JPH06220510A - Operation of blast furnace - Google Patents

Operation of blast furnace

Info

Publication number
JPH06220510A
JPH06220510A JP1272293A JP1272293A JPH06220510A JP H06220510 A JPH06220510 A JP H06220510A JP 1272293 A JP1272293 A JP 1272293A JP 1272293 A JP1272293 A JP 1272293A JP H06220510 A JPH06220510 A JP H06220510A
Authority
JP
Japan
Prior art keywords
pulverized coal
blast furnace
combustion
tuyere
blown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP1272293A
Other languages
Japanese (ja)
Inventor
Houman Chin
峰満 沈
Takanobu Inada
隆信 稲田
Kensaku Yamamoto
賢作 山本
Shinichi Suyama
真一 須山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP1272293A priority Critical patent/JPH06220510A/en
Publication of JPH06220510A publication Critical patent/JPH06220510A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To provide a blast furnace operating method, by which unburned char is not developed even if a large quantity of fine pulverized coal is blown from a tuyere in a blast furnace or even if coarse grain pulverized coal is blown. CONSTITUTION:The fine pulverized coal treated beforehand by adding an oxidizer is blown into the blast furnace from a tuyere. The fine pulverized coal is perfectly burnt in a raceway and good ventilation at the lower part of the blast furnace is maintained and the stable operation is maintained at the time of blowing a large quantity of the fine pulverized coal or at the time of blowing the coarse grain pulverized coal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高炉の操業方法に関す
るもので、より詳しくは、高炉の羽口より微粉炭を炉内
に吹き込む高炉操業法において、羽口前燃焼帯での微粉
炭の燃焼効率を高める方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for operating a blast furnace, and more specifically, in a blast furnace operating method in which pulverized coal is blown into the furnace from the tuyere of the blast furnace, The present invention relates to a method for increasing combustion efficiency.

【0002】[0002]

【従来の技術】高炉用の補助燃料として高炉羽口から微
粉炭を吹き込む操業は微粉炭吹込み操業としてすでに良
く知られているが、その微粉炭吹込にあたっては、羽口
前燃焼帯においていかにできる限り多くの量の微粉炭を
燃焼させるかがポイントとなる。すなわち、微粉炭の燃
焼率が低ければ、多量の未燃分が炉内に入り、通気を悪
化させ、高炉の安定操業を困難にするからである。
2. Description of the Related Art The operation of blowing pulverized coal from a tuyere of a blast furnace as an auxiliary fuel for a blast furnace is already well known as a pulverized coal blowing operation. How to do the pulverized coal injection in the pre-tuyere combustion zone The point is to burn as much pulverized coal as possible. That is, if the combustion rate of pulverized coal is low, a large amount of unburned matter enters the furnace, which deteriorates ventilation and makes stable operation of the blast furnace difficult.

【0003】高炉へ吹き込む微粉炭の燃焼率を向上させ
るために従来より実施している方法としては、(1) 送風
空気中の酸素を富化する方法(特開昭63−45311 号公
報) 、(2)H2O源および/またはCO2 源を送風空気中に添
加する方法 (特開平3−291312号公報) 、(3) 送風温度
を高める方法 (特開平3−94006 号公報) 、(4) 微粉炭
の吹き込みノズルの位置を調整する方法、(5) 微粉炭と
酸化鉄とを同時に吹込むとともに酸化鉄の還元率を設定
値以上とする方法 (特開平4−48012 号公報) 等が挙げ
られるが、これらの方法は吹き込まれた微粉炭の燃焼環
境を改善することで燃焼率を向上させようとするもので
あるが、微粉炭の吹込量をさらに上げていこうとした場
合このような方法では不十分となる。
As a conventional method for improving the combustion rate of pulverized coal blown into a blast furnace, there are (1) a method of enriching oxygen in blast air (JP-A-63-45311), (2) Method of adding H 2 O source and / or CO 2 source to blast air (JP-A-3-291312), (3) Method of increasing blast temperature (JP-A-3-94006), ( 4) Method of adjusting the position of the pulverized coal blowing nozzle, (5) Method of simultaneously blowing pulverized coal and iron oxide and setting the reduction rate of iron oxide to a set value or more (JP-A-4-48012) However, these methods are intended to improve the combustion rate by improving the combustion environment of the pulverized coal that has been injected. That is not enough.

