部分断面模式図である。1 is a schematic partial cross-sectional view of a combustion experimental apparatus 10. FIG.

本発明は、高炉の羽口から固体還元材を吹込んで高炉の炉内温度をより高める手法として、固体還元材に酸素を吸着させることに着目してなされたものである。すなわち、固体還元材に酸素を0.022kg/kg−coal以上吸着させ、2重管ランスの内管および外管の一方から当該固体還元材を吹込み、固体還元材を吹込んでいない2重管ランスの内管または外管から易燃性還元材を吹込むことで、固体還元材全体の燃焼性を改善させることができる。このように、燃焼性が改善された固体還元材と易燃性還元材とを2重管ランスを用いて高炉羽口から吹込むことで、高炉の炉内温度をより高めることができ、これにより、高炉の還元材比を低減できることを見出して本発明を完成させた。   The present invention has been made by paying attention to adsorbing oxygen to a solid reducing material as a technique for further injecting the solid reducing material from the tuyere of the blast furnace to raise the temperature inside the blast furnace. That is, a double pipe in which oxygen is adsorbed by 0.022 kg / kg-coal or more on the solid reducing material, the solid reducing material is blown from one of the inner pipe and the outer pipe of the double pipe lance, and the solid reducing material is not blown. By injecting the flammable reducing material from the inner tube or the outer tube of the lance, the combustibility of the entire solid reducing material can be improved. In this way, the in-furnace temperature of the blast furnace can be further increased by blowing the solid reducing material with improved combustibility and the flammable reducing material from the blast furnace tuyere using a double pipe lance. Thus, it was found that the reducing material ratio of the blast furnace can be reduced, and the present invention was completed.

まず、本発明をするに到った微粉炭の燃焼試験について説明する。酸素の吸着量、比表面積およびドライベースの酸素含有割合を変えた5種の微粉炭を準備し、燃焼試験を実施した。5種の微粉炭のうち、調整微粉炭1〜4は、含有水分60質量%、ドライベースの揮発分50質量%の低品位炭を準備し、500〜1000℃の範囲内の温度で所定時間加熱処理して、含有水分を1質量%以下とした。なお、ドライベースとは、微粉炭に含まれる含有水分量を除いた質量を意味する。この加熱処理済みの低品位炭を、例えば、粒径74μm以下の微粉の割合が80質量%以上になるように粉砕して、比表面積を変えた調整微粉炭1〜4の微粉炭を製造した。   First, the combustion test of pulverized coal that led to the present invention will be described. Five types of pulverized coal with varying amounts of oxygen adsorbed, specific surface area, and dry base oxygen content were prepared and subjected to a combustion test. Among the five types of pulverized coal, the prepared pulverized coals 1 to 4 are prepared by preparing low-grade coal having a moisture content of 60% by mass and a dry base volatile content of 50% by mass at a temperature in the range of 500 to 1000 ° C. for a predetermined time. It heat-processed and the content water | moisture content was made into 1 mass% or less. In addition, dry base means the mass except the moisture content contained in pulverized coal. The heat-treated low-grade coal was pulverized so that the proportion of fine powder having a particle size of 74 μm or less was 80% by mass or more to produce adjusted pulverized coal 1 to 4 having a changed specific surface area. .

比表面積は、Nガス吸着によるBET法で測定した。BET法は、粉末試料に吸着する気体量を吸着気体の圧力の関数として測定する方法である。粉末試料に気体を物理吸着させたとき、吸着した気体量Vaと吸着平衡にある吸着気体の圧力Pとの間には、P/Pの値が0.05〜0.30の範囲内で(1)式の関係がある。 The specific surface area was measured by the BET method using N 2 gas adsorption. The BET method is a method of measuring the amount of gas adsorbed on a powder sample as a function of the pressure of the adsorbed gas. When the gas is physically adsorbed to the powder sample, the value of P / P 0 is within the range of 0.05 to 0.30 between the adsorbed gas amount Va and the pressure P of the adsorbed gas in the adsorption equilibrium. There is a relationship of equation (1).


但し、(1)式において、Pは吸着平衡圧(kPa)であり、Pは、測定温度における吸着気体の蒸気圧(kPa)であり、Vaは吸着平衡時の吸着量(mL)であり、Vは単分子層吸着量(mL)であり、Cは吸着熱、凝縮熱などの定数である。

However, in the equation (1), P is the adsorption equilibrium pressure (kPa), P 0 is the vapor pressure (kPa) of the adsorbed gas at the measurement temperature, and Va is the adsorption amount (mL) at the adsorption equilibrium. , V m is a monolayer adsorption amount (mL), and C is a constant such as heat of adsorption, heat of condensation, and the like.

吸着平衡時の吸着量Vaは、流動法または容量法を用いて測定できる。流動法は、吸着気体と吸着気体を搬送するキャリア気体の混合気体を試料に接触通過させ、通過前後の吸着気体の濃度変化から吸着量を算出する方法である。容量法は、容積が既知の容器に粉末試料を入れ、試料表面における気体の吸着に伴う圧力変化から吸着量を算出する方法である。粉末試料の比表面積は、(1)式の単分子層吸着量Vと(2)式とを用いて算出できる。 The adsorption amount Va at the time of adsorption equilibrium can be measured using a flow method or a volume method. The flow method is a method in which a mixed gas of an adsorbed gas and a carrier gas carrying the adsorbed gas is passed through a sample, and the amount of adsorption is calculated from the change in the concentration of the adsorbed gas before and after the passage. The capacity method is a method in which a powder sample is placed in a container having a known volume, and the amount of adsorption is calculated from a pressure change accompanying gas adsorption on the sample surface. The specific surface area of the powder sample can be calculated using the monomolecular layer adsorption amount V m of the formula (1) and the formula (2).


但し、(2)式において、Sは比表面積(m/g)であり、Nはアボガドロ数であり、aは吸着気体分子1個の有効断面積(m)であり、mは粉末試料の質量(g)である。

However, in the formula (2), S is a specific surface area (m 2 / g), N is an Avogadro number, a is an effective cross-sectional area (m 2 ) of one adsorbed gas molecule, and m is a powder sample. Mass (g).

この微粉炭に100kPa以上の圧力で酸素を吸着させた。酸素の吸着量は、酸素吸着前後の微粉炭の質量差から求めた。また、酸素原子含有割合は、微粉炭を元素分析(ドライベース)して求めた。なお、本燃焼試験で用いた微粉炭は固体還元材の一例である。   Oxygen was adsorbed on the pulverized coal at a pressure of 100 kPa or more. The amount of oxygen adsorbed was determined from the difference in mass of pulverized coal before and after oxygen adsorption. The oxygen atom content ratio was determined by elemental analysis (dry base) of pulverized coal. The pulverized coal used in the combustion test is an example of a solid reducing material.

微粉炭Aは、加熱処理せずに、粒径74μm以下の微粉の割合が80質量%以上になるように粉砕されて製造された微粉炭である。表1に燃焼試験に用いた微粉炭Aおよび調整微粉炭1〜4の酸素吸着量、比表面積およびドライベースの酸素原子含有割合を示す。   The pulverized coal A is pulverized coal produced by pulverization so that the ratio of fine particles having a particle size of 74 μm or less is 80% by mass or more without heat treatment. Table 1 shows the oxygen adsorption amount, specific surface area, and dry base oxygen atom content ratio of pulverized coal A and adjusted pulverized coal 1 to 4 used in the combustion test.

