JPH059517A - Method for operating blast furnace - Google Patents

Method for operating blast furnace

Info

Publication number
JPH059517A
JPH059517A JP18543491A JP18543491A JPH059517A JP H059517 A JPH059517 A JP H059517A JP 18543491 A JP18543491 A JP 18543491A JP 18543491 A JP18543491 A JP 18543491A JP H059517 A JPH059517 A JP H059517A
Authority
JP
Japan
Prior art keywords
pulverized coal
hot air
blast furnace
combustibility
tuyere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18543491A
Other languages
Japanese (ja)
Inventor
Shusaku Komatsu
周作 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP18543491A priority Critical patent/JPH059517A/en
Publication of JPH059517A publication Critical patent/JPH059517A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To improve the combustibility of fine coal without executing oxygen enrichment in hot blast and to lower the operational cost, in the operation for blowing the fine coal. CONSTITUTION:The fine coal having >=100kg/pt is blown from a tuyere in the blast furnace together with hot blast having no oxygen enrichment and <=10g/Nm<3> moisture at >=1100 deg.C. By lowering the moisture in the hot blast, the combustibility of fine coal is improved. Increase in the cost accompanying dehumidification in the hot blast is cancelled by decrease in coke ratio. Hence, there is no possibility of causing unstable operation due to the shortage of hydrogen feed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、微粉炭吹き込みによる
高炉操業方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a blast furnace operating method by blowing pulverized coal.

【0002】[0002]

【従来の技術】高炉操業は、重油吹き込みによるものか
らオールコース操業へ移行し、更に微粉炭吹き込みによ
るものへと進んでいる。例えば、現在日本で可動中の高
炉のうち、半数以上は微粉炭吹き込みを行っており、吹
き込み量の方も増加して100kg/pt前後が主流と
なりつつある。最近では、ヨーロッパ並に150〜20
0kg/ptの微粉炭吹き込み量を目標とするところも
多くなり、実際に150kg/pt以上の微粉炭吹き込
みを行っている高炉もある。
2. Description of the Related Art Blast furnace operation has shifted from heavy oil injection to all-course operation, and further has advanced to pulverized coal injection. For example, of the blast furnaces currently in operation in Japan, more than half are blowing pulverized coal, and the blowing amount is also increasing, and about 100 kg / pt is becoming the mainstream. These days, 150 to 20 as well as Europe
The target for the amount of pulverized coal blown at 0 kg / pt is increasing, and there are blast furnaces that actually blow pulverized coal at 150 kg / pt or more.

【0003】しかしながら、粉体燃料である微粉炭は、
重油やタールなどの液体燃料に比べると、本質的に燃焼
性が悪く、灰分等の未燃物を含有する欠点もある。その
ため、微粉炭の吹き込み、特にその多量吹き込みにあた
っては、燃焼性の悪化を防ぐために、種々の対策を講じ
る必要がある。微粉炭吹き込み量が多い場合の燃焼性の
悪化は、次のように説明される。
However, pulverized coal, which is a powder fuel, is
Compared with liquid fuels such as heavy oil and tar, it has inherently poor combustibility and has the drawback of containing unburned substances such as ash. Therefore, it is necessary to take various measures in order to prevent the deterioration of the combustibility when the pulverized coal is blown, especially when a large amount of it is blown. The deterioration of flammability when the amount of pulverized coal blown is large is explained as follows.

【0004】微粉炭は熱風と共に高炉羽口から高炉内に
吹き込まれる。高炉羽口から高炉内に吹き込まれた微粉
炭は、羽口内を流れる熱風によって急速に加熱されて、
水素や一酸化炭素等の揮発分を揮発させ、これらが着火
温度に到達して燃焼が開始される。このとき、微粉炭の
吹き込み量が多いと、微粉炭中の揮発分の揮発開始が遅
れる上に、揮発速度が遅くなり、更には揮発ガスが着火
温度に達するまでの時間も長くなる。これらのために、
吹き込みから着火燃焼までに相当の時間を要することに
なる。その結果、微粉炭がレースウェイを出るときの燃
焼率が低下し、多量の未燃焼チャーが発生する。レース
ウェイを飛び出した未燃焼チャーの一部分はソリューシ
ョンロス反応によって高炉内で消費されるが、残った多
くの未燃焼チャーは、炉芯コークス内、もしくは融着帯
の根部付近に堆積し、炉下部不活性化の原因となる。従
って、微粉炭吹き込み量が多くなるほど、その燃焼性が
低下する。
Pulverized coal is blown into the blast furnace from the tuyere of the blast furnace together with hot air. The pulverized coal blown from the tuyere of the blast furnace into the blast furnace is rapidly heated by the hot air flowing through the tuyere,
Volatile components such as hydrogen and carbon monoxide are volatilized, and these reach the ignition temperature to start combustion. At this time, if the amount of pulverized coal blown in is large, the start of volatilization of the volatile components in the pulverized coal is delayed, the volatilization rate becomes slower, and the time until the volatile gas reaches the ignition temperature also becomes longer. For these,
It takes a considerable time from blowing to ignition and combustion. As a result, the combustion rate of the pulverized coal when it leaves the raceway is reduced, and a large amount of unburned char is generated. A part of the unburned char that jumps out of the raceway is consumed in the blast furnace due to the solution loss reaction, but most of the remaining unburned char accumulates in the core coke or near the root of the cohesive zone, It causes inactivation. Therefore, the combustibility decreases as the amount of pulverized coal blown increases.