【0004】微粉炭の燃焼率を向上させるためのもう一
つの方法は微粉炭そのものの燃焼性を高める方法であ
る。微粉炭のサイズを調整する方法 (特開平4−28808
号公報) はこれに該当するものであり、微粉炭の粒子径
を小さくすることで、酸化性ガスとの接触面積を高める
ことを目指したものであるが、吹き込み量をさらに上げ
ていくうえで限界がある。
Another method for improving the combustion rate of pulverized coal is to increase the combustibility of the pulverized coal itself. Method for adjusting the size of pulverized coal (Japanese Patent Laid-Open No. 28808/1992)
(Gazette) corresponds to this, and aims to increase the contact area with the oxidizing gas by reducing the particle size of pulverized coal, but in order to further increase the blowing amount. There is a limit.

【0005】なお、このような従来法にあっては、一般
的には、石炭を粒径75μm未満に粉砕しなければならな
い。このため、かなり多量の粉砕用エネルギーを投入
し、また、そのように細かい微粉炭を造るための機械と
しては、粉砕性能の高いものを使用しなければならな
い。この点からみれば、微粉炭の製造コストがかなり高
いという問題点がある。
Incidentally, in such a conventional method, in general, coal must be crushed to have a particle size of less than 75 μm. For this reason, it is necessary to input a considerably large amount of pulverizing energy and to use a machine having high pulverizing performance as a machine for producing such fine pulverized coal. From this point of view, there is a problem that the production cost of pulverized coal is considerably high.

【0006】[0006]

【発明が解決しようとする課題】本発明の1つの目的
は、微粉炭を高炉羽口より多量に吹き込んでも、未燃チ
ャー、つまり微粉炭の未燃分を発生させない高炉操業法
を提供することである。また、本発明の別の目的は、従
来使用されることのなかった程の粗粒子微粉炭を高炉に
吹き込んだ場合でも、正常の高炉操業ができる技術の開
発にある。
SUMMARY OF THE INVENTION One object of the present invention is to provide a blast furnace operating method which does not generate unburned char, that is, unburned portion of pulverized coal, even if a large amount of pulverized coal is blown from the tuyere of the blast furnace. Is. Another object of the present invention is to develop a technique that enables normal blast furnace operation even when coarse particle pulverized coal, which has not been used conventionally, is blown into the blast furnace.

【0007】[0007]

【課題を解決するための手段】本発明らは、かかる目的
を達成するために種々検討を重ね、羽口から吹込む前に
予め微粉炭に酸素供給物質を内装しておき、これを高炉
へ吹き込むと、直ちにレースウェイの中にて燃え尽きて
しまい未燃チャーの発生を効果的に減少できることを知
り、本発明を完成した。しかも、そのように処理した微
粉炭の燃焼率の改善効果が顕著であるため、粗粒子微粉
炭であっても効果的に燃焼が起こることを知った。
[Means for Solving the Problems] The present inventors have made various studies in order to achieve such an object, and before blasting from tuyere, pulverized coal is preliminarily provided with an oxygen-supplying substance, and this is supplied to a blast furnace. The present inventors have completed the present invention, knowing that if they are blown in, they will burn out immediately in the raceway and the generation of unburned char can be effectively reduced. Moreover, since the pulverized coal treated in this way has a remarkable effect of improving the combustion rate, it has been found that even the coarse-grained pulverized coal is effectively combusted.

【0008】ここに、本発明の要旨は、酸化剤を添加処
理した微粉炭を羽口より高炉に吹き込むことを特徴とす
る高炉操業方法である。また別の面からは、本発明は粒
径75μm 以上の粗粒子から成る微粉炭に酸化剤を添加処
理した後、該微粉炭を高炉に吹き込むことを特徴とする
高炉操業方法である。
Here, the gist of the present invention is a blast furnace operating method characterized by blowing pulverized coal having an oxidizing agent added thereto through a tuyere into a blast furnace. From another aspect, the present invention is a method for operating a blast furnace, which comprises adding an oxidizing agent to pulverized coal consisting of coarse particles having a particle size of 75 μm or more and then blowing the pulverized coal into a blast furnace.

