WO2014020965A1 - Blast-furnace-blow-in charcoal and method for producing same - Google Patents

Blast-furnace-blow-in charcoal and method for producing same Download PDF

Info

Publication number
WO2014020965A1
WO2014020965A1 PCT/JP2013/063506 JP2013063506W WO2014020965A1 WO 2014020965 A1 WO2014020965 A1 WO 2014020965A1 JP 2013063506 W JP2013063506 W JP 2013063506W WO 2014020965 A1 WO2014020965 A1 WO 2014020965A1
Authority
WO
WIPO (PCT)
Prior art keywords
blast furnace
charcoal
coal
oxygen
blown
Prior art date
Application number
PCT/JP2013/063506
Other languages
French (fr)
Japanese (ja)
Inventor
大本 節男
慶一 中川
務 濱田
雅一 坂口
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to JP2014528025A priority Critical patent/JP5843968B2/en
Priority to CN201380035147.8A priority patent/CN104411838B/en
Priority to US14/412,921 priority patent/US20150191803A1/en
Priority to DE112013003846.3T priority patent/DE112013003846T5/en
Priority to AU2013297837A priority patent/AU2013297837B2/en
Priority to IN192DEN2015 priority patent/IN2015DN00192A/en
Priority to KR1020157001877A priority patent/KR101657427B1/en
Publication of WO2014020965A1 publication Critical patent/WO2014020965A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/04Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of powdered coal
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/007Conditions of the cokes or characterised by the cokes used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • C10B57/08Non-mechanical pretreatment of the charge, e.g. desulfurization
    • C10B57/10Drying
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • C10B57/14Features of low-temperature carbonising processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/04Raw material of mineral origin to be used; Pretreatment thereof
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/001Injecting additional fuel or reducing agents
    • C21B5/003Injection of pulverulent coal

Definitions

  • the present invention relates to blast furnace-blown coal and a method for producing the same.
  • pig iron In the blast furnace facility, raw materials such as iron ore, limestone and coke are charged into the blast furnace body from the top, and hot air and pulverized coal (PCI charcoal) are blown from the tuyere at the lower side of the blast furnace as auxiliary fuel.
  • PCI charcoal hot air and pulverized coal
  • Patent Document 1 adds an oxidizer as described above to the pulverized coal, which increases the running cost.
  • an object of the present invention is to provide a blast furnace-blown coal that can improve the combustion efficiency and suppress the generation of unburned carbon (soot) at a low cost, and a method for producing the same.
  • the blast furnace injection coal according to the first invention for solving the above-mentioned problem is blast furnace injection coal injected from the tuyere into the blast furnace main body of the blast furnace equipment, and has an oxygen atom content ratio (dry base). Is 10 to 20% by weight, and the average pore diameter is 10 to 50 nm.
  • the blast furnace blown coal according to the second invention is characterized in that, in the first invention, the pore volume is 0.05 to 0.5 cm 3 / g.
  • the blast furnace blown coal according to the third invention is characterized in that, in the first or second invention, the specific surface area is 1 to 100 m 2 / g.
  • a method for producing blast furnace blown coal according to the fourth aspect of the invention for solving the above-described problem is a method for producing blast furnace blown coal according to any one of the first to third aspects of the invention.
  • a drying process for removing moisture by heating subbituminous coal or lignite and a carbonization process for carbonizing the charcoal dried in the drying process at 460 to 590 ° C. are performed.
  • a blast furnace-blown coal production method according to the fourth aspect of the present invention, wherein the charcoal dry-distilled in the dry distillation step is cooled to 50 to 150 ° C. and cooled in the cooling step.
  • the charcoal is exposed to an oxygen-containing atmosphere at 50 to 150 ° C. to perform a partial oxidation step in which oxygen is chemically adsorbed and partially oxidized.
  • the average pore diameter is 10 to 50 nm, that is, tar-generating groups such as oxygen-containing functional groups (carboxyl group, aldehyde group, ester group, hydroxyl group, etc.) are eliminated.
  • the oxygen atom content (dry base) is 10 to 20% by weight, that is, the decomposition (reduction) of the main skeleton (combustion components centering on C, H, O) is greatly suppressed. Therefore, when blowing with hot air from the tuyere into the inside of the blast furnace body, it contains not only oxygen atoms in the main skeleton, but also oxygen in the hot air is easily diffused into the interior by the large diameter pores. Because it is very difficult to generate a fraction, it can be burned completely with almost no unburned carbon (soot), so the combustion efficiency is improved at low cost and the generation of unburned carbon (soot) is suppressed. It can be.
  • the above-described blast furnace blow coal can be produced at low cost.
  • the blast furnace-blown coal according to the present embodiment has an oxygen atom content (dry base) of 10 to 18% by weight and an average pore diameter of 10 to 50 nm (nanometer) (preferably 20 to 50 nm (nanometer). ).
  • the blast furnace blown coal is a low-grade coal such as subbituminous coal or lignite (oxygen atom content ratio (dry base): more than 18% by weight, average pore diameter: 3
  • a low-grade coal such as subbituminous coal or lignite (oxygen atom content ratio (dry base): more than 18% by weight, average pore diameter: 3
  • dry distillation step S12 Water, carbon dioxide, tar content, etc.
  • the average pore diameter is 10 to 50 nm, that is, oxygen-containing functional groups (carboxyl group, aldehyde group, ester group, hydroxyl group, etc. ) And other tar-forming groups are greatly reduced, but the oxygen atom content (dry base) is 10 to 18% by weight, that is, a combustion component mainly composed of the main skeleton (C, H, O) ) Is greatly suppressed, and when hot air is blown into the blast furnace body together with hot air from the tuyere, the main skeleton contains a large amount of oxygen atoms, and the oxygen in the hot air is contained inside by the large-diameter pores. In addition to being easily diffused, the tar content is very difficult to generate, so that it is possible to complete combustion with almost no unburned carbon (soot).
  • the blast furnace blowing coal 12 according to the present embodiment, KMnO 4, H 2 O 2 , KClO 3, K 2 and be contained Cr oxidizing agent such as 2 O 4, so as to enrich the oxygen in a hot-air Even if nothing is done, the combustion efficiency can be improved and the generation of unburned carbon (soot) can be suppressed.
  • the average pore diameter needs to be 10 to 50 nm (preferably 20 to 50 nm). Because if it is less than 10 nm, the ease of diffusion of oxygen in the hot air will decrease, causing a decrease in combustibility, while if it exceeds 50 nm, it tends to crack and become fine due to heat shock or the like. This is because, when blown into the blast furnace body, if it breaks and becomes fine, it passes through the inside of the blast furnace body while riding on a gas stream and is discharged without burning.
  • the oxygen atom content (dry base) needs to be 10% by weight or more. This is because if it is less than 10% by weight, it becomes difficult to completely burn without containing an oxidant and enriching hot air with oxygen.
  • the pore volume is preferably 0.05 to 0.5 cm 3 / g, and particularly preferably 0.1 to 0.2 cm 3 / g. Because, if it is less than 0.05 cm 3 / g, the contact area with oxygen in the hot air (reaction area) is small, which may cause a decrease in combustibility, whereas if it exceeds 0.5 cm 3 / g, This is because the volatilization of many components results in excessively porous components due to being too porous.
  • the specific surface area is preferably 1 to 100 m 2 / g, and particularly preferably 5 to 20 m 2 / g. Because if it is less than 1 m 2 / g, the contact area (reaction area) with oxygen in the hot air is small, which may cause a decrease in combustibility, while if it exceeds 100 m 2 / g, many components This is because the volatilization of the fuel is too porous and the combustion components become too small.
  • the dry distillation temperature in the dry distillation step S12 needs to be 460 to 590 ° C. (preferably 500 to 550 ° C.). This is because if the temperature is lower than 460 ° C., tar-generating groups such as oxygen-containing functional groups cannot be sufficiently removed from the low-grade coal 11 and it is very difficult to make the average pore diameter 10 to 50 nm. On the other hand, when the temperature exceeds 590 ° C., decomposition of the main skeleton of the low-grade coal 11 (combustion components centering on C, H, O) starts to become remarkable, and the combustion components decrease due to volatilization of many components. This is because too much is done.
  • the blast furnace-blown coal according to this embodiment has an oxygen atom content (dry base) of 12 to 20% by weight and an average pore diameter of 10 to 50 nm (preferably 20 to 50 nm).
  • the blast furnace injection coal according to this embodiment is the same as the above-described embodiment in which the low-grade coal (oxygen atom content ratio (dry base): more than 18 wt%) 11 is used.
  • the charcoal carbonized in the carbonization step S12 is cooled to 50 to 150 ° C., and then oxygen is chemically adsorbed to the charcoal in the partial oxidation step S25 to partially oxidize the charcoal.
  • the blast furnace-blown coal 22 having an oxygen atom content (dry base) of 12 to 20% by weight was obtained.
  • the average pore diameter is 10 to 50 nm, that is, an oxygen-containing functional group (carboxyl) as in the above-described embodiment.
  • an oxygen-containing functional group carboxyl
  • the oxygen atom content dry base
  • the main skeleton C
  • the decomposition (decrease) of the combustion components, mainly H, O, and O) is greatly suppressed, and oxygen atoms are further chemically adsorbed.
  • the blast furnace blowing coal 22 according to the present embodiment KMnO 4, H 2 O 2 , KClO 3, K 2 and be contained Cr oxidizing agent such as 2 O 4, so as to enrich the oxygen in a hot-air Even if nothing is done, the combustion efficiency can be further improved and the generation of unburned carbon (soot) can be more reliably suppressed than in the above-described embodiment.
  • an oxygen atom content rate (dry base) needs to be 20 weight% or less. This is because if it exceeds 20% by weight, the oxygen content is too high and the calorific value becomes too low.
  • the treatment temperature in the partial oxidation step S25 is preferably 50 to 150 ° C. This is because, if the temperature is less than 50 ° C., even in an air (oxygen concentration: 21% by volume) atmosphere, the partial oxidation treatment is difficult to proceed. If the temperature exceeds 150 ° C., the oxygen concentration is about 5% by volume. Even so, there is a possibility that a large amount of carbon monoxide and carbon dioxide may be generated by the combustion reaction.
  • composition analysis Composition analysis (elemental analysis) of the blast furnace blown coal 12 (present coal) obtained by the manufacturing method according to the first embodiment described above was performed.
  • the coal of the present invention has a proportion of oxygen (O) smaller than that of dry coal and is much larger than that of conventional coal, while a proportion of carbon (C) is larger than that of dry coal. It is smaller than conventional charcoal. For this reason, this invention charcoal has a calorific value larger than that of dry charcoal and smaller than that of conventional charcoal.
  • ⁇ No. 2 Surface condition> The surface state (average pore diameter, pore volume, specific surface area) of the above-described coal of the present invention was measured. For comparison, the surface states of the above-described conventional charcoal and dry charcoal were also measured. The results are shown in Table 2 below.
  • the coal of the present invention has an average pore diameter much larger than that of conventional coal and dry coal.
  • ⁇ No. 3 Amount of oxygen-containing functional group>
  • oxygen-containing functional groups hydroxyl group (OH), carboxyl group (COOH), aldehyde
  • the content ratio of each group (COH) and ester group (COO) at each temperature was determined.
  • the horizontal axis represents temperature
  • the vertical axis represents the ratio of the peak area of each oxygen-containing functional group to the total peak area of the oxygen-containing functional group at 110 ° C.
  • the amount of unburned carbon gradually increases in the conventional coal and the dry coal as the excess oxygen concentration decreases.
  • the charcoal of the present invention can be burned substantially completely without increasing the amount of unburned carbon even when the excess oxygen concentration is lowered.
  • Os (Oa + Oc / 2) / (Cc + Hc / 4)
  • Oa is the molar flow rate of oxygen gas (molecules) in the supply air
  • Oc is the oxygen atomic molar flow rate in the supplied coal
  • Cc is the carbon atomic molar flow rate in the supplied coal
  • Hc is hydrogen in the supplied coal.
  • the heat generation amount of the present invention is less than that of the conventional coal, it was confirmed that the combustion temperature is higher than that of the conventional coal when the excess oxygen rate is the same as that of the conventional coal.
  • the present invention charcoal has a higher oxygen content than the conventional charcoal, and if the excess oxygen ratio is the same as that of the conventional charcoal, the supply air amount can be smaller than that of the conventional charcoal.
  • the blast furnace injection coal and the manufacturing method thereof according to the present invention can be used extremely beneficially in the coal industry, the steel industry, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Iron (AREA)
  • Coke Industry (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