表1に示すように、調整微粉炭1は、酸素の吸着量を0.022kg/kg−coal未満、比表面積を2.0m/g未満、ドライベースの酸素原子含有割合を10.0質量%以上に調整された微粉炭である。調整微粉炭2は、酸素の吸着量を0.022kg/kg−coal以上、比表面積を2.0m/g未満、ドライベースの酸素原子含有割合を10.0質量%以上に調整された微粉炭である。調整微粉炭3は、酸素の吸着量を0.022kg/kg−coal未満、比表面積を2.0m/g以上、ドライベースの酸素の吸着量を10.0質量%未満に調整された微粉炭である。調整微粉炭4は、酸素の吸着量を0.022kg/kg−coal以上、比表面積を2.0m/g以上、ドライベースの酸素の吸着量を10.0質量%未満に調整された微粉炭である。 As shown in Table 1, the adjusted pulverized coal 1 has an oxygen adsorption amount of less than 0.022 kg / kg-coal, a specific surface area of less than 2.0 m 2 / g, and a dry base oxygen atom content ratio of 10.0 mass. It is pulverized coal adjusted to at least%. Adjusted pulverized coal 2 is a pulverized powder in which the oxygen adsorption amount is adjusted to 0.022 kg / kg-coal or more, the specific surface area is less than 2.0 m 2 / g, and the dry atom oxygen atom content ratio is adjusted to 10.0 mass% or more. Charcoal. Adjusted pulverized coal 3 is a fine powder whose oxygen adsorption amount is less than 0.022 kg / kg-coal, specific surface area is 2.0 m 2 / g or more, and dry-base oxygen adsorption amount is less than 10.0% by mass. Charcoal. Adjusted pulverized coal 4 is a fine powder whose oxygen adsorption amount is adjusted to 0.022 kg / kg-coal or more, specific surface area is 2.0 m 2 / g or more, and dry-base oxygen adsorption amount is adjusted to less than 10.0% by mass. Charcoal.

燃焼試験は、高炉の羽口付近を模した装置であって、ランスを介して羽口から吹込まれた微粉炭が燃焼した位置を視認できるように構成された燃焼実験装置を用いて実施した。燃焼試験は、2重管ランスを用いて、2重管ランスの内管から微粉炭Aまたは調整微粉炭1〜4を29.8kg/h(銑鉄1t当り100kg)で吹込み、2重管ランスの外管から易燃性還元材としてメタンを流量0.4Nm/h(銑鉄1t当り1kgに相当)で吹込んで実施した。なお、本燃焼試験におけるメタンは易燃性還元材の一例である。 The combustion test was carried out using a combustion experimental device that imitated the vicinity of the tuyere of the blast furnace and was configured so that the position where the pulverized coal blown from the tuyere was burned through the lance could be visually confirmed. In the combustion test, a double pipe lance was used, and pulverized coal A or adjusted pulverized coal 1 to 4 was injected from the inner pipe of the double pipe lance at 29.8 kg / h (100 kg per 1 ton of pig iron). As a flammable reducing material, methane was blown at a flow rate of 0.4 Nm 3 / h (corresponding to 1 kg per 1 ton of pig iron). Note that methane in this combustion test is an example of a flammable reducing material.

微粉炭の送風条件は、送風温度を1200℃、流量を300Nm/h、流速を70m/s、O富化量を5.5体積%(空気中酸素濃度21.0体積%に対して酸素濃度26.5体積%にした)とした。また、微粉炭の搬送ガスにはNを用いた。この試験条件で、微粉炭Aと、調整微粉炭1〜4の着火性および燃焼温度を評価した。その結果を表2に示す。 The blowing conditions of pulverized coal are as follows: the blowing temperature is 1200 ° C., the flow rate is 300 Nm 3 / h, the flow rate is 70 m / s, the O 2 enrichment amount is 5.5% by volume (relative to the oxygen concentration in the air of 21.0% by volume). The oxygen concentration was 26.5% by volume. Further, N 2 was used for pulverized coal carrier gas. Under these test conditions, the ignitability and combustion temperature of pulverized coal A and adjusted pulverized coal 1 to 4 were evaluated. The results are shown in Table 2.

また、2重管ランス内管から流量0.4Nm/hのメタンを吹込み、2重管ランスの外管から微粉炭を吹込んだ場合の燃焼性も同様に評価した。結果を表3に示す。 Further, the flammability when methane having a flow rate of 0.4 Nm 3 / h was blown from the inner pipe of the double pipe lance and pulverized coal was blown from the outer pipe of the double pipe lance was similarly evaluated. The results are shown in Table 3.

着火性は、着火距離と着火時間で評価した。着火距離とは、ランスから吹込まれた微粉炭が着火するまでのランス先端からの距離である。この距離が短い微粉炭を着火性に優れる微粉炭と判定し、この距離が長い微粉炭を着火性に劣る微粉炭と判定した。   The ignitability was evaluated by the ignition distance and the ignition time. The ignition distance is a distance from the tip of the lance until the pulverized coal blown from the lance is ignited. The pulverized coal with this short distance was determined as pulverized coal with excellent ignitability, and the pulverized coal with long distance was determined as pulverized coal with poor ignitability.

図1は、燃焼実験装置10の部分断面模式図である。図1は、燃焼実験装置10における2重管ランス16が設けられた部分を示している。図1に示すように、燃焼実験装置10の炉壁12から燃焼実験装置10の内側に羽口18が挿入されている。表2に示した燃焼試験において、微粉炭は、2重管ランス16の内管から搬送ガスであるNとともに送風管(ブローパイプ)14内に吹込まれ、メタンは、2重管ランス16の外管から送風管14内に吹込まれる。 FIG. 1 is a schematic partial cross-sectional view of a combustion experiment apparatus 10. FIG. 1 shows a portion where a double pipe lance 16 is provided in the combustion experiment apparatus 10. As shown in FIG. 1, a tuyere 18 is inserted from the furnace wall 12 of the combustion experiment apparatus 10 into the combustion experiment apparatus 10. In the combustion test shown in Table 2, pulverized coal is blown into the blower pipe (blow pipe) 14 together with N 2 as the carrier gas from the inner pipe of the double pipe lance 16, and methane is blown into the double pipe lance 16. The air is blown into the blower pipe 14 from the outer pipe.

送風管14内に吹込まれた微粉炭は、メタンとともに羽口18から燃焼実験装置10内の高温領域に吹込まれて着火する。図1において、着火位置20は、ランス16から燃焼実験装置10内に吹込まれた微粉炭が着火した位置を示す。図1における距離aは、羽口18の先端から着火位置20までの距離であって、表2、表3における着火距離である。距離aは、ランスから吹込まれる微粉炭流を燃焼実験装置10に設けられた覗き窓から高速度カメラにより撮影して測定した。   The pulverized coal blown into the blow pipe 14 is blown together with methane from the tuyere 18 to a high temperature region in the combustion experiment apparatus 10 to ignite. In FIG. 1, an ignition position 20 indicates a position where the pulverized coal blown into the combustion experiment apparatus 10 from the lance 16 has ignited. The distance a in FIG. 1 is the distance from the tip of the tuyere 18 to the ignition position 20 and is the ignition distance in Tables 2 and 3. The distance a was measured by photographing a pulverized coal flow blown from the lance with a high-speed camera from a viewing window provided in the combustion experiment apparatus 10.