【0009】[0009]

【作用】このように本発明によれば、微粉炭に予め酸化
剤、つまり酸素供給物質を配合させて羽口前での速やか
な燃焼を図ろうとするものであり、そのための酸素供給
物質としては、500 ℃以下の加熱条件下で分解反応によ
って酸素を発生するもの、普通には、酸化剤と呼ばれる
化合物質 (例:KMnO4、H2O2、KClO3 、K2Cr2O4)を使用す
ればよい。
As described above, according to the present invention, an oxidant, that is, an oxygen supply substance is mixed in advance with pulverized coal to achieve rapid combustion in front of the tuyere, and as an oxygen supply substance therefor, , Those that generate oxygen by decomposition reaction under heating conditions of 500 ℃ or less, usually compound compounds called oxidizers (example: KMnO 4 , H 2 O 2 , KClO 3 , K 2 Cr 2 O 4 ) You can use it.

【0010】微粉炭と酸化剤との配合割合は、酸化剤の
配合割合が多くなればそれだけ微粉炭の燃焼率の改善に
寄与するが、過剰量加えるとかえってコストが高くなっ
たり、技術面でも難しくなるため、好ましくは微粉炭の
完全燃焼に要する酸素量のほぼ5〜10%を供給できる量
配合する。しかし、微粉炭の燃焼はその粒径にも影響さ
れるため、酸化剤の配合割合も粒径が大きいときには多
少過剰量で配合するのが好ましい。
The mixing ratio of the pulverized coal and the oxidizing agent contributes to the improvement of the combustion rate of the pulverized coal as the mixing ratio of the oxidizing agent increases, but the addition of an excessive amount increases the cost, and also in terms of technology. Since it becomes difficult, it is preferable to add an amount that can supply approximately 5 to 10% of the oxygen amount required for complete combustion of pulverized coal. However, since the combustion of pulverized coal is also affected by the particle size, it is preferable that the mixing ratio of the oxidizer be mixed in an excessive amount when the particle size is large.

【0011】酸化剤の添加処理方法としては、羽口より
高炉内に吹込んだときに微粉炭と共存して酸化を助ける
形態であれば特に制限はなく、例えば前記酸化剤の水溶
液に微粉炭を一定時間に浸して、酸化剤を微粉炭の内部
にしみこませるとか、または酸化剤の固体粉を微粉炭と
混合させるとかの操作が考えられる。しかし、処理操作
を簡単化するため、石炭を粉砕する前にそれを酸化剤の
水溶液に十分に浸してから乾燥後粉砕したほうがよい。
The method of adding the oxidizing agent is not particularly limited as long as it is a form that coexists with the pulverized coal and assists the oxidation when it is blown into the blast furnace through the tuyere. It is conceivable that the oxidizer is immersed in the pulverized coal for a certain period of time to allow the oxidant to penetrate into the pulverized coal, or the solid powder of the oxidant is mixed with the pulverized coal. However, in order to simplify the processing operation, it is better to thoroughly soak the coal in an aqueous solution of an oxidant before crushing it, and then dry and then crush it.

【0012】本発明の別の態様にあっては粒径75μm 以
上の粗粒子が使用されるが、これは従来より高炉に吹込
まれることのなかった粒径という趣旨であって、微細化
に要する粉砕エネルギーを考慮すれば好ましくは粒径10
6 μm 以上の粗粒子から成る微粉炭である。もちろん、
高炉吹込用の微粉炭として過剰に粗であってはならず、
特にそれに制限されるものではないが一般には粒径 160
μm以下とする。好ましくは 125μm以下である。
In another embodiment of the present invention, coarse particles having a particle size of 75 μm or more are used. This means that the particle size has not been blown into the blast furnace as compared with the prior art, and it is necessary to reduce the size. Considering the grinding energy required, the particle size is preferably 10
Pulverized coal composed of coarse particles of 6 μm or more. of course,
Must not be excessively coarse as pulverized coal for blast furnace injection,
Generally, the particle size is not limited to that but 160
μm or less. It is preferably 125 μm or less.

【0013】なお、ここに「粒径」とは最大もしくは最
小粒径をいい、例えば粒径75μm以上といえば最小75μ
mの意味である。それより細かい粒子は実質的部分とし
ては含まれない。ここで、酸化剤としてKMnO4 を微粉炭
に添加処理した場合の微粉炭燃焼機構について説明する
と次の通りである。
The term "particle size" as used herein means the maximum or minimum particle size. For example, a particle size of 75 μm or more means a minimum of 75 μm.
It means m. Finer particles are not included as a substantial part. Here, the pulverized coal combustion mechanism in the case where KMnO 4 as an oxidant is added to the pulverized coal will be described as follows.