In this blast-furnace-blow-in charcoal that is blown in from a tuyere to the interior of a blast furnace main body of a blast furnace facility, the oxygen atom content (on a dry basis) is 10-20 wt% and the average pore size is 10-50 nm.

Description

高炉吹込み炭及びその製造方法Blast furnace blown coal and method for producing the same
 本発明は、高炉吹込み炭及びその製造方法に関する。 The present invention relates to blast furnace-blown coal and a method for producing the same.
 高炉設備は、高炉本体の内部に、頂部から鉄鉱石や石灰石やコークス等の原料を装入すると共に、側部の下方寄りの羽口から熱風及び補助燃料として微粉炭(PCI炭)を吹き込むことにより、鉄鉱石から銑鉄を製造することができるようになっている。 In the blast furnace facility, raw materials such as iron ore, limestone and coke are charged into the blast furnace body from the top, and hot air and pulverized coal (PCI charcoal) are blown from the tuyere at the lower side of the blast furnace as auxiliary fuel. Thus, pig iron can be produced from iron ore.
 このような高炉吹込み炭としては、例えば、KMnO4,H22,KClO3,K2Cr24等の酸化剤を微粉炭に予め添加しておくことにより、燃焼効率を向上させて未燃炭素(煤)の発生を抑制できるようにしたものが提案されている(例えば、下記特許文献1参照)。 As such a blast furnace injection coal, for example, by adding an oxidizing agent such as KMnO 4 , H 2 O 2 , KClO 3 , K 2 Cr 2 O 4 to pulverized coal in advance, combustion efficiency is improved. In order to suppress the generation of unburned carbon (soot), there has been proposed (for example, see Patent Document 1 below).
 また、例えば、熱風に酸素を富化して高炉本体の内部に羽口から吹き込むようにすることにより、高炉吹込み炭の燃焼性を向上させることが提案されている(例えば、下記特許文献2参照)。 Further, for example, it has been proposed to improve the combustibility of blast furnace-blown coal by enriching hot air with oxygen and blowing it into the blast furnace body from the tuyere (see, for example, Patent Document 2 below). ).
特開平6-220510号公報JP-A-6-220510 特開2003-286511号公報JP 2003-286511 A
 しかしながら、前記特許文献1に記載されている高炉吹込み炭は、上述したような酸化剤を微粉炭にわざわざ添加するため、ランニングコストの増加を招くものとなっている。 However, the blast furnace-blown coal described in Patent Document 1 adds an oxidizer as described above to the pulverized coal, which increases the running cost.
 また、前記特許文献2に記載されている燃焼性向上方法では、熱風に多くの酸素を常に加えながら高炉を運転する必要があるため、やはりランニングコストの増加を招くものとなってしまう。 Also, in the method for improving combustibility described in Patent Document 2, it is necessary to operate the blast furnace while always adding a large amount of oxygen to the hot air, which also increases the running cost.
 このようなことから、本発明は、低コストで燃焼効率を向上させて未燃炭素(煤)の発生を抑制することができる高炉吹込み炭及びその製造方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a blast furnace-blown coal that can improve the combustion efficiency and suppress the generation of unburned carbon (soot) at a low cost, and a method for producing the same.
 前述した課題を解決するための、第一番目の発明に係る高炉吹込み炭は、高炉設備の高炉本体の内部に羽口から吹き込む高炉吹込み炭であって、酸素原子含有割合(ドライベース)が、10~20重量%であり、平均細孔径が、10~50nmであることを特徴とする。 The blast furnace injection coal according to the first invention for solving the above-mentioned problem is blast furnace injection coal injected from the tuyere into the blast furnace main body of the blast furnace equipment, and has an oxygen atom content ratio (dry base). Is 10 to 20% by weight, and the average pore diameter is 10 to 50 nm.
 第二番目の発明に係る高炉吹込み炭は、第一番目の発明において、細孔容積が、0.05~0.5cm3/gであることを特徴とする。 The blast furnace blown coal according to the second invention is characterized in that, in the first invention, the pore volume is 0.05 to 0.5 cm 3 / g.
 第三番目の発明に係る高炉吹込み炭は、第一番目又は第二番目の発明において、比表面積が、1~100m2/gであることを特徴とする。 The blast furnace blown coal according to the third invention is characterized in that, in the first or second invention, the specific surface area is 1 to 100 m 2 / g.
 また、前述した課題を解決するための、第四番目の発明に係る高炉吹込み炭の製造方法は、第一番目から第三番目の発明のいずれかの高炉吹込み炭の製造方法であって、亜瀝青炭又は褐炭を加熱して水分を除去する乾燥工程と、前記乾燥工程で乾燥された前記炭を460~590℃で乾留する乾留工程とを行うことを特徴とする。 A method for producing blast furnace blown coal according to the fourth aspect of the invention for solving the above-described problem is a method for producing blast furnace blown coal according to any one of the first to third aspects of the invention. A drying process for removing moisture by heating subbituminous coal or lignite and a carbonization process for carbonizing the charcoal dried in the drying process at 460 to 590 ° C. are performed.
 第五番目の発明に係る高炉吹込み炭の製造方法は、第四番目の発明において、前記乾留工程で乾留された前記炭を50~150℃に冷却する冷却工程と、前記冷却工程で冷却された前記炭を50~150℃の酸素含有雰囲気中に曝すことにより酸素を化学吸着させて部分酸化させる部分酸化工程とを行うことを特徴とする。 According to a fifth aspect of the present invention, there is provided a blast furnace-blown coal production method according to the fourth aspect of the present invention, wherein the charcoal dry-distilled in the dry distillation step is cooled to 50 to 150 ° C. and cooled in the cooling step. The charcoal is exposed to an oxygen-containing atmosphere at 50 to 150 ° C. to perform a partial oxidation step in which oxygen is chemically adsorbed and partially oxidized.
 本発明に係る高炉吹込み炭によれば、平均細孔径が10~50nmである、すなわち、含酸素官能基(カルボキシル基、アルデヒド基、エステル基、水酸基等)等のタール生成基が脱離して大きく減少しているものの、酸素原子含有割合(ドライベース)が10~20重量%である、すなわち、主骨格(C,H,Oを中心とする燃焼成分)の分解(減少)が大きく抑制されていることから、高炉本体の内部に羽口から熱風と共に吹き込むと、主骨格中に酸素原子を多く含むと共に、径の大きい細孔によって熱風の酸素が内部にまで拡散しやすいだけでなく、タール分が非常に生じにくくなっているので、未燃炭素(煤)をほとんど生じることなく完全燃焼することができるので、低コストで燃焼効率を向上させて未燃炭素(煤)の発生を抑制することができる。 According to the blast furnace blown coal according to the present invention, the average pore diameter is 10 to 50 nm, that is, tar-generating groups such as oxygen-containing functional groups (carboxyl group, aldehyde group, ester group, hydroxyl group, etc.) are eliminated. Although it is greatly reduced, the oxygen atom content (dry base) is 10 to 20% by weight, that is, the decomposition (reduction) of the main skeleton (combustion components centering on C, H, O) is greatly suppressed. Therefore, when blowing with hot air from the tuyere into the inside of the blast furnace body, it contains not only oxygen atoms in the main skeleton, but also oxygen in the hot air is easily diffused into the interior by the large diameter pores. Because it is very difficult to generate a fraction, it can be burned completely with almost no unburned carbon (soot), so the combustion efficiency is improved at low cost and the generation of unburned carbon (soot) is suppressed. It can be.