同様に、着火時間とは、羽口18の先端から燃焼実験装置10内に吹込まれた微粉炭が、燃焼実験装置10内で着火するまでの時間である。この時間が短い微粉炭を着火性に優れる微粉炭であると判定し、この時間が長い微粉炭を着火性に劣る微粉炭であると判定した。なお、表2、表3の着火性における「判定」の行に示した「△」は、着火性が微粉炭Aと同程度であることを意味し、「○」は、着火性が微粉炭Aよりも優れることを意味し、「◎」は、着火性が微粉炭Aより大きく優れることを意味する。   Similarly, the ignition time is the time until the pulverized coal blown into the combustion experimental device 10 from the tip of the tuyere 18 is ignited in the combustion experimental device 10. The pulverized coal having a short time was determined to be pulverized coal having excellent ignitability, and the pulverized coal having this long time was determined to be pulverized coal having poor ignitability. In addition, “Δ” shown in the row of “determination” in the ignitability of Tables 2 and 3 means that the ignitability is the same as that of pulverized coal A, and “◯” indicates that the ignitability is pulverized coal. It means that it is superior to A, and “◎” means that the ignitability is greatly superior to that of pulverized coal A.

また、燃焼温度とは、微粉炭が燃焼した際の温度である。この温度が高い微粉炭を燃焼温度が高い微粉炭であると判定し、この温度が低い微粉炭を燃焼温度が低い微粉炭であると判定した。なお、表2、表3の燃焼温度における「判定」の行に示した「△」は、燃焼温度が1505℃未満であることを意味し、「○」は、燃焼温度が1505℃以上1540℃未満であることを意味し、「◎」は、燃焼温度が1540℃以上であることを意味する。なお、微粉炭の燃焼温度は、2色温度計を用いて測定を行なった。   The combustion temperature is the temperature when pulverized coal burns. The pulverized coal having a high temperature was determined to be a pulverized coal having a high combustion temperature, and the pulverized coal having a low temperature was determined to be a pulverized coal having a low combustion temperature. Note that “Δ” shown in the “determination” row at the combustion temperatures in Tables 2 and 3 means that the combustion temperature is less than 1505 ° C., and “◯” means that the combustion temperature is 1505 ° C. or more and 1540 ° C. It means that the combustion temperature is 1540 ° C. or higher. The combustion temperature of pulverized coal was measured using a two-color thermometer.

表2に示すように、微粉炭を2重管の内管から吹込み、メタンを2重管の外管から吹込んだ場合、調整微粉炭1は、微粉炭Aよりも着火距離が短かったが、その差は僅かであり、また、着火時間が同じであった。このため、調整微粉炭1の着火性は、微粉炭Aと同程度であると判定した。また、調整微粉炭2および調整微粉炭3は、微粉炭Aと着火時間が同じであったが、着火距離は微粉炭Aより短くなった。このため、調整微粉炭2および調整微粉炭3の着火性は、微粉炭Aよりも優れると判定した。また、調整微粉炭4は、微粉炭Aよりも着火距離が著しく短くなり、着火時間も著しく早くなった。このため、調整微粉炭4の着火性は、微粉炭Aよりも大きく優れると判定した。   As shown in Table 2, when pulverized coal was blown from the inner pipe of the double pipe and methane was blown from the outer pipe of the double pipe, the adjusted pulverized coal 1 had a shorter ignition distance than the pulverized coal A. However, the difference was slight and the ignition time was the same. For this reason, it determined with the ignitability of the adjustment pulverized coal 1 being comparable as the pulverized coal A. The adjusted pulverized coal 2 and the adjusted pulverized coal 3 had the same ignition time as that of the pulverized coal A, but the ignition distance was shorter than that of the pulverized coal A. For this reason, it was determined that the ignitability of the adjusted pulverized coal 2 and the adjusted pulverized coal 3 was superior to that of the pulverized coal A. In addition, the adjusted pulverized coal 4 has a significantly shorter ignition distance than the pulverized coal A, and the ignition time is also significantly faster. For this reason, it was determined that the ignitability of the adjusted pulverized coal 4 was significantly superior to that of the pulverized coal A.

また、燃焼温度について、調整微粉炭1の燃焼温度は、微粉炭Aと同じであり、その温度が1505℃未満であったので「△」と判定した。また、調整微粉炭2および調整微粉炭3の燃焼温度は、微粉炭Aよりも高くなり、その温度が1505℃以上1540℃未満の範囲内であったので「○」と判定した。また、調整微粉炭4の燃焼温度は、微粉炭Aよりも著しく高くなり、その温度が1540℃以上であったので「◎」と判定した。   Moreover, about the combustion temperature, the combustion temperature of the adjustment pulverized coal 1 was the same as that of the pulverized coal A, and since the temperature was less than 1505 degreeC, it determined with "△". Further, the combustion temperature of the adjusted pulverized coal 2 and the adjusted pulverized coal 3 was higher than that of the pulverized coal A, and the temperature was in the range of 1505 ° C. or higher and lower than 1540 ° C., so it was determined as “◯”. Further, the combustion temperature of the adjusted pulverized coal 4 was significantly higher than that of the pulverized coal A, and the temperature was 1540 ° C. or higher, so it was determined as “◎”.

一方、微粉炭を2重管の外側から吹込み、酸素を2重管の内管から吹込んだ場合、表3に示すように、調整微粉炭1は、微粉炭Aよりも着火距離が短かったが、その差は僅かであり、また、着火時間が同じであった。このため、調整微粉炭1の着火性は、微粉炭Aと同程度であると判定した。また、調整微粉炭2および調整微粉炭3は、微粉炭Aと着火時間が同じであったが、着火距離が微粉炭Aより短かった。このため、調整微粉炭2および調整微粉炭3の着火性は、微粉炭Aよりも優れると判定した。調整微粉炭4は、微粉炭Aよりも着火距離が著しく短くなり、着火時間も著しく早くなった。このため、調整微粉炭4の着火性は、微粉炭Aよりも大きく優れると判定した。   On the other hand, when pulverized coal is blown from the outside of the double pipe and oxygen is blown from the inner pipe of the double pipe, the adjusted pulverized coal 1 has a shorter ignition distance than pulverized coal A, as shown in Table 3. However, the difference was slight and the ignition time was the same. For this reason, it determined with the ignitability of the adjustment pulverized coal 1 being comparable as the pulverized coal A. Further, the adjusted pulverized coal 2 and the adjusted pulverized coal 3 had the same ignition time as that of the pulverized coal A, but the ignition distance was shorter than that of the pulverized coal A. For this reason, it was determined that the ignitability of the adjusted pulverized coal 2 and the adjusted pulverized coal 3 was superior to that of the pulverized coal A. The adjusted pulverized coal 4 has a significantly shorter ignition distance than the pulverized coal A, and the ignition time is also significantly faster. For this reason, it was determined that the ignitability of the adjusted pulverized coal 4 was significantly superior to that of the pulverized coal A.

また、燃焼温度について、調整微粉炭1の燃焼温度は、微粉炭Aと同じであり、その温度が1505℃未満であったので「△」と判定した。また、調整微粉炭2および調整微粉炭3の燃焼温度は、微粉炭Aよりも高くなり、その温度が1505℃以上1540℃未満の範囲内であったので「○」と判定した。また、調整微粉炭4の燃焼温度は、微粉炭Aよりも著しく高くなり、その温度が1540℃以上であったので「◎」と判定した。表2および表3に示したように、微粉炭を2重管の内管から吹込みメタンを外管から吹込んだ場合と、微粉炭を2重管の外管から吹込み、メタンを内管から吹込んだ場合とで着火性および燃焼温度に大きさ差は見られなかった。このため、以後の確認においては、2重管ランスの外管から微粉炭を吹込み、2重管ランスの内管からメタンを吹込む確認を省略した。   Moreover, about the combustion temperature, the combustion temperature of the adjustment pulverized coal 1 was the same as that of the pulverized coal A, and since the temperature was less than 1505 degreeC, it determined with "△". Further, the combustion temperature of the adjusted pulverized coal 2 and the adjusted pulverized coal 3 was higher than that of the pulverized coal A, and the temperature was in the range of 1505 ° C. or higher and lower than 1540 ° C., so it was determined as “◯”. Further, the combustion temperature of the adjusted pulverized coal 4 was significantly higher than that of the pulverized coal A, and the temperature was 1540 ° C. or higher, so it was determined as “◎”. As shown in Table 2 and Table 3, when pulverized coal is blown from the inner pipe of the double pipe, methane is blown from the outer pipe, and when pulverized coal is blown from the outer pipe of the double pipe, There was no difference in ignitability and combustion temperature between the case of blowing from the tube. For this reason, in the subsequent confirmation, the pulverized coal was blown from the outer pipe of the double pipe lance and the confirmation of blowing methane from the inner pipe of the double pipe lance was omitted.