【0014】KMnO4 水溶液に微粉炭を浸漬して乾燥した
場合には、微粉炭の表面および内部にはKMnO4 が付着、
あるいは添着されており、これが羽口から高炉内に吹込
まれると次の反応によって酸素が発生し、それによって
微粉炭の燃焼が促進される。
When pulverized coal is immersed in an aqueous KMnO 4 solution and dried, KMnO 4 adheres to the surface and inside of the pulverized coal,
Alternatively, it is attached, and when this is blown into the blast furnace from the tuyere, oxygen is generated by the next reaction, which promotes the combustion of pulverized coal.

【0015】 2KMnO4 → K2MnO4+MnO2+O2 ・・・・(1) 2C(微粉炭) +O2 → 2CO ・・・・(2) つまり、酸化剤の配合割合を調整することによって微粉
炭の燃焼に要する酸素は微粉炭の吹込とともに外部から
持ち込まれるから、たとえば微粉炭の吹込量を増大させ
ても高炉内の酸化、還元反応に特に影響は与えることは
なく、もって安定した高炉操業が確保されるのである。
2KMnO 4 → K 2 MnO 4 + MnO 2 + O 2 ... (1) 2C (fine coal) + O 2 → 2CO ... (2) In other words, fine powder is obtained by adjusting the mixing ratio of the oxidizing agent. Oxygen required for charcoal combustion is brought in from the outside together with the injection of pulverized coal, so even if the amount of pulverized coal injected is increased, it does not particularly affect the oxidation and reduction reactions in the blast furnace, and stable blast furnace operation is ensured. Is secured.

【0016】したがって、本発明にかかる高炉操業法と
してその他の条件は特に制限されず、いわゆる慣用の微
粉炭吹込み高炉操業法に準じて行えばよい。ここで、本
発明がそれによって特に制限されるものではないが、20
00m3の高炉操業を想定したときの代表的操作条件を挙げ
れば次の通りである。
Therefore, other conditions are not particularly limited as the blast furnace operating method according to the present invention, and it may be carried out in accordance with the so-called conventional pulverized coal blowing blast furnace operating method. Here, although the present invention is not particularly limited thereto, 20
Typical operating conditions assuming a blast furnace operation of 00 m 3 are as follows.

【0017】 送風量 : 1100〜1300 Nm3/t-pig 微粉炭吹込量 : 100 〜150 Kg/t-pig 平均粒径 : 75μm以下 80〜90%または 160
μm以下 酸化剤添加量 : 微粉炭の完全燃焼に要する酸素量
の5〜6%(ただし、酸素量換算) その他、必要によりすでに公知の酸素富化、送風温度の
上昇などの手段を併合することもできる。
Air flow rate: 1100 to 1300 Nm 3 / t-pig Pulverized coal injection rate: 100 to 150 Kg / t-pig Average particle size: 75 μm or less 80 to 90% or 160
μm or less Oxidizer addition amount: 5 to 6% of oxygen amount required for complete combustion of pulverized coal (however, converted to oxygen amount) In addition, if necessary, already known means such as oxygen enrichment and blast temperature increase should be combined. You can also

【0018】[0018]

【実施例】以下実施例により本発明の特徴とその作用を
具体的に説明する。 (実施例1)本例では酸化剤としてKMnO4 、H2O2、KCl
O3 、K2Cr2O4 をそれぞれ使用し、微粉炭には表1に示
す酸化剤の添加処理を行った。使用したのは粒径約75μ
mの微粉炭であった。
EXAMPLES The features and functions of the present invention will be specifically described below with reference to examples. (Example 1) In this example, KMnO 4 , H 2 O 2 , and KCl were used as oxidizing agents.
O 3 and K 2 Cr 2 O 4 were used respectively, and the pulverized coal was subjected to the oxidizing agent addition treatment shown in Table 1. The particle size used was about 75μ
It was pulverized coal of m.