 また、本発明に係る高炉吹込み炭の製造方法によれば、上述した高炉吹込み炭を低コストで製造することができる。 Moreover, according to the method for producing blast furnace blow coal according to the present invention, the above-described blast furnace blow coal can be produced at low cost.
本発明に係る高炉吹込み炭の製造方法の第一番目の実施形態の手順を表すフロー図である。It is a flowchart showing the procedure of 1st embodiment of the manufacturing method of the blast furnace injection charcoal which concerns on this invention. 本発明に係る高炉吹込み炭の製造方法の第二番目の実施形態の手順を表すフロー図である。It is a flowchart showing the procedure of 2nd embodiment of the manufacturing method of the blast furnace injection charcoal which concerns on this invention. 亜瀝青炭を窒素雰囲気下で昇温しながら赤外吸収スペクトルを計測したときの、温度と含酸素官能基の含有量割合との関係を表すグラフである。It is a graph showing the relationship between temperature and the content rate of an oxygen-containing functional group when an infrared absorption spectrum is measured, heating sub-bituminous coal in nitrogen atmosphere. 本発明炭及び乾燥炭並びに従来炭を燃焼させた後に回収された未燃炭素の割合と、燃焼させた後の燃焼排ガス中の残存酸素濃度(過剰酸素濃度)との関係を表すグラフである。It is a graph showing the relationship between the ratio of the unburned carbon collect | recovered after burning this invention charcoal, dry charcoal, and conventional charcoal, and the residual oxygen concentration (excess oxygen concentration) in the combustion exhaust gas after burning. 本発明炭及び従来炭を完全燃焼させたときの過剰酸素率と燃焼温度との関係を表すグラフである。It is a graph showing the relationship between excess oxygen rate and combustion temperature when this invention charcoal and conventional charcoal are completely burned.
 本発明に係る高炉吹込み炭及びその製造方法の実施形態を図面に基づいて説明するが、本発明は、図面に基づいて説明する以下の実施形態のみに限定されるものではない。 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of blast furnace blown coal and a method for producing the same according to the present invention will be described with reference to the drawings, but the present invention is not limited only to the following embodiments described with reference to the drawings.
〈第一番目の実施形態〉
 本発明に係る高炉吹込み炭及びその製造方法の第一番目の実施形態を図1に基づいて説明する。
<First embodiment>
A first embodiment of a blast furnace blown coal and a method for producing the same according to the present invention will be described with reference to FIG.
 本実施形態に係る高炉吹込み炭は、酸素原子含有割合(ドライベース)が、10~18重量%、平均細孔径が、10~50nm(ナノメートル)(好ましくは、20~50nm(ナノメートル))となっている。 The blast furnace-blown coal according to the present embodiment has an oxygen atom content (dry base) of 10 to 18% by weight and an average pore diameter of 10 to 50 nm (nanometer) (preferably 20 to 50 nm (nanometer). ).
 このような本実施形態に係る高炉吹込み炭は、図1に示すように、亜瀝青炭や褐炭等の低品位石炭(酸素原子含有割合(ドライベース):18重量%超、平均細孔径:3~4nm)11を低酸素雰囲気中(酸素濃度:5体積%以下)で加熱(110~200℃×0.5~1時間)して乾燥する(乾燥工程S11)ことにより水分を除去した後、低酸素雰囲気中(酸素濃度:2体積%以下)で加熱(460~590℃(好ましくは、500~550℃)×0.5~1時間)して乾留する(乾留工程S12)ことにより、生成水や二酸化炭素やタール分等を乾留ガスや乾留油として除去してから、低酸素雰囲気中(酸素濃度:2体積%以下)で冷却(50℃以下)して(冷却工程S13)、微粉砕(粒径:77μm以下(80%パス))する(微粉砕工程S14)ことにより、容易に製造することができる。 As shown in FIG. 1, the blast furnace blown coal according to this embodiment is a low-grade coal such as subbituminous coal or lignite (oxygen atom content ratio (dry base): more than 18% by weight, average pore diameter: 3 After removing moisture by heating (110 to 200 ° C. × 0.5 to 1 hour) in a low oxygen atmosphere (oxygen concentration: 5% by volume or less) 11 and drying (drying step S11), Generated by heating (460 to 590 ° C. (preferably, 500 to 550 ° C.) × 0.5 to 1 hour) in a low oxygen atmosphere (oxygen concentration: 2% by volume or less) and dry distillation (dry distillation step S12) Water, carbon dioxide, tar content, etc. are removed as dry distillation gas or dry distillation oil, then cooled (50 ° C. or lower) in a low oxygen atmosphere (oxygen concentration: 2% by volume or lower) (cooling step S13), and pulverized (Particle size: 77 μm or less (80% pass)) The crushing step S14) it can be easily manufactured.
 このような本実施形態に係る製造方法により製造された高炉吹込み炭12においては、平均細孔径が10~50nmである、すなわち、含酸素官能基(カルボキシル基、アルデヒド基、エステル基、水酸基等)等のタール生成基が脱離して大きく減少しているものの、酸素原子含有割合(ドライベース)が10~18重量%である、すなわち、主骨格(C,H,Oを中心とする燃焼成分)の分解(減少)が大きく抑制されていることから、高炉本体の内部に羽口から熱風と共に吹き込むと、主骨格中に酸素原子を多く含むと共に、径の大きい細孔によって熱風の酸素が内部にまで拡散しやすいだけでなく、タール分が非常に生じにくくなっているので、未燃炭素(煤)をほとんど生じることなく完全燃焼することができる。 In the blast furnace blown coal 12 produced by the production method according to this embodiment, the average pore diameter is 10 to 50 nm, that is, oxygen-containing functional groups (carboxyl group, aldehyde group, ester group, hydroxyl group, etc. ) And other tar-forming groups are greatly reduced, but the oxygen atom content (dry base) is 10 to 18% by weight, that is, a combustion component mainly composed of the main skeleton (C, H, O) ) Is greatly suppressed, and when hot air is blown into the blast furnace body together with hot air from the tuyere, the main skeleton contains a large amount of oxygen atoms, and the oxygen in the hot air is contained inside by the large-diameter pores. In addition to being easily diffused, the tar content is very difficult to generate, so that it is possible to complete combustion with almost no unburned carbon (soot).
 このため、本実施形態に係る高炉吹込み炭12では、KMnO4,H22,KClO3,K2Cr24等の酸化剤を含有させることや、熱風に酸素を富化するようなことをしなくても、燃焼効率を向上させて未燃炭素(煤)の発生を抑制することができる。 Therefore, the blast furnace blowing coal 12 according to the present embodiment, KMnO 4, H 2 O 2 , KClO 3, K 2 and be contained Cr oxidizing agent such as 2 O 4, so as to enrich the oxygen in a hot-air Even if nothing is done, the combustion efficiency can be improved and the generation of unburned carbon (soot) can be suppressed.