ここで、表1に示した微粉炭Aおよび調整微粉炭1〜4の酸素吸着量および比表面積から表2および表3の結果を考察すると、着火性および燃焼温度は、微粉炭への酸素吸着量と微粉炭の比表面積に影響を受けると考えられる。すなわち、微粉炭粒子に吸着された酸素は、2重管ランスから吐出されたメタンの燃焼熱および送風由来の熱により速やかに離脱し、さらに、個々の微粉炭粒子に酸素が吸着しているので、微粉炭粒子群の内側に酸素を多量に存在させることができる。これにより、酸素を微粉炭粒子群全体に均一に接触させることができ、この結果、微粉炭の燃焼性が向上した。また、微粉炭の比表面積が増えると、微粉炭が時間当たりに外部から受ける熱量が増加するとともに微粉炭周囲の酸素との接触性が改善されるので、これにより着火性が向上し、燃焼温度が高められたと考えられる。   Here, considering the results of Tables 2 and 3 from the oxygen adsorption amounts and specific surface areas of the pulverized coal A and the adjusted pulverized coals 1 to 4 shown in Table 1, the ignitability and the combustion temperature are the oxygen adsorption to the pulverized coal. It is thought to be affected by the amount and specific surface area of pulverized coal. That is, the oxygen adsorbed on the pulverized coal particles is quickly desorbed by the combustion heat of methane discharged from the double pipe lance and the heat derived from the blast, and furthermore, oxygen is adsorbed on the individual pulverized coal particles. A large amount of oxygen can be present inside the pulverized coal particle group. Thereby, oxygen can be made to contact the whole pulverized coal particle group uniformly, As a result, the combustibility of pulverized coal improved. In addition, when the specific surface area of pulverized coal increases, the amount of heat that pulverized coal receives from the outside per unit time increases and the contact with oxygen around the pulverized coal is improved, thereby improving ignitability and combustion temperature. Is thought to have been raised.

調整微粉炭1および調整微粉炭2の結果から、酸素を0.022kg/kg−coal以上吸着させた微粉炭を2重管ランスの内管および外管の一方から吹込み、メタンを微粉炭を吹込んでいない2重管ランスの内管または外管から吹込むことで、微粉炭の着火性を向上させ、燃焼温度を高められることが確認された。また、調整微粉炭1および調整微粉炭3の結果から、比表面積を2.0m/g以上に調整された微粉炭を2重管ランスの内管および外管の一方から吹込み、メタンを微粉炭を吹込んでいない2重管ランスの内管または外管から吹込むことで、微粉炭の着火性を向上させ、燃焼温度を高められることが確認された。更に、調整微粉炭1および調整微粉炭4の結果から、酸素を0.022kg/kg−coal以上吸着させ、比表面積を2.0m/g以上とし、ドライベースの酸素の吸着量を10.0質量%未満とした微粉炭を2重管ランスの内管および外管の一方から吹込み、メタンを微粉炭を吹込んでいない2重管ランスの内管または外管から吹込むことで、微粉炭の着火性を大きく向上させ、燃焼温度を大きく高められることが確認された。なお、微粉炭の比表面積が大きい程微粉炭の燃焼性が向上するので、微粉炭の比表面積の上限は設けなくてよい。しかしながら、揮発分を多く含み空孔が多い比表面積の大きい石炭であっても、その比表面積は最大で10m/g程度である。この石炭の比表面積を更に大きくするには乾留する等の予備処理が必要になり、当該予備処理を行うと石炭に含まれる揮発分が減少して石炭の着火性が低下する。このため、微粉炭の比表面積は、1000m/g以下とすることが好ましい。 From the results of adjusted pulverized coal 1 and adjusted pulverized coal 2, pulverized coal with oxygen adsorbed by 0.022 kg / kg-coal or more was blown from one of the inner pipe and outer pipe of the double pipe lance, and methane was supplied as pulverized coal. It was confirmed that the ignitability of pulverized coal can be improved and the combustion temperature can be increased by blowing from the inner pipe or the outer pipe of the double pipe lance that has not been blown. Further, from the results of the adjusted pulverized coal 1 and the adjusted pulverized coal 3, pulverized coal whose specific surface area is adjusted to 2.0 m 2 / g or more is blown from one of the inner pipe and the outer pipe of the double pipe lance, and methane is injected. It was confirmed that ignitability of pulverized coal can be improved and combustion temperature can be increased by blowing from the inner tube or outer tube of the double pipe lance that is not blowing pulverized coal. Further, from the results of the adjusted pulverized coal 1 and the adjusted pulverized coal 4, oxygen is adsorbed by 0.022 kg / kg-coal or more, the specific surface area is 2.0 m 2 / g or more, and the dry base oxygen adsorption amount is 10. By blowing pulverized coal less than 0% by mass from one of the inner pipe and outer pipe of the double pipe lance, and blowing methane from the inner pipe or outer pipe of the double pipe lance that is not blowing pulverized coal, It was confirmed that the ignitability of charcoal was greatly improved and the combustion temperature was greatly increased. In addition, since the combustibility of pulverized coal improves so that the specific surface area of pulverized coal is large, it is not necessary to provide the upper limit of the specific surface area of pulverized coal. However, even if the coal has a large specific surface area with a large amount of volatile components and a large number of pores, the specific surface area is about 10 m 2 / g at the maximum. In order to further increase the specific surface area of the coal, a pretreatment such as dry distillation is required. When the pretreatment is performed, the volatile matter contained in the coal is reduced and the ignitability of the coal is lowered. For this reason, it is preferable that the specific surface area of pulverized coal shall be 1000 m < 2 > / g or less.

また、同じ条件で、単管ランスから、29.8kg/h(銑鉄1t当り100kgに相当)の調整微粉炭4を吹込んだ場合の着火性および燃焼温度を評価した。表4にその結果を示す。なお、表4に示した2重管ランスの着火性および燃焼温度の値は、表2の調整微粉炭4の値を用いている。   Further, under the same conditions, the ignitability and combustion temperature when 29.8 kg / h (corresponding to 100 kg per 1 ton of pig iron) of adjusted pulverized coal 4 was blown from a single pipe lance were evaluated. Table 4 shows the results. The values of the adjusted pulverized coal 4 in Table 2 are used as the values of the ignitability and combustion temperature of the double pipe lance shown in Table 4.

表4に示すように、単管ランスで調整微粉炭4を吹込んだ場合と比較して、2重管ランスの内管から微粉炭を吹込み、外管からメタンを吹込んだ場合の方が、着火性を向上させ、燃焼温度を高めることができた。   As shown in Table 4, when pulverized coal is blown from the inner pipe of the double pipe lance and methane is blown from the outer pipe, compared to the case where the adjusted pulverized coal 4 is blown by the single pipe lance. However, it was possible to improve the ignitability and raise the combustion temperature.