【0019】[0019]

【表1】 [Table 1]

【0020】予備実験 本発明の効果を確認するために、実験室で基礎的な実験
を行った。表1の酸化剤の添加処理を行った各微粉炭を
試料として用い、CO2 レーザー燃焼装置で大気中の燃焼
を行わせて、微粉炭着火開始から燃焼終了までの燃焼時
間(tb ) を測定し、また燃焼終了後の残骸を観察し
た。比較例として酸化剤の添加処理を行わなかった微粉
炭を使用した点を除いて同一の燃焼試験を行った。
Preliminary Experiment In order to confirm the effect of the present invention, a basic experiment was conducted in a laboratory. Using each pulverized coal that has been subjected to the oxidant addition treatment of Table 1 as a sample, the combustion time (t b ) from the start of pulverized coal ignition to the end of combustion was obtained by performing combustion in the atmosphere with a CO 2 laser combustion device. It was measured and the debris after the combustion was observed. As a comparative example, the same combustion test was carried out except that pulverized coal which was not treated with addition of an oxidizing agent was used.

【0021】図1は、燃焼試験の結果を示すものであ
り、酸化剤の添加処理を行わなかった微粉炭の燃焼時間
を1としたときの燃焼時間を指数として示す。図示の結
果からも分かるように、他の実験条件が同様の場合、酸
化剤を添加した微粉炭における燃焼開始から燃焼終了ま
での燃焼時間は、例えば酸化剤Aのとき、無添加の微粉
炭より約15%程度短縮された。
FIG. 1 shows the result of the combustion test, and shows the combustion time as an index when the combustion time of the pulverized coal which has not been subjected to the oxidizing agent addition treatment is 1. As can be seen from the results shown in the figure, when the other experimental conditions are the same, the combustion time from the start of combustion to the end of combustion in the pulverized coal with an oxidizer added is It was shortened by about 15%.

【0022】図2は燃焼後残骸のスケッチであり、これ
からも分かるように、酸化剤無添加の微粉炭に比べる
と、本発明にしたがって処理した微粉炭の場合、残骸は
ほとんど残っておらず、残骸の水平投影面積から見ても
未処理の場合のわずか18%が残っているに過ぎない。な
お、図中、「針」とするのは試料をレーザー燃焼の際に
支持する「支持針」である。
FIG. 2 is a sketch of post-combustion debris, and as can be seen from this, almost no debris remains in the case of the pulverized coal treated according to the present invention, as compared with the pulverized coal without the addition of an oxidizing agent. From the horizontal projected area of the debris, only 18% of the untreated case remains. In the figure, the "needle" is the "supporting needle" that supports the sample during laser burning.

【0023】実験炉による燃焼試験 予備試験の結果から本発明により酸化剤の添加処理を行
った微粉炭の燃焼が速やかに行われることが判明したの
で、次に、高炉羽口前燃焼帯を模擬した実験炉を使って
燃焼試験を行った。図3はそのために実験炉10の概略を
示す説明図であって、炉内のコークス充填層12に炉側壁
14に設けた羽口16から800 ℃の熱風とともに微粉炭を炉
内に吹込んだ。羽口前にはサンプリングゾンデ18を設
け、燃焼状況を監視した。図中の数字は羽口からの炉内
距離(mm)を示す。
Combustion test in an experimental furnace From the results of preliminary tests, it was found that the pulverized coal which had been treated with the addition of the oxidant according to the present invention was rapidly combusted. Next, the combustion zone before the tuyere of the blast furnace was simulated. A combustion test was conducted using the experimental furnace. FIG. 3 is an explanatory view showing an outline of the experimental furnace 10 for that purpose, in which the coke packed bed 12 in the furnace is provided with a furnace side wall.
Pulverized coal was blown into the furnace from the tuyere 16 provided in 14 along with hot air at 800 ° C. A sampling sonde 18 was installed in front of the tuyere to monitor the combustion status. The numbers in the figure indicate the furnace distance (mm) from the tuyere.