 したがって、本実施形態によれば、低コストで燃焼効率を向上させて未燃炭素(煤)の発生を抑制することができる。 Therefore, according to this embodiment, it is possible to improve the combustion efficiency at a low cost and suppress the generation of unburned carbon (soot).
 なお、本実施形態に係る高炉吹込み炭12においては、平均細孔径が、10~50nm(好ましくは、20~50nm)である必要がある。なぜなら、10nm未満であると、熱風中の酸素の内部への拡散しやすさが低下して、燃焼性の低下を引き起こしてしまう一方、50nmを超えると、ヒートショック等で割れて微細になりやすく、高炉本体の内部に吹き込んだときに、割れて微細になってしまうと、高炉本体の内部をガス気流に乗ったまま通過して燃焼することなく排出されてしまうからである。 In the blast furnace blown coal 12 according to this embodiment, the average pore diameter needs to be 10 to 50 nm (preferably 20 to 50 nm). Because if it is less than 10 nm, the ease of diffusion of oxygen in the hot air will decrease, causing a decrease in combustibility, while if it exceeds 50 nm, it tends to crack and become fine due to heat shock or the like. This is because, when blown into the blast furnace body, if it breaks and becomes fine, it passes through the inside of the blast furnace body while riding on a gas stream and is discharged without burning.
 また、酸素原子含有割合(ドライベース)も10重量%以上である必要がある。なぜなら、10重量%未満であると、酸化剤の含有や、熱風の酸素富化をすることなく、完全燃焼させることが難しくなってしまうからである。 Also, the oxygen atom content (dry base) needs to be 10% by weight or more. This is because if it is less than 10% by weight, it becomes difficult to completely burn without containing an oxidant and enriching hot air with oxygen.
 さらに、細孔容積が、0.05~0.5cm3/gであると好ましく、特に0.1~0.2cm3/gであると非常に好ましい。なぜなら、0.05cm3/g未満であると、熱風中の酸素との接触面積(反応面積)が小さく、燃焼性の低下を引き起こしてしまうおそれがある一方、0.5cm3/gを超えると、多くの成分の揮発によってポーラス過ぎて燃焼成分が少なくなり過ぎてしまうからである。 Furthermore, the pore volume is preferably 0.05 to 0.5 cm 3 / g, and particularly preferably 0.1 to 0.2 cm 3 / g. Because, if it is less than 0.05 cm 3 / g, the contact area with oxygen in the hot air (reaction area) is small, which may cause a decrease in combustibility, whereas if it exceeds 0.5 cm 3 / g, This is because the volatilization of many components results in excessively porous components due to being too porous.
 くわえて、比表面積が、1~100m2/gであると好ましく、特に5~20m2/gであると非常に好ましい。なぜなら、1m2/g未満であると、熱風中の酸素との接触面積(反応面積)が小さく、燃焼性の低下を引き起こしてしまうおそれがある一方、100m2/gを超えると、多くの成分の揮発によってポーラス過ぎて燃焼成分が少なくなり過ぎてしまうからである。 In addition, the specific surface area is preferably 1 to 100 m 2 / g, and particularly preferably 5 to 20 m 2 / g. Because if it is less than 1 m 2 / g, the contact area (reaction area) with oxygen in the hot air is small, which may cause a decrease in combustibility, while if it exceeds 100 m 2 / g, many components This is because the volatilization of the fuel is too porous and the combustion components become too small.
 他方、本実施形態に係る高炉吹込み炭の製造方法においては、前記乾留工程S12の乾留温度が、460~590℃(好ましくは、500~550℃)である必要がある。なぜなら、460℃未満であると、前記低品位石炭11から含酸素官能基等のタール生成基を十分に脱離させることができないと共に、平均細孔径を10~50nmとすることが非常に困難になってしまう一方、590℃を超えると、前記低品位石炭11の主骨格(C,H,Oを中心とする燃焼成分)の分解が顕著になり始め、多くの成分の揮発によって燃焼成分が減少し過ぎてしまうからである。 On the other hand, in the method for producing blast furnace blow coal according to this embodiment, the dry distillation temperature in the dry distillation step S12 needs to be 460 to 590 ° C. (preferably 500 to 550 ° C.). This is because if the temperature is lower than 460 ° C., tar-generating groups such as oxygen-containing functional groups cannot be sufficiently removed from the low-grade coal 11 and it is very difficult to make the average pore diameter 10 to 50 nm. On the other hand, when the temperature exceeds 590 ° C., decomposition of the main skeleton of the low-grade coal 11 (combustion components centering on C, H, O) starts to become remarkable, and the combustion components decrease due to volatilization of many components. This is because too much is done.
〈第二番目の実施形態〉
 本発明に係る高炉吹込み炭及びその製造方法の第二番目の実施形態を図2に基づいて説明する。なお、前述した実施形態の場合と同様な部分については、前述した実施形態の説明で用いた符号と同様な符号を用いることにより、前述した実施形態での説明と重複説明を省略する。
<Second Embodiment>
A second embodiment of the blast furnace blown coal and the method for producing the same according to the present invention will be described with reference to FIG. In addition, about the part similar to the case of embodiment mentioned above, the description and duplication description in embodiment mentioned above are abbreviate | omitted by using the code | symbol similar to the code | symbol used in description of embodiment mentioned above.
 本実施形態に係る高炉吹込み炭は、酸素原子含有割合(ドライベース)が、12~20重量%、平均細孔径が、10~50nm(好ましくは、20~50nm)となっている。 The blast furnace-blown coal according to this embodiment has an oxygen atom content (dry base) of 12 to 20% by weight and an average pore diameter of 10 to 50 nm (preferably 20 to 50 nm).
 このような本実施形態に係る高炉吹込み炭は、図2に示すように、前記低品位石炭(酸素原子含有割合(ドライベース):18重量%超)11を前述した実施形態と同様にして乾燥し(乾燥工程S11)、前述した実施形態と同様にして乾留し(乾留工程S12)、低酸素雰囲気中(酸素濃度:2体積%以下)で冷却(50~150℃)してから(冷却工程S23)、酸素含有雰囲気中(酸素濃度:5~21体積%)に曝す(50~150℃×0.5~10時間)ことにより、酸素を化学吸着させて部分酸化させた後(部分酸化工程S25)、前述した実施形態と同様にして微粉砕する(微粉砕工程S14)ことにより、容易に製造することができる。 As shown in FIG. 2, the blast furnace injection coal according to this embodiment is the same as the above-described embodiment in which the low-grade coal (oxygen atom content ratio (dry base): more than 18 wt%) 11 is used. Dry (drying step S11), dry-distill in the same manner as in the previous embodiment (dry-distilling step S12), and cool (50 to 150 ° C.) in a low oxygen atmosphere (oxygen concentration: 2% by volume or less) (cooling) Step S23), after oxygen is chemisorbed and partially oxidized (partial oxidation) by exposure (50 to 150 ° C. × 0.5 to 10 hours) in an oxygen-containing atmosphere (oxygen concentration: 5 to 21% by volume) Step S25) can be easily manufactured by finely pulverizing in the same manner as the above-described embodiment (fine pulverization step S14).