2重管ランスを用いて微粉炭とメタンとを吹込むことで、微粉炭近傍にメタンを吹込むことができる。これにより、微粉炭から離脱した酸素とメタンとが速やかに反応し、メタン由来の燃焼熱が近接している微粉炭に速やかに伝熱できるようになり、この結果、微粉炭の着火性が向上し、燃焼温度が高くなった。   By injecting pulverized coal and methane using a double pipe lance, methane can be injected in the vicinity of the pulverized coal. As a result, oxygen and methane separated from the pulverized coal react quickly, and the heat of combustion derived from methane can be quickly transferred to the nearby pulverized coal, resulting in improved ignitability of the pulverized coal. However, the combustion temperature became high.

このように、酸素を吸着させることで燃焼性が改善された微粉炭と、メタンとを2重管ランスを用いて高炉に吹込むことで、燃焼性が改善されていない微粉炭を吹込んだ場合と比較して高炉の炉内温度を高めることができる。これにより、高炉の炉熱を確保でき、高炉操業における還元材比の低減が実現できる。   In this way, pulverized coal whose flammability was improved by injecting oxygen and methane were blown into the blast furnace using a double pipe lance to inject pulverized coal whose flammability was not improved. Compared with the case, the furnace temperature of a blast furnace can be raised. Thereby, the furnace heat of a blast furnace can be ensured and the reduction | restoration material ratio reduction in blast furnace operation is realizable.

また、低品位炭の加熱処理条件の変更により微粉炭の酸素原子含有割合(ドライベース)を変更した微粉炭に調整微粉炭4と同量の酸素を吸着させた調整微粉炭5、6を作製した。調整微粉炭4〜6の性状を表5に示す。なお、表5に示した調整微粉炭4は、表1に示した調整微粉炭4と同じである。   Further, adjusted pulverized coals 5 and 6 are produced by adsorbing the same amount of oxygen as the adjusted pulverized coal 4 to the pulverized coal whose oxygen atom content ratio (dry base) of the pulverized coal is changed by changing the heat treatment conditions of the low-grade coal. did. Table 5 shows the properties of the adjusted pulverized coal 4-6. The adjusted pulverized coal 4 shown in Table 5 is the same as the adjusted pulverized coal 4 shown in Table 1.

表5に示すように、ドライベースの酸素原子含有割合を高めると、発熱に寄与する微粉炭中のC原子含有割合が低くなり、C原子含有割合に主に依存する低位発熱量が低下する。   As shown in Table 5, when the oxygen atom content ratio in the dry base is increased, the C atom content ratio in the pulverized coal contributing to heat generation is decreased, and the lower heating value mainly depending on the C atom content ratio is decreased.

微粉炭の低位発熱量は、JIS M 8814に準拠して高位発熱量H(MJ/kg)を測定し、測定された高位発熱量Hと(3)式とを用いて算出した。 The lower calorific value of pulverized coal was calculated by measuring the higher calorific value H h (MJ / kg) in accordance with JIS M 8814 and using the measured higher calorific value H h and equation (3).


但し、(3)式において、Hは低位発熱量(MJ/kg)であり、Hは燃焼前の試料中の水素含有量(質量%)であり、wは燃焼前の試料中の水分含有量(質量%)であり、rは水蒸気の凝縮潜熱(MJ/kg)である。この調整微粉炭5、6についても、燃焼実験装置10を用いて2重管ランスの内管から当該微粉炭を吹込み、2重管ランスの外管からメタンを吹込んで燃焼試験を行なった。この結果を表6に示す。

However, in Formula (3), H 1 is the lower heating value (MJ / kg), H is the hydrogen content (mass%) in the sample before combustion, and w is the moisture content in the sample before combustion. It is a quantity (mass%), and r is the condensation latent heat (MJ / kg) of water vapor. The adjusted pulverized coals 5 and 6 were also subjected to a combustion test by injecting the pulverized coal from the inner pipe of the double pipe lance using the combustion experiment apparatus 10 and blowing methane from the outer pipe of the double pipe lance. The results are shown in Table 6.

表6に示すように、ドライベースの酸素原子含有割合が10.0質量%以上である調整微粉炭6は、ドライベースの酸素原子含有割合が10.0質量%未満である調整微粉炭4、5と比較して着火性は向上したが燃焼温度は低下した。調整微粉炭6は、表5に示したように、ドライベースの酸素原子含有割合が10.0質量%未満である調整微粉炭4、5よりも低位発熱量が低い。このため、調整微粉炭6は、調整微粉炭4、5よりも着火性は向上したものの燃焼温度が低下した。このことから、着火性を向上させ、燃焼温度を高めるには、微粉炭のドライベースの酸素原子含有割合を10.0質量%未満とすることが好ましいことがわかる。   As shown in Table 6, the adjusted pulverized coal 6 having a dry-base oxygen atom content ratio of 10.0% by mass or more is the adjusted pulverized coal 4 having a dry-base oxygen atom content ratio of less than 10.0% by mass, Compared to 5, the ignitability improved, but the combustion temperature decreased. As shown in Table 5, the adjusted pulverized coal 6 has a lower heating value than the adjusted pulverized coals 4 and 5 having a dry base oxygen atom content of less than 10.0% by mass. For this reason, although adjustment pulverized coal 6 improved ignitability compared with adjustment pulverized coal 4 and 5, combustion temperature fell. From this, it can be seen that in order to improve the ignitability and increase the combustion temperature, it is preferable that the oxygen atom content ratio of the dry base of the pulverized coal is less than 10.0% by mass.

また、着火性が向上され、燃焼温度が高められた微粉炭に、着火性が改善されておらず、燃焼温度が高められていない微粉炭を配合した配合微粉炭を高炉の羽口から吹込んでもよい。この場合に、着火性が改善され、燃焼温度が高められた微粉炭を、全微粉炭量に対して少なくとも50質量%以上となるように配合することが好ましい。なお、着火性が改善され、燃焼温度が高められた微粉炭を多く配合すれば着火性および燃焼温度が改善された微粉炭を多く含むことになり、より高炉の炉内温度を高められることになる。このため、着火性および燃焼温度が改善された微粉炭の配合率については、下限値を定めれば上限値は定めなくても高炉の還元材比の低減は実現できる。なお、着火性が改善されておらず、燃焼温度が高められていない微粉炭とは、例えば、酸素の吸着量を0.022kg/kg−coal未満とした微粉炭である。   Also, blended pulverized coal blended with pulverized coal whose ignitability is improved and whose combustion temperature is increased is mixed with pulverized coal whose ignitability is not improved and whose combustion temperature is not increased is blown from the tuyeres of the blast furnace. But you can. In this case, it is preferable to blend pulverized coal with improved ignitability and increased combustion temperature so as to be at least 50% by mass or more based on the total amount of pulverized coal. If a large amount of pulverized coal with improved ignitability and increased combustion temperature is added, it will contain more pulverized coal with improved ignitability and combustion temperature, and the furnace temperature of the blast furnace can be increased. Become. For this reason, regarding the blending ratio of pulverized coal with improved ignitability and combustion temperature, if a lower limit is determined, a reduction in the reducing material ratio of the blast furnace can be realized without determining an upper limit. The pulverized coal whose ignitability is not improved and whose combustion temperature is not increased is, for example, pulverized coal in which the oxygen adsorption amount is less than 0.022 kg / kg-coal.