【0024】本例では図3の実験炉を使って予備試験と
同様に酸化剤添加処理した微粉炭を用いて、微粉炭比20
0kg/t-pig(溶銑トン当たりの重量) の吹き込みを想定
し、燃焼試験を行いその燃焼率向上効果を検証した。燃
焼性把握の指標は、レースウェイの奥 (炉壁から500mm)
で採集したサンプルの中での未燃チャーの存在量によっ
て行い、未燃チャーの量によって微粉炭の燃焼率を計算
した。完全燃焼が行われると燃焼率は100 %である。
In this example, the pulverized coal having an oxidizer addition treatment was used in the same manner as in the preliminary test using the experimental furnace shown in FIG.
A combustion test was conducted assuming the injection of 0 kg / t-pig (weight per ton of hot metal), and the effect of improving the combustion rate was verified. The indicator of flammability is the depth of the raceway (500 mm from the furnace wall)
The burning rate of pulverized coal was calculated based on the amount of unburned char present in the sample collected in 1. When complete combustion is performed, the combustion rate is 100%.

【0025】結果は、図4に比較例の場合とともに計算
で求めた燃焼率でもって示すが、これからも分かるよう
に未処理微粉炭の燃焼率は高々約80%であるのに対して
本発明にしたがって処理した微粉炭はほとんどレースウ
ェイで燃え尽きており、燃焼率が約100 %となってい
た。そこで、今度は酸化剤添加処理済みの微粉炭の吹込
量を20%増大させて240 kg/t-pigとして燃焼試験を行っ
たところ、未処理微粉炭を200 kg/t-pig吹込んだ場合と
同程度の燃焼率の結果を得た。
The results are shown in FIG. 4 together with the case of the comparative example and the calculated burning rate. As can be seen from the results, the burning rate of untreated pulverized coal is about 80% at the maximum, whereas the present invention does not. Almost all the pulverized coal treated in accordance with the procedure was burned out on the raceway, and the burning rate was about 100%. Therefore, this time, a combustion test was conducted by increasing the blowing amount of the pulverized coal treated with the oxidizing agent by 20% to 240 kg / t-pig, and when the untreated pulverized coal was blown at 200 kg / t-pig. The same burning rate result was obtained.

【0026】(実施例2)本例では粒径を変えただけで実
質上、実施例1を繰り返した。予備実験 まず、本発明に効果を確認するために、実験室で基礎的
な実験を行った。粒径75、150 、230 μm の微粉炭粒子
にそれぞれ実施例1と同様の酸化剤富化処理を施しCO2
レーザー燃焼装置を用いて、大気中での燃焼実験を行
い、着火開始から燃焼終了までの時間 (燃焼時間:tb)
を測定し、未処理の微粉炭のそれと比較した。
Example 2 In this example, Example 1 was substantially repeated except that the particle size was changed. Preliminary Experiment First, in order to confirm the effect of the present invention, a basic experiment was conducted in a laboratory. Pulverized coal particles having a particle size of 75, 150 and 230 μm were subjected to the same oxidizing agent enrichment treatment as in Example 1 to obtain CO 2
The time from the start of ignition to the end of combustion (combustion time: tb) when a combustion experiment was performed in the atmosphere using a laser combustion device.
Was measured and compared with that of untreated pulverized coal.

【0027】 (△tb≡tb (未処理)−tb (酸化剤処理)) その結果を図5に示すが、いずれの酸化剤を用いた場合
でも未処理のものに比較して燃焼時間が短縮されており
燃焼時間の短縮効果は粒径が粗くなる程大きい。かくし
て本発明により微粉炭の燃焼性を向上し得ることがわか
る。
(Δtb≡tb (untreated) -tb (treated with oxidizing agent)) The results are shown in FIG. 5. The burning time is shortened as compared with the untreated one with any of the oxidizing agents. Therefore, the effect of shortening the combustion time is greater as the particle size becomes coarser. Thus, it is understood that the present invention can improve the combustibility of pulverized coal.

【0028】実験炉による燃焼試験 実施例1と同様にして、高炉羽口前燃焼帯を模擬した条
件での検証を図3に示す燃焼実験炉を用いてコークス充
填層燃焼実験を行なった。実験に供した微粉炭は、粒径
75μm と106 μm のもので後者のものについては表1の
前処理を行なったものと未処理のものとを用意した。
Combustion Test with Experimental Furnace In the same manner as in Example 1, a coke packed bed combustion experiment was conducted using a combustion experimental furnace shown in FIG. 3 for verification under conditions simulating the combustion zone before the tuyere of the blast furnace. The pulverized coal used in the experiment has a particle size
For the latter of 75 μm and 106 μm, the pretreated and untreated ones shown in Table 1 were prepared.