 つまり、本実施形態においては、前記乾留工程S12で乾留された前記炭を50~150℃に冷却してから、前記部分酸化工程S25で当該炭に酸素を化学吸着させて当該炭を部分酸化させることにより、酸素原子含有割合(ドライベース)を12~20重量%とした高炉吹込み炭22を得るようにしたのである。 That is, in the present embodiment, the charcoal carbonized in the carbonization step S12 is cooled to 50 to 150 ° C., and then oxygen is chemically adsorbed to the charcoal in the partial oxidation step S25 to partially oxidize the charcoal. As a result, the blast furnace-blown coal 22 having an oxygen atom content (dry base) of 12 to 20% by weight was obtained.
 このような本実施形態に係る製造方法により製造された高炉吹込み炭22においては、前述した実施形態の場合と同様に、平均細孔径が10~50nmである、すなわち、含酸素官能基(カルボキシル基、アルデヒド基、エステル基、水酸基等)等のタール生成基が脱離して大きく減少しているものの、酸素原子含有割合(ドライベース)が12~20重量%である、すなわち、主骨格(C,H,Oを中心とする燃焼成分)の分解(減少)が大きく抑制されると共に、酸素原子がさらに化学吸着していることから、高炉本体の内部に羽口から熱風と共に吹き込むと、前述した実施形態の場合よりも主骨格が酸素原子をさらに多く含有すると共に、前述した実施形態の場合と同様に、径の大きい細孔によって熱風の酸素が内部にまで拡散しやすいだけでなく、タール分が非常に生じにくくなっているので、前述した実施形態の場合よりも未燃炭素(煤)をさらに生じることなく完全燃焼することができる。 In the blast furnace blown coal 22 manufactured by such a manufacturing method according to this embodiment, the average pore diameter is 10 to 50 nm, that is, an oxygen-containing functional group (carboxyl) as in the above-described embodiment. Although a tar-forming group such as a group, an aldehyde group, an ester group, or a hydroxyl group is eliminated and greatly reduced, the oxygen atom content (dry base) is 12 to 20% by weight, that is, the main skeleton (C The decomposition (decrease) of the combustion components, mainly H, O, and O) is greatly suppressed, and oxygen atoms are further chemically adsorbed. The main skeleton contains more oxygen atoms than in the case of the embodiment, and similarly to the case of the above-described embodiment, the hot air oxygen diffuses into the inside by the large-diameter pores. There as well, since tar is less likely very occur, it is possible to complete combustion without causing additional unburned carbon (soot) than in the embodiments described above.
 このため、本実施形態に係る高炉吹込み炭22では、KMnO4,H22,KClO3,K2Cr24等の酸化剤を含有させることや、熱風に酸素を富化するようなことをしなくても、前述した実施形態の場合よりも、燃焼効率をさらに向上させて未燃炭素(煤)の発生をより確実に抑制することができる。 Therefore, the blast furnace blowing coal 22 according to the present embodiment, KMnO 4, H 2 O 2 , KClO 3, K 2 and be contained Cr oxidizing agent such as 2 O 4, so as to enrich the oxygen in a hot-air Even if nothing is done, the combustion efficiency can be further improved and the generation of unburned carbon (soot) can be more reliably suppressed than in the above-described embodiment.
 したがって、本実施形態によれば、前述した実施形態の場合よりも、低コストで燃焼効率を向上させて未燃炭素(煤)の発生を抑制することがさらに確実にできる。 Therefore, according to the present embodiment, it is possible to more reliably suppress the generation of unburned carbon (soot) by improving the combustion efficiency at a lower cost than in the case of the above-described embodiment.
 なお、本実施形態に係る高炉吹込み炭22においては、酸素原子含有割合(ドライベース)が、20重量%以下である必要がある。なぜなら、20重量%を超えると、酸素の含有量が多過ぎて、発熱量が低くなり過ぎてしまうからである。 In addition, in the blast furnace injection charcoal 22 which concerns on this embodiment, an oxygen atom content rate (dry base) needs to be 20 weight% or less. This is because if it exceeds 20% by weight, the oxygen content is too high and the calorific value becomes too low.
 他方、本実施形態に係る高炉吹込み炭の製造方法においては、前記部分酸化工程S25の処理温度が、50~150℃であると好ましい。なぜなら、50℃未満であると、空気(酸素濃度:21体積%)雰囲気であっても、部分酸化処理が進行しにくくなってしまい、150℃を超えると、酸素濃度が5体積%程度の雰囲気であっても、燃焼反応によって一酸化炭素や二酸化炭素を多く発生させてしまうおそれがあるからである。 On the other hand, in the method for producing blast furnace blown coal according to the present embodiment, the treatment temperature in the partial oxidation step S25 is preferably 50 to 150 ° C. This is because, if the temperature is less than 50 ° C., even in an air (oxygen concentration: 21% by volume) atmosphere, the partial oxidation treatment is difficult to proceed. If the temperature exceeds 150 ° C., the oxygen concentration is about 5% by volume. Even so, there is a possibility that a large amount of carbon monoxide and carbon dioxide may be generated by the combustion reaction.
 本発明に係る高炉吹込み炭及びその製造方法の作用効果を確認するために行った実施例を以下に説明するが、本発明は、各種データに基づいて説明する以下の実施例のみに限定されるものではない。 Examples carried out for confirming the effects of the blast furnace blow coal and the method for producing the same according to the present invention will be described below, but the present invention is limited only to the following examples described based on various data. It is not something.
〈No.1:組成分析〉
 前述した第一番目の実施形態に係る製造方法で得られた高炉吹込み炭12(本発明炭)の組成分析(元素分析)を行った。また、比較のため、従来の高炉吹込み炭(PCI炭:従来炭)と、第一番目の実施形態において前記乾留工程S12を省略して得られた石炭(乾燥炭)との組成分析も併せて行った。その結果を下記の表1に示す。なお、値は、すべてドライベースである。
<No. 1: Composition analysis>
Composition analysis (elemental analysis) of the blast furnace blown coal 12 (present coal) obtained by the manufacturing method according to the first embodiment described above was performed. For comparison, a composition analysis of conventional blast furnace blown coal (PCI coal: conventional coal) and coal obtained by omitting the carbonization step S12 in the first embodiment (dry coal) is also performed. I went. The results are shown in Table 1 below. All values are on a dry basis.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記表1からわかるように、本発明炭は、酸素(O)の割合が乾燥炭よりも小さく、従来炭よりも非常に大きくなっている一方、炭素(C)の割合が乾燥炭よりも大きく、従来炭よりも小さくなっている。このため、本発明炭は、発熱量が乾燥炭よりも大きく、従来炭よりも小さくなっている。 As can be seen from Table 1 above, the coal of the present invention has a proportion of oxygen (O) smaller than that of dry coal and is much larger than that of conventional coal, while a proportion of carbon (C) is larger than that of dry coal. It is smaller than conventional charcoal. For this reason, this invention charcoal has a calorific value larger than that of dry charcoal and smaller than that of conventional charcoal.
〈No.2:表面状態〉