38本の羽口を備えた高炉を使用し、微粉炭Aまたは調整微粉炭1〜4を吹込んで高炉の操業を実施した実施例について説明する。内容積5000mの高炉であって、目標11500t/dayの銑鉄生産量、150kg/t−銑鉄の微粉炭比、送風温度1200℃、O富化+5.5体積%の条件下で、2重管ランスの内管から微粉炭Aまたは調整微粉炭1〜6を、2重管ランスの外管からメタンを吹込みながら高炉の操業をそれぞれ3日間実施した。微粉炭Aおよび調整微粉炭1〜6の3日間の平均コークス比(kg/t−銑鉄)を算出した。この結果を表7に示す。 An example in which a blast furnace equipped with 38 tuyere is used and the operation of the blast furnace is performed by blowing pulverized coal A or adjusted pulverized coal 1 to 4 will be described. It is a blast furnace with an internal volume of 5000 m 3 , with a target of 11500 t / day of pig iron production, 150 kg / t-pulverized coal ratio of pulverized coal, blowing temperature of 1200 ° C., O 2 enrichment + 5.5 vol% The operation of the blast furnace was carried out for 3 days while blowing pulverized coal A or adjusted pulverized coal 1 to 6 from the inner tube of the tube lance and methane from the outer tube of the double tube lance. The average coke ratio (kg / t-pig iron) for 3 days of pulverized coal A and adjusted pulverized coal 1-6 was calculated. The results are shown in Table 7.

表7において、調整微粉炭2〜6は発明例であり、微粉炭Aおよび調整微粉炭1は比較例である。表7に示すように、調整微粉炭1は、微粉炭Aと比較してコークス比に変化はなく、還元材比であるコークス比を低減できなかった。調整微粉炭1の着火性および燃焼温度は、微粉炭Aと同程度であるので、このような微粉炭を用いても微粉炭の燃焼性を改善させることができず、このため、コークス比が低減しなかったと考えられる。   In Table 7, adjusted pulverized coals 2 to 6 are invention examples, and pulverized coal A and adjusted pulverized coal 1 are comparative examples. As shown in Table 7, the adjusted pulverized coal 1 had no change in the coke ratio as compared with the pulverized coal A, and could not reduce the coke ratio, which was the reducing material ratio. Since the ignitability and combustion temperature of the adjusted pulverized coal 1 are approximately the same as those of the pulverized coal A, even if such pulverized coal is used, the flammability of the pulverized coal cannot be improved. It is thought that it was not reduced.

一方、調整微粉炭2、3、6は、微粉炭Aと比較して還元材比であるコークス比が低減した。調整微粉炭2は、微粉炭Aよりも着火性が向上され、燃焼温度も高い。このような調整微粉炭2を用いることで、微粉炭Aを用いた場合よりも高炉の炉内温度を高めることができ、これにより、コークス比が低減した。   On the other hand, the adjusted pulverized coals 2, 3, and 6 had a reduced coke ratio, which is a reducing material ratio, compared to the pulverized coal A. The adjusted pulverized coal 2 has improved ignitability and higher combustion temperature than the pulverized coal A. By using such adjusted pulverized coal 2, the furnace temperature of the blast furnace can be increased as compared with the case of using pulverized coal A, thereby reducing the coke ratio.

また、調整微粉炭4、5は、微粉炭Aと比較して還元材比であるコークス比が大きく低減した。調整微粉炭4、5は、微粉炭Aよりも着火性が大きく向上し、燃焼温度も著しく高い。このような調整微粉炭4、5を用いることで、微粉炭Aを用いた場合よりも高炉の炉内温度を著しく高めることができ、これにより、コークス比が大きく低減した。   Moreover, compared with pulverized coal A, the coke ratio which is a reducing material ratio of adjustment pulverized coal 4 and 5 reduced significantly. The adjusted pulverized coals 4 and 5 have significantly higher ignitability than the pulverized coal A, and the combustion temperature is significantly higher. By using such adjusted pulverized coals 4 and 5, the in-furnace temperature of the blast furnace can be remarkably increased as compared with the case where pulverized coal A is used, and thereby the coke ratio is greatly reduced.

このように、酸素を0.022kg/kg−coal以上吸着させた調整微粉炭2を2重管ランスの内管から吹込み、外管からメタンを吹込むことで高炉の還元材比であるコークス比を低減できることが確認された。同様に、比表面積を2.0m/g以上とした調整微粉炭3または酸素を0.022kg/kg−coal以上吸着させ、比表面積を2.0m/g以上とした調整微粉炭6を2重管ランスの内管から吹込み、外管からメタンを吹込むことでも高炉の還元材比であるコークス比を低減できることが確認された。 In this way, coke which is the ratio of reducing material of the blast furnace by injecting adjusted pulverized coal 2 in which oxygen is adsorbed by 0.022 kg / kg-coal or more from the inner pipe of the double pipe lance and methane from the outer pipe. It was confirmed that the ratio could be reduced. Similarly, the adjustment pulverized coal 3 or oxygen specific surface area was 2.0 m 2 / g or more adsorbed 0.022kg / kg-coal more, the adjustment pulverized coal 6 was 2.0 m 2 / g or more specific surface area It was confirmed that the coke ratio, which is the reducing material ratio of the blast furnace, can also be reduced by blowing from the inner pipe of the double pipe lance and blowing methane from the outer pipe.

また、酸素を0.022kg/kg−coal以上吸着させ、比表面積を2.0m/g以上とし、ドライベースの酸素原子含有割合を10.0質量%未満とした調整微粉炭4、5を2重管ランスの内管から吹込み、メタンを外管から吹込むことで高炉の還元材比であるコークス比を大きく低減できることが確認された。このように高炉の還元材比を低減することで、高炉操業における還元材使用量を低減できる。 Further, adjusted pulverized coals 4 and 5 in which oxygen is adsorbed by 0.022 kg / kg-coal or more, the specific surface area is 2.0 m 2 / g or more, and the oxygen atom content ratio of the dry base is less than 10.0% by mass. It was confirmed that the coke ratio, which is the reducing material ratio of the blast furnace, can be greatly reduced by blowing from the inner pipe of the double pipe lance and blowing methane from the outer pipe. By reducing the reducing material ratio of the blast furnace in this way, the amount of reducing material used in blast furnace operation can be reduced.

次に、微粉炭Aに調整微粉炭2および調整微粉炭4を、全微粉炭量に対して所定比率(5、10、20、50質量%)となるように配合した配合炭を作製し、上記と同じ高炉および同じ操業条件下で、当該配合炭およびメタンを2重管ランスから高炉に吹込む操業をそれぞれ3日間実施し、平均コークス比(kg/t−銑鉄)を算出した。表6に調整微粉炭2の配合比率と算出した平均コークス比を示す。また、表9に調整微粉炭4の配合比率と算出した平均コークス比を示す。   Next, a blended coal is prepared by blending the pulverized coal A with the adjusted pulverized coal 2 and the adjusted pulverized coal 4 in a predetermined ratio (5, 10, 20, 50% by mass) with respect to the total amount of pulverized coal. Under the same blast furnace and the same operating conditions as described above, the operation of injecting the blended coal and methane into the blast furnace from the double pipe lance was performed for 3 days, respectively, and the average coke ratio (kg / t-pig iron) was calculated. Table 6 shows the blending ratio of the adjusted pulverized coal 2 and the calculated average coke ratio. Table 9 shows the blending ratio of the adjusted pulverized coal 4 and the calculated average coke ratio.

表8に示すように、調整微粉炭2においては、配合比率が50質量%以上になるように調整微粉炭2を配合することで、コークス比の低減が可能となった。また、表9に示すように、調整微粉炭4においては、配合比率が10質量%以上になるように調整微粉炭4を配合することでコークス比の低減が可能となった。   As shown in Table 8, in the adjusted pulverized coal 2, the coke ratio can be reduced by blending the adjusted pulverized coal 2 so that the blending ratio is 50% by mass or more. Further, as shown in Table 9, in the adjusted pulverized coal 4, the coke ratio can be reduced by blending the adjusted pulverized coal 4 so that the blending ratio is 10% by mass or more.