【0029】一方、微粉炭吹き込み条件としては、実際
の炉における微粉炭比200 kg/pt 相当の諸元で行い、燃
焼性把握の指標としては図3中に示すレースウェイ (羽
口前燃焼帯) の先端部 (炉壁から500 mmの地点) で採取
したサンプル中の未燃チャーの含有量を以て計算される
微粉炭燃焼率を用いた。完全燃焼が行われると燃焼率は
100 %である。
On the other hand, the pulverized coal injection conditions are set to specifications corresponding to a pulverized coal ratio of 200 kg / pt in an actual furnace. As an index for grasping the combustibility, the raceway shown in FIG. ) Was used as the pulverized coal combustion rate calculated from the content of unburned char in the sample collected at the tip (point 500 mm from the furnace wall). When complete combustion is performed, the combustion rate is
100%.

【0030】その結果は図6にグラフで示すが粒径を75
μm から106 μm にするとレースウェイ燃焼率は低下す
るが、これに本発明による前処理を行なうことで75μm
相当の燃焼率が確保されることが分かる。したがって、
本発明によれば、従来、燃焼性確保が困難であった粒径
75μm 以上の粗粒微粉炭の使用が可能となる。
The results are shown graphically in FIG.
The raceway burning rate decreases from μm to 106 μm, but 75 μm can be obtained by applying pretreatment according to the present invention to this.
It can be seen that a considerable burning rate is secured. Therefore,
According to the present invention, it has been difficult to secure the combustibility in the past.
Coarse-grained pulverized coal of 75 μm or more can be used.

【0031】[0031]

【発明の効果】以上説明したように、本発明によれば、
微粉炭をこれまで以上に多量吹き込んだ時にも、さらに
粒径75μm以上の粗粒子微粉炭を吹込んだ時にも酸化剤
を添加する微粉炭の前処理により微粉炭の燃焼率を上げ
ることができ、そのため微粉炭はレースウェイで完全に
燃焼されて、未燃チャーの発生を防ぐことができ、高炉
下部での良好な通気性を維持し、微粉炭多量吹き込み時
の安定操業維持に寄与するものである。特に、本発明の
場合、吹き込み用の微粉炭の粒子を従来使用している微
粉炭の粒子径より大きくすることが可能であり、粗粒子
微粉炭の製造コストが安いことから、高炉微粉炭吹き込
み操業のコストを低減することができる。
As described above, according to the present invention,
It is possible to increase the burning rate of pulverized coal by pretreatment of pulverized coal with the addition of an oxidizing agent, even when a large amount of pulverized coal is blown in, and when coarse-grained pulverized coal with a particle size of 75 μm or more is also blown in. , Therefore, the pulverized coal is completely burned on the raceway, it is possible to prevent the generation of unburned char, maintain good air permeability in the lower part of the blast furnace, and contribute to the stable operation maintenance when a large amount of pulverized coal is blown. Is. In particular, in the case of the present invention, it is possible to make the particles of the pulverized coal for blowing larger than the particle size of the pulverized coal which is conventionally used, and since the production cost of the coarse particle pulverized coal is low, the blast furnace pulverized coal is injected. The cost of operation can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】酸化剤の添加の影響を示すグラフである。FIG. 1 is a graph showing the effect of adding an oxidant.

【図2】未処理微粉炭と処理微粉炭の燃焼後残骸の比較
を示す模式図である。
FIG. 2 is a schematic diagram showing a comparison of unburned pulverized coal and post-combustion debris of treated pulverized coal.

【図3】燃焼実験炉の概要図である。FIG. 3 is a schematic diagram of a combustion experimental furnace.

【図4】本発明の実施例の結果を示すグラフである。FIG. 4 is a graph showing the results of the examples of the present invention.

【図5】実施例の結果を示すグラフである。FIG. 5 is a graph showing the results of Examples.

【図6】実施例の結果を示すグラフである。FIG. 6 is a graph showing the results of Examples.