 前述した本発明炭の表面状態(平均細孔径、細孔容積、比表面積)を測定した。また、比較のため、前述した従来炭及び乾燥炭の表面状態も併せて測定した。その結果を下記の表2に示す。
<No. 2: Surface condition>
The surface state (average pore diameter, pore volume, specific surface area) of the above-described coal of the present invention was measured. For comparison, the surface states of the above-described conventional charcoal and dry charcoal were also measured. The results are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上記表2からわかるように、本発明炭は、平均細孔径が、従来炭及び乾燥炭よりも非常に大きくなっている。 As can be seen from Table 2 above, the coal of the present invention has an average pore diameter much larger than that of conventional coal and dry coal.
〈No.3:含酸素官能基量〉
 亜瀝青炭(米国PRB炭)を窒素雰囲気下で昇温(10℃/分)しながら赤外吸収スペクトルを計測することにより、含酸素官能基(ヒドロキシル基(OH)、カルボキシル基(COOH)、アルデヒド基(COH)、エステル基(COO))の温度毎の含有割合量を求めた。その結果を図3に示す。なお、横軸は、温度を表し、縦軸は、110℃のときの含酸素官能基の全ピーク面積に対する各含酸素官能基のピーク面積の割合を表す。
<No. 3: Amount of oxygen-containing functional group>
By measuring the infrared absorption spectrum of subbituminous coal (US PRB charcoal) while raising the temperature (10 ° C./min) in a nitrogen atmosphere, oxygen-containing functional groups (hydroxyl group (OH), carboxyl group (COOH), aldehyde The content ratio of each group (COH) and ester group (COO) at each temperature was determined. The result is shown in FIG. The horizontal axis represents temperature, and the vertical axis represents the ratio of the peak area of each oxygen-containing functional group to the total peak area of the oxygen-containing functional group at 110 ° C.
 図3からわかるように、上記含酸素官能基、すなわち、タール生成基は、460℃になると、ほとんどなくなり、500℃になると、すべてなくなることが確認された。 As can be seen from FIG. 3, it was confirmed that the oxygen-containing functional group, that is, the tar-generating group, almost disappeared at 460 ° C. and disappeared at 500 ° C.
〈No.4:燃焼性〉
 前述した本発明炭を1500℃の空気で燃焼させたときに残存する未燃炭素の割合と空気の供給流量との関係を求めた。また、比較のため、前述した従来炭及び乾燥炭の場合も併せて求めた。その結果を図4に示す。なお、図4において、横軸は、前記炭を燃焼させた後の燃焼排ガス中の残存酸素濃度、言い換えれば、過剰酸素濃度を表し、縦軸は、前記炭を燃焼させた後に回収された未燃炭素の割合を表す。
<No. 4: Combustibility>
The relationship between the ratio of unburned carbon remaining when the above-described coal of the present invention was burned with air at 1500 ° C. and the supply flow rate of air was determined. Moreover, the case of the conventional charcoal and the dry charcoal mentioned above was also calculated for comparison. The result is shown in FIG. In FIG. 4, the horizontal axis represents the residual oxygen concentration in the combustion exhaust gas after burning the charcoal, in other words, the excess oxygen concentration, and the vertical axis represents the unrecovered amount after the charcoal was burned. Represents the proportion of fuel carbon.
 図4からわかるように、従来炭及び乾燥炭は、過剰酸素濃度が低下するにしたがって、未燃炭素量が次第に増加してしまう。これに対し、本発明炭は、過剰酸素濃度が低下しても、未燃炭素量が増加せず、略完全燃焼できることが確認された。 As can be seen from FIG. 4, the amount of unburned carbon gradually increases in the conventional coal and the dry coal as the excess oxygen concentration decreases. On the other hand, it was confirmed that the charcoal of the present invention can be burned substantially completely without increasing the amount of unburned carbon even when the excess oxygen concentration is lowered.
〈No.5:燃焼温度〉
 前述した本発明炭を下記の条件で100%完全燃焼させたときの過剰酸素率と燃焼温度との関係を求めた。また、比較のため、前述した従来炭の場合も併せて求めた。その結果を図5に示す。なお、過剰酸素率Osは、下記の式(1)で定義される値である。
<No. 5: Combustion temperature>
The relationship between the excess oxygen ratio and the combustion temperature when the above-described coal of the present invention was completely burned 100% under the following conditions was determined. For comparison, the above-described conventional charcoal was also obtained. The result is shown in FIG. The excess oxygen ratio Os is a value defined by the following formula (1).
*燃焼式
 C+O2→CO2
 H2+1/2O2→H2
* Combustion type C + O 2 → CO 2
H 2 + 1 / 2O 2 → H 2 O
*燃焼条件
・供給空気温度:1200℃
・空気酸素濃度:21vol.%
・石炭供給温度:25℃
・付着水:2%
* Combustion conditions and supply air temperature: 1200 ° C
-Air oxygen concentration: 21 vol. %
・ Coal supply temperature: 25 ℃
-Adhering water: 2%
 過剰酸素率Os=(Oa+Oc/2)/(Cc+Hc/4)   (1)
 ただし、Oaは、供給空気中の酸素ガス(分子)のモル流量、Ocは、供給炭中の酸素原子モル流量、Ccは、供給炭中の炭素原子モル流量、Hcは、供給炭中の水素原子モル流量である。
Excess oxygen ratio Os = (Oa + Oc / 2) / (Cc + Hc / 4) (1)
Where Oa is the molar flow rate of oxygen gas (molecules) in the supply air, Oc is the oxygen atomic molar flow rate in the supplied coal, Cc is the carbon atomic molar flow rate in the supplied coal, and Hc is hydrogen in the supplied coal. Atomic molar flow rate.
 図5からわかるように、本発明炭は、発熱量が従来炭よりも少ないものの、従来炭と同一の過剰酸素率の場合、燃焼温度が従来炭よりもむしろ高くなることが確認された。これは、本発明炭が従来炭よりも高い含有酸素割合であることから、従来炭と同一の過剰酸素率にすると、従来炭よりも少ない供給空気量で済ますことができるからである。 As can be seen from FIG. 5, although the heat generation amount of the present invention is less than that of the conventional coal, it was confirmed that the combustion temperature is higher than that of the conventional coal when the excess oxygen rate is the same as that of the conventional coal. This is because the present invention charcoal has a higher oxygen content than the conventional charcoal, and if the excess oxygen ratio is the same as that of the conventional charcoal, the supply air amount can be smaller than that of the conventional charcoal.
 本発明に係る高炉吹込み炭及びその製造方法は、石炭産業や製鉄産業等において極めて有益に利用することができる。 The blast furnace injection coal and the manufacturing method thereof according to the present invention can be used extremely beneficially in the coal industry, the steel industry, and the like.
 11 低品位石炭(亜瀝青炭又は褐炭)
 12,22 高炉吹込み炭
 S11 乾燥工程
 S12 乾留工程
 S13,S23 冷却工程
 S14 微粉砕工程
 S25 部分酸化工程
11 Low-grade coal (subbituminous coal or lignite)
12,22 Blast furnace injection coal S11 Drying step S12 Carbonization step S13, S23 Cooling step S14 Fine grinding step S25 Partial oxidation step