着火性が向上され、燃焼温度が高められた調整微粉炭2および調整微粉炭4は、微粉炭Aと比較して早く着火する。この着火による燃焼熱は微粉炭Aに伝熱されるので、これにより、微粉炭Aに調整微粉炭2または調整微粉炭4が配合された微粉炭全体の着火性が改善され、燃焼温度を高めることができたと考えられる。そして、このような微粉炭をランスを介して高炉羽口から吹込むことで、コークス比の低減が実現できたと考えられる。   The adjusted pulverized coal 2 and the adjusted pulverized coal 4 whose ignitability is improved and whose combustion temperature is increased are ignited earlier than the pulverized coal A. Since the heat of combustion due to this ignition is transferred to pulverized coal A, the ignitability of the entire pulverized coal in which adjusted pulverized coal 2 or adjusted pulverized coal 4 is blended with pulverized coal A is improved, and the combustion temperature is increased. It is thought that was made. And it is thought that reduction of coke ratio was realizable by blowing such pulverized coal from a blast furnace tuyere through a lance.

この結果から、酸素を0.022kg/kg−coal以上吸着させた調整微粉炭2を、微粉炭Aに50質量%以上配合することで、還元材比であるコークス比の低減が可能となることが確認された。さらに、酸素を0.022kg/kg−coal以上吸着させ、比表面積を2.0m/g以上とし、ドライベースの酸素原子含有割合を10.0質量%未満とした調整微粉炭4を、微粉炭Aに10質量%以上配合することで、還元材比であるコークス比の低減が可能となることが確認された。このように、着火性が向上されてなく、燃焼温度が高められていない微粉炭Aも、着火性が向上され燃焼温度が高められた調整微粉炭2または調整微粉炭4を配合することでコークス比の低減が可能となり、微粉炭Aも有効に利用することができた。 From this result, it is possible to reduce the coke ratio, which is the reducing material ratio, by blending 50 mass% or more of the adjusted pulverized coal 2 in which oxygen is adsorbed by 0.022 kg / kg-coal or more with the pulverized coal A. Was confirmed. Further, the adjusted pulverized coal 4 in which oxygen is adsorbed by 0.022 kg / kg-coal or more, the specific surface area is 2.0 m 2 / g or more, and the oxygen atom content ratio of the dry base is less than 10.0% by mass, It was confirmed that the coke ratio, which is the reducing material ratio, can be reduced by adding 10% by mass or more to the coal A. As described above, the pulverized coal A whose ignitability is not improved and whose combustion temperature is not increased can be obtained by blending the adjusted pulverized coal 2 or the adjusted pulverized coal 4 whose ignitability is improved and the combustion temperature is increased. The ratio can be reduced, and pulverized coal A can also be used effectively.

ここで、微粉炭Aは、酸素の吸着量が0.022kg/kg−coal未満であり、比表面積が2.0m/g未満であり、ドライベースの酸素原子含有割合が10.0質量%以上の微粉炭である。このため、表8および表9に示した例において、調整微粉炭2および調整微粉炭4を配合する微粉炭としては、少なくとも酸素の吸着量が0.022kg/kg−coal未満の微粉炭であればよい。このような微粉炭であれば、調整微粉炭2または調整微粉炭4を上述したそれぞれの配合率で配合することで、還元材比であるコークス比の低減が可能となることが確認された。 Here, the pulverized coal A has an oxygen adsorption amount of less than 0.022 kg / kg-coal, a specific surface area of less than 2.0 m 2 / g, and a dry-base oxygen atom content ratio of 10.0% by mass. The above pulverized coal. For this reason, in the examples shown in Table 8 and Table 9, the pulverized coal blended with the adjusted pulverized coal 2 and the adjusted pulverized coal 4 should be at least an oxygen adsorption amount of less than 0.022 kg / kg-coal. That's fine. With such pulverized coal, it was confirmed that the coke ratio, which is the reducing material ratio, can be reduced by blending the adjusted pulverized coal 2 or the adjusted pulverized coal 4 at the above-described blending ratios.

なお、燃焼試験および本実施例において、固体還元材として微粉炭を用いた例を示したが、これに限られない。固体還元材としては、微粉炭、プラスチック、廃タイヤ、RDF等の固形燃料、生物に由来する資源である有機性資源、廃木材等の廃材の少なくとも1種であってよい。   In addition, although the example which used pulverized coal as a solid reducing material was shown in a combustion test and a present Example, it is not restricted to this. The solid reducing material may be at least one of pulverized coal, plastic, waste tire, solid fuel such as RDF, organic resources that are resources derived from living organisms, and waste materials such as waste wood.

また、燃焼試験および本実施例において、2重管ランスから吹込む易燃性還元材としてメタンを用いた例を示したが、これに限られない。易燃性還元材としては、メタン(天然ガス)、都市ガス、プロパンガス、水素、転炉ガス、高炉ガスおよびコークス炉ガスの少なくとも1種であってよい。   Moreover, although the example which used methane as a flammable reducing material injected from a double pipe lance was shown in a combustion test and a present Example, it is not restricted to this. The flammable reducing material may be at least one of methane (natural gas), city gas, propane gas, hydrogen, converter gas, blast furnace gas, and coke oven gas.

10 燃焼実験装置
12 炉壁
14 送風管
16 2重管ランス
18 羽口
20 着火位置
DESCRIPTION OF SYMBOLS 10 Combustion experiment apparatus 12 Furnace wall 14 Blower pipe 16 Double pipe lance 18 Tuyere 20 Ignition position

Claims (7)