【符号の説明】[Explanation of symbols]

10 : 実験炉、 12 : コークス充填層 14 : 側壁 16 : 羽口 18 : サンプリングゾンデ 10: Experimental furnace, 12: Coke packed bed 14: Side wall 16: Tuyere 18: Sampling sonde

───────────────────────────────────────────────────── フロントページの続き (72)発明者 須山 真一 大阪市中央区北浜4丁目5番33号 住友金 属工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shinichi Suyama 4-53, Kitahama, Chuo-ku, Osaka Sumitomo Metal Industries Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 酸化剤を添加処理した微粉炭を羽口より
高炉に吹き込むことを特徴とする高炉操業方法。
1. A method of operating a blast furnace, which comprises blowing pulverized coal having an oxidizing agent added thereto through a tuyere into a blast furnace.
【請求項2】 前記微粉末が粒径75μm以上の粗粒子か
ら成る請求項1記載の高炉操業法。
2. The blast furnace operating method according to claim 1, wherein the fine powder is coarse particles having a particle size of 75 μm or more.
JP1272293A 1993-01-28 1993-01-28 Operation of blast furnace Withdrawn JPH06220510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1272293A JPH06220510A (en) 1993-01-28 1993-01-28 Operation of blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1272293A JPH06220510A (en) 1993-01-28 1993-01-28 Operation of blast furnace

Publications (1)

Publication Number Publication Date
JPH06220510A true JPH06220510A (en) 1994-08-09

Family

ID=11813327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1272293A Withdrawn JPH06220510A (en) 1993-01-28 1993-01-28 Operation of blast furnace

Country Status (1)

Country Link
JP (1) JPH06220510A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006152369A (en) * 2004-11-29 2006-06-15 Nippon Steel Corp Method for promoting combustion of pulverized fine coal blowing into blast furnace
KR20150023056A (en) 2012-08-03 2015-03-04 미츠비시 쥬고교 가부시키가이샤 Method for producing pig iron and blast furnace facility using same
KR20150024913A (en) 2012-08-03 2015-03-09 미츠비시 쥬고교 가부시키가이샤 Blast-furnace-blow-in charcoal and method for producing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006152369A (en) * 2004-11-29 2006-06-15 Nippon Steel Corp Method for promoting combustion of pulverized fine coal blowing into blast furnace
KR20150023056A (en) 2012-08-03 2015-03-04 미츠비시 쥬고교 가부시키가이샤 Method for producing pig iron and blast furnace facility using same
KR20150024913A (en) 2012-08-03 2015-03-09 미츠비시 쥬고교 가부시키가이샤 Blast-furnace-blow-in charcoal and method for producing same

Similar Documents

Publication Publication Date Title
JP3766553B2 (en) High temperature oxygen blast furnace injection system
US6067916A (en) Process and device for producing and utilizing gas from waste materials
EP0680592B1 (en) Process and device for melting iron metallurgy materials in a coke-fired cupola
JPH06220510A (en) Operation of blast furnace
DE102019005402A1 (en) Oxygen blast furnace with top gas recycling and hydrogen reduction for CO2-reduced pig iron production with injection device
JP6098765B2 (en) Method of injecting pulverized coal into oxygen blast furnace
WO2014020964A1 (en) Method for producing pig iron and blast furnace facility using same
JP2001090923A (en) Blowing method for fuel gas to waste melting furnace
JPH06248310A (en) Operation of blast furnace
JP2021032419A (en) Sintering machine and method for operating sintering machine
RU2171848C2 (en) Method of hot blowing of blast furnace
JP4555666B2 (en) Method for promoting combustion of blast furnace-blown pulverized coal
JP3562506B2 (en) Blast furnace operation method
JP7128602B1 (en) Scrap metal melting method with less industrial waste
JPH08157916A (en) Blowing of pulverized fine coal into blast furnace and lance for blowing pulverized fine coal
KR20120036174A (en) Composition of additive for steel furnace efficiency
DE19613570A1 (en) Method and device for burnout of furnace gas in shaft melting oven
US3576381A (en) Apparatus and method for cupola ventilation
JPH059517A (en) Method for operating blast furnace
JP2697550B2 (en) Two-stage ignition ore manufacturing method
JPH08285250A (en) Disposal of fllamable dust of melting furnace for waste
CN114561499A (en) Method and apparatus for producing iron with low carbon using mixed gas of hydrogen and oxygen
Johansson et al. Manufacturing Sponge Iron
JP2002129212A (en) Method for operating blast furnace
JPS60122809A (en) Low nox combustion device burning fine coal powder

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000404