Claims (5)

  1.  高炉設備の高炉本体の内部に羽口から吹き込む高炉吹込み炭であって、
     酸素原子含有割合(ドライベース)が、10~20重量%であり、
     平均細孔径が、10~50nmである
     ことを特徴とする高炉吹込み炭。
    Blast furnace-blown charcoal that is blown from the tuyere into the blast furnace body of the blast furnace facility,
    The oxygen atom content (dry base) is 10 to 20% by weight,
    Blast furnace blown charcoal characterized in that the average pore diameter is 10 to 50 nm.
  2.  請求項1に記載の高炉吹込み炭において、
     細孔容積が、0.05~0.5cm3/gである
     ことを特徴とする高炉吹込み炭。
    In the blast furnace injection coal according to claim 1,
    Blast furnace blown charcoal characterized by having a pore volume of 0.05 to 0.5 cm 3 / g.
  3.  請求項1又は請求項2に記載の高炉吹込み炭において、
     比表面積が、1~100m2/gである
     ことを特徴とする高炉吹込み炭。
    In the blast furnace injection charcoal according to claim 1 or claim 2,
    A blast furnace-blown coal characterized by a specific surface area of 1 to 100 m 2 / g.
  4.  請求項1から請求項3のいずれか一項に記載の高炉吹込み炭の製造方法であって、
     亜瀝青炭又は褐炭を加熱して水分を除去する乾燥工程と、
     前記乾燥工程で乾燥された前記炭を460~590℃で乾留する乾留工程と
     を行うことを特徴とする高炉吹込み炭の製造方法。
    It is a manufacturing method of the blast furnace injection charcoal as described in any one of Claims 1-3,
    A drying process for heating sub-bituminous coal or lignite to remove moisture;
    And a carbonization step of carbonizing the charcoal dried in the drying step at 460 to 590 ° C.
  5.  請求項4に記載の高炉吹込み炭の製造方法において、
     前記乾留工程で乾留された前記炭を50~150℃に冷却する冷却工程と、
     前記冷却工程で冷却された前記炭を50~150℃の酸素含有雰囲気中に曝すことにより酸素を化学吸着させて部分酸化させる部分酸化工程と
     を行うことを特徴とする高炉吹込み炭の製造方法。
    In the manufacturing method of the blast furnace injection coal of Claim 4,
    A cooling step for cooling the charcoal carbonized in the carbonization step to 50 to 150 ° C .;
    And a partial oxidation step in which oxygen is chemically adsorbed by exposing the charcoal cooled in the cooling step to an oxygen-containing atmosphere at 50 to 150 ° C., and a partial oxidation step is performed. .
PCT/JP2013/063506 2012-08-03 2013-05-15 Blast-furnace-blow-in charcoal and method for producing same WO2014020965A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2014528025A JP5843968B2 (en) 2012-08-03 2013-05-15 Blast furnace blown coal and method for producing the same
CN201380035147.8A CN104411838B (en) 2012-08-03 2013-05-15 Pulverized coal injection into blast furna and its manufacture method
US14/412,921 US20150191803A1 (en) 2012-08-03 2013-05-15 Blast-furnace-blow-in charcoal and method for producing same
DE112013003846.3T DE112013003846T5 (en) 2012-08-03 2013-05-15 Blast furnace injection coal, and process for its production
AU2013297837A AU2013297837B2 (en) 2012-08-03 2013-05-15 Blast-furnace-blow-in charcoal and method for producing same
IN192DEN2015 IN2015DN00192A (en) 2012-08-03 2013-05-15
KR1020157001877A KR101657427B1 (en) 2012-08-03 2013-05-15 Blast-furnace-blow-in charcoal and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-172756 2012-08-03
JP2012172756 2012-08-03