高炉羽口から固体還元材を吹込む高炉操業方法であって、
2重管ランスの内管および外管の一方から、酸素を0.022kg/kg−coal以上吸着させた固体還元材を前記高炉羽口から高炉内へ吹込み、
前記固体還元材を吹込んでいない前記2重管ランスの内管または外管から易燃性還元材を前記高炉羽口から前記高炉内へ吹込むことを特徴とする高炉操業方法。
A blast furnace operation method in which a solid reducing material is blown from a blast furnace tuyere,
From one of the inner pipe and the outer pipe of the double pipe lance, a solid reducing material having oxygen absorbed by 0.022 kg / kg-coal or more is blown into the blast furnace from the blast furnace tuyere.
A blast furnace operating method, wherein a flammable reducing material is blown into the blast furnace from the blast furnace tuyere through an inner tube or an outer tube of the double pipe lance not blown with the solid reducing material.
高炉羽口から固体還元材を吹込む高炉操業方法であって、
2重管ランスの内管および外管の一方から、比表面積が2.0m/g以上であり、ドライベースの酸素原子含有割合が10.0質量%未満の固体還元材を前記高炉羽口から高炉内へ吹込み、
前記固体還元材を吹込んでいない前記2重管ランスの内管または外管から易燃性還元材を前記高炉羽口から前記高炉内へ吹込むことを特徴とする高炉操業方法。
A blast furnace operation method in which a solid reducing material is blown from a blast furnace tuyere,
A solid reducing material having a specific surface area of 2.0 m 2 / g or more and a dry base oxygen atom content of less than 10.0% by mass from one of an inner tube and an outer tube of a double tube lance is used as the blast furnace tuyere Into the blast furnace
A blast furnace operating method, wherein a flammable reducing material is blown into the blast furnace from the blast furnace tuyere through an inner tube or an outer tube of the double pipe lance not blown with the solid reducing material.
高炉羽口から固体還元材を吹込む高炉操業方法であって、
2重管ランスの内管および外管の一方から、比表面積が2.0m/g以上であり、ドライベースの酸素原子含有割合が10.0質量%未満であり、酸素を0.022kg/kg−coal以上吸着させた固体還元材を前記高炉羽口から高炉内へ吹込み、
前記固体還元材を吹込んでいない前記2重管ランスの内管または外管から易燃性還元材を前記高炉羽口から前記高炉内へ吹込むことを特徴とする高炉操業方法。
A blast furnace operation method in which a solid reducing material is blown from a blast furnace tuyere,
From one of the inner tube and the outer tube of the double tube lance, the specific surface area is 2.0 m 2 / g or more, the oxygen atom content ratio of the dry base is less than 10.0% by mass, and oxygen is 0.022 kg / A solid reducing material adsorbed in an amount of kg-coal or more is blown into the blast furnace from the blast furnace tuyere,
A blast furnace operating method, wherein a flammable reducing material is blown into the blast furnace from the blast furnace tuyere through an inner tube or an outer tube of the double pipe lance not blown with the solid reducing material.
高炉羽口から固体還元材を吹込む高炉操業方法であって、
2重管ランスの内管および外管の一方から、酸素の吸着量が0.022kg/kg−coal未満の固体還元材に、酸素を0.022kg/kg−coal以上吸着させた固体還元材を、全固体還元材量に対して50質量%以上となるように配合して前記高炉羽口から高炉内へ吹込み、
前記固体還元材を吹込んでいない前記2重管ランスの内管または外管から易燃性還元材を前記高炉羽口から前記高炉内へ吹込むことを特徴とする高炉操業方法。
A blast furnace operation method in which a solid reducing material is blown from a blast furnace tuyere,
A solid reducing material in which oxygen is adsorbed by 0.022 kg / kg-coal or more to a solid reducing material having an oxygen adsorption amount of less than 0.022 kg / kg-coal from one of the inner pipe and the outer pipe of the double pipe lance. , Blended so as to be 50% by mass or more based on the total amount of the solid reducing material, and blown into the blast furnace from the blast furnace tuyere,
A blast furnace operating method, wherein a flammable reducing material is blown into the blast furnace from the blast furnace tuyere through an inner tube or an outer tube of the double pipe lance not blown with the solid reducing material.
高炉羽口から固体還元材を吹込む高炉操業方法であって、
2重管ランスの内管および外管の一方から、酸素の吸着量が0.022kg/kg−coal未満の固体還元材に、比表面積が2.0m/g以上であり、ドライベースの酸素原子含有割合が10.0質量%未満であり、酸素を0.022kg/kg−coal以上吸着させた固体還元材を、全固体還元材量に対して10質量%以上となるように配合して前記高炉羽口から高炉内に吹込み、
前記固体還元材を吹込んでいない前記2重管ランスの内管または外管から易燃性還元材を前記高炉羽口から前記高炉内へ吹込むことを特徴とする高炉操業方法。
A blast furnace operation method in which a solid reducing material is blown from a blast furnace tuyere,
From one of the inner tube and outer tube of the double tube lance, a solid reducing material having an oxygen adsorption amount of less than 0.022 kg / kg-coal, a specific surface area of 2.0 m 2 / g or more, and dry base oxygen A solid reducing material having an atomic content of less than 10.0% by mass and having oxygen adsorbed by 0.022 kg / kg-coal or more is blended so as to be 10% by mass or more based on the total amount of the solid reducing material. Blowing into the blast furnace from the blast furnace tuyere,
A blast furnace operating method, wherein a flammable reducing material is blown into the blast furnace from the blast furnace tuyere through an inner tube or an outer tube of the double pipe lance not blown with the solid reducing material.
前記固体還元材は、微粉炭であることを特徴とする請求項1から請求項5の何れか一項に記載の高炉操業方法。   The blast furnace operating method according to any one of claims 1 to 5, wherein the solid reducing material is pulverized coal. 前記微粉炭に、廃プラスチック、廃棄物固形燃料、有機性資源、および、廃材の少なくとも1つを混合することを特徴とする請求項6に記載の高炉操業方法。   The blast furnace operation method according to claim 6, wherein at least one of waste plastic, waste solid fuel, organic resources, and waste material is mixed with the pulverized coal.
JP2017144248A 2016-07-29 2017-07-26 Blast furnace operation method Active JP6551471B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016149465 2016-07-29
JP2016149465 2016-07-29

Publications (2)

Publication Number Publication Date
JP2018024942A true JP2018024942A (en) 2018-02-15
JP6551471B2 JP6551471B2 (en) 2019-07-31

Family

ID=61195179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017144248A Active JP6551471B2 (en) 2016-07-29 2017-07-26 Blast furnace operation method

Country Status (1)

Country Link
JP (1) JP6551471B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024103122A1 (en) * 2022-11-17 2024-05-23 Newsouth Innovations Pty Limited Co-injection of hydrogen and biomass in ironmaking for decarbonisation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013019007A (en) * 2011-07-08 2013-01-31 Jfe Steel Corp Method for operating blast furnace
WO2014020965A1 (en) * 2012-08-03 2014-02-06 三菱重工業株式会社 Blast-furnace-blow-in charcoal and method for producing same
JP2014062292A (en) * 2012-09-20 2014-04-10 Mitsubishi Heavy Ind Ltd Device for blowing pulverized coal, blast furnace facility including the device, and method for supplying pulverized coal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013019007A (en) * 2011-07-08 2013-01-31 Jfe Steel Corp Method for operating blast furnace
WO2014020965A1 (en) * 2012-08-03 2014-02-06 三菱重工業株式会社 Blast-furnace-blow-in charcoal and method for producing same
KR20150024913A (en) * 2012-08-03 2015-03-09 미츠비시 쥬고교 가부시키가이샤 Blast-furnace-blow-in charcoal and method for producing same
JP2014062292A (en) * 2012-09-20 2014-04-10 Mitsubishi Heavy Ind Ltd Device for blowing pulverized coal, blast furnace facility including the device, and method for supplying pulverized coal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024103122A1 (en) * 2022-11-17 2024-05-23 Newsouth Innovations Pty Limited Co-injection of hydrogen and biomass in ironmaking for decarbonisation

Also Published As

Publication number Publication date
JP6551471B2 (en) 2019-07-31

Similar Documents

Publication Publication Date Title
JP5824810B2 (en) Blast furnace operation method
JP2009221547A (en) Method for operating blast furnace
JP2013019006A (en) Blast furnace operation method
JP5315732B2 (en) Blast furnace operation method
JP6551471B2 (en) Blast furnace operation method
JP6551470B2 (en) Blast furnace operation method
JP6597888B2 (en) Blast furnace operation method
JP6593394B2 (en) Blast furnace operation method
JP6098765B2 (en) Method of injecting pulverized coal into oxygen blast furnace
WO2018180892A1 (en) Method for operating blast furnace
KR101657427B1 (en) Blast-furnace-blow-in charcoal and method for producing same
JP5824812B2 (en) Blast furnace operation method
KR101657019B1 (en) Method for producing pig iron and blast furnace facility using same
JP6518954B2 (en) Blast furnace operation method
JP5987772B2 (en) Blast furnace operation method
JP5824811B2 (en) Blast furnace operation method
JP2014210963A (en) Blast furnace operation method
JP2014210965A (en) Blast furnace operation method
JP2018168416A (en) Blast furnace operation method
JP6176361B2 (en) Blast furnace operation method
JP6443361B2 (en) Blast furnace operation method
JP6064933B2 (en) Blast furnace operation method
TW202428888A (en) Method for producing sintered ore
JP2014210961A (en) Blast furnace operation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180221

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180502

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190219

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190617

R150 Certificate of patent or registration of utility model

Ref document number: 6551471

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250