Publications (1)

Publication Number Publication Date
WO2014020965A1 true WO2014020965A1 (en) 2014-02-06

Family

ID=50027659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/063506 WO2014020965A1 (en) 2012-08-03 2013-05-15 Blast-furnace-blow-in charcoal and method for producing same

Country Status (8)

Country Link
US (1) US20150191803A1 (en)
JP (1) JP5843968B2 (en)
KR (1) KR101657427B1 (en)
CN (1) CN104411838B (en)
AU (1) AU2013297837B2 (en)
DE (1) DE112013003846T5 (en)
IN (1) IN2015DN00192A (en)
WO (1) WO2014020965A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018024941A (en) * 2016-07-29 2018-02-15 Jfeスチール株式会社 Blast furnace operation method
JP2018024942A (en) * 2016-07-29 2018-02-15 Jfeスチール株式会社 Blast furnace operation method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115353914A (en) * 2022-09-13 2022-11-18 中国科学院广州能源研究所 Tar purification treatment method and system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09263807A (en) * 1996-03-27 1997-10-07 Nisshin Steel Co Ltd Method for injecting pulverized coal into blast furnace
JP2007169750A (en) * 2005-12-26 2007-07-05 Jfe Steel Kk Method for operating blast furnace
JP2011102439A (en) * 2000-08-10 2011-05-26 Jfe Steel Corp Method for operating blast furnace by injecting large-quantity of fine-powdery coals

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06220510A (en) 1993-01-28 1994-08-09 Sumitomo Metal Ind Ltd Operation of blast furnace
JP2000237528A (en) * 1999-02-22 2000-09-05 Nkk Corp Method for using coal, coal dry distillation product and its production
DE19912154C5 (en) * 1999-03-17 2007-02-01 Carbotex Produktions-Und Veredelungsbetriebe Gmbh Process for the production of shaped activated carbon
JP4608752B2 (en) * 1999-10-20 2011-01-12 Jfeスチール株式会社 High reactivity high strength coke for blast furnace and method for producing the same
JP4074467B2 (en) 2002-03-29 2008-04-09 新日本製鐵株式会社 Method for improving combustibility of low volatile pulverized coal in blast furnace
WO2007016528A2 (en) * 2005-07-29 2007-02-08 Primet Precision Materials, Inc. Coal particle compositions and associated methods
US8298306B2 (en) * 2008-02-13 2012-10-30 David Walker Taylor Process for improved gasification of fuel solids
AU2012254962A1 (en) * 2008-03-13 2012-12-13 Gtl Energy Ltd Compacted Briquette
JP5177101B2 (en) * 2008-09-16 2013-04-03 新日鐵住金株式会社 Method for producing highly reactive small coke
WO2010087468A1 (en) * 2009-02-02 2010-08-05 新日本製鐵株式会社 Carbonaceous material for sintering iron ore
CN101880540B (en) * 2010-07-02 2013-06-19 西北化工研究院 Low-coalification degree pulverized coal pyrolysis method and product prepared through the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09263807A (en) * 1996-03-27 1997-10-07 Nisshin Steel Co Ltd Method for injecting pulverized coal into blast furnace
JP2011102439A (en) * 2000-08-10 2011-05-26 Jfe Steel Corp Method for operating blast furnace by injecting large-quantity of fine-powdery coals
JP2007169750A (en) * 2005-12-26 2007-07-05 Jfe Steel Kk Method for operating blast furnace

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018024941A (en) * 2016-07-29 2018-02-15 Jfeスチール株式会社 Blast furnace operation method
JP2018024942A (en) * 2016-07-29 2018-02-15 Jfeスチール株式会社 Blast furnace operation method

Also Published As

Publication number Publication date
DE112013003846T5 (en) 2015-04-23
CN104411838A (en) 2015-03-11
JP5843968B2 (en) 2016-01-13
KR20150024913A (en) 2015-03-09
KR101657427B1 (en) 2016-09-13
AU2013297837A1 (en) 2015-01-29
US20150191803A1 (en) 2015-07-09
IN2015DN00192A (en) 2015-06-12
AU2013297837B2 (en) 2016-03-10
CN104411838B (en) 2017-03-29
JPWO2014020965A1 (en) 2016-07-21

Similar Documents

Publication Publication Date Title
JP5848363B2 (en) Blast furnace equipment
WO2015105107A1 (en) Method for operating blast furnace
JP4661890B2 (en) Blast furnace operation method
JP5843968B2 (en) Blast furnace blown coal and method for producing the same
Zhang et al. Pulverized coal combustion of nitrogen free blast furnace
JPWO2009047927A1 (en) Electric arc furnace steelmaking using coconut husk charcoal
WO2014020964A1 (en) Method for producing pig iron and blast furnace facility using same
EP3986596A1 (en) Method and a direct reduction plant for producing direct reduced iron
JP6597888B2 (en) Blast furnace operation method
JP6551471B2 (en) Blast furnace operation method
JP6551470B2 (en) Blast furnace operation method
JP7456560B1 (en) Method for producing carbonaceous material for sintering, sintered ore, and carbonaceous material for sintering
JP6191560B2 (en) Gasification method for carbonaceous fuel
JP5967649B2 (en) Method for producing carbonized coal, method for operating a blast furnace, and method for operating a boiler
JP2009298909A (en) Utilizing method of pyrolysis char as carbonaceous material for sintering
JPH07166180A (en) Reforming process of low quality coal
TW202428888A (en) Method for producing sintered ore
Bai et al. Combustion properties and pollutant analysis of coal-blended bio-heavy oil fuel
JPH059517A (en) Method for operating blast furnace
JP4555666B2 (en) Method for promoting combustion of blast furnace-blown pulverized coal
CN115851293A (en) Carbon-containing solid waste treatment method and device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13825347

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014528025

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14412921

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157001877

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013297837

Country of ref document: AU

Date of ref document: 20130515

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1120130038463

Country of ref document: DE

Ref document number: 112013003846

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13825347

Country of ref document: EP

Kind code of ref document: A1