【0005】微粉炭の燃焼性を改善するために、70〜
80kg/pt以上の微粉炭吹き込み操業では、熱風の
高温化(1100℃以上)と、その酸素富化(+0.7〜
+2.0容量%)とが一般化している。熱風温度を低下さ
せた特殊な例もあるが(特公平1−29846号公
報)、熱風中の酸素は23容量%以上と+2.0容量%以
上も富化されている。
In order to improve the combustibility of pulverized coal,
In the operation of blowing pulverized coal of 80 kg / pt or more, the temperature of hot air is raised (1100 ° C or more) and its oxygen is enriched (+ 0.7 ~).
+ 2.0% by volume) is common. Although there is a special case where the hot air temperature is lowered (Japanese Patent Publication No. 1-29846), oxygen in the hot air is enriched by 23 vol% or more and +2.0 vol% or more.

【0006】[0006]

【発明が解決しようとする課題】このような熱風の酸素
富化による微粉炭の燃焼性改善策では、高価な酸素を多
量に必要とするため、高炉操業コストの上昇を避け得な
い。
In such a measure for improving the combustibility of pulverized coal by enriching hot air with oxygen, a large amount of expensive oxygen is required, and therefore an increase in blast furnace operating cost cannot be avoided.

【0007】本発明の目的は、100kg/pt以上の
多量の微粉炭を吹き込み、しかも熱風を酸素富化するこ
となくその微粉炭の燃焼性を高める低コストな高炉操業
方法を提供することにある。
An object of the present invention is to provide a low-cost blast furnace operating method in which a large amount of pulverized coal of 100 kg / pt or more is blown and the combustibility of the pulverized coal is improved without enriching hot air with oxygen. .

【0008】[0008]

【課題を解決するための手段】100kg/pt以上の
多量の微粉炭を吹き込む場合の微粉炭の燃焼性悪化は、
羽口前での酸素過剰係数の低下と多量の微粉炭の分解熱
による羽口前での燃焼温度の低下とによる未燃焼チャー
の増加により説明される。この燃焼性悪化に対しては、
熱風の高温化および酸素富化が採用されているが、更に
熱風の脱湿も有効な対策になり得ることが本発明者らの
調査から明らかになった。
[Problems to be Solved by the Invention] Deterioration of combustibility of pulverized coal when a large amount of pulverized coal of 100 kg / pt or more is blown,
This is explained by an increase in unburned char due to a decrease in the oxygen excess coefficient in front of the tuyere and a decrease in the combustion temperature in front of the tuyere due to the heat of decomposition of a large amount of pulverized coal. For this deterioration of flammability,
Although the hot air temperature increase and the oxygen enrichment have been adopted, it has become clear from the investigation by the present inventors that dehumidification of the hot air can be an effective countermeasure.

【0009】即ち、脱湿された熱風を微粉炭と共に高炉
羽口から高炉内に吹き込むと、熱風が酸素富化されてい
なくても、酸素富化したのとほぼ同等の燃焼性改善効果
が得られる。微粉炭吹き込み量が100kg/pt程度
から更に増加しても、その増加量に対応して熱風の湿分
を低下させれば、優れた燃焼性が確保される。熱風の脱
湿にコストがかかるが、そのコスト上昇分は、脱湿に伴
うコークス比低減のメリットにより相殺される。従っ
て、酸素富化を実施しない分、高炉操業コストが低下さ
れる。また、熱風の脱湿により熱風中の水素量が減少す
るが、微粉炭によって水素が供給されるため、かっての
オールコークス操業で熱風を脱湿した場合のような水素
投入量不足による操業不安定化のおそれはない。
That is, when the dehumidified hot air is blown into the blast furnace together with the pulverized coal from the tuyere of the blast furnace, even if the hot air is not oxygen-enriched, a combustibility improving effect almost equal to that of oxygen-enriched is obtained. Be done. Even if the amount of pulverized coal blown further increases from about 100 kg / pt, if the moisture content of the hot air is reduced corresponding to the increased amount, excellent combustibility can be ensured. Dehumidification of hot air requires a cost, but the increased cost is offset by the merit of reducing the coke ratio accompanying dehumidification. Therefore, the operation cost of the blast furnace is reduced because oxygen is not enriched. Also, the amount of hydrogen in the hot air decreases due to dehumidification of the hot air, but since hydrogen is supplied by pulverized coal, unstable operation due to insufficient hydrogen input, such as when the hot air was dehumidified in the old all-coke operation There is no danger of becoming

【0010】本発明の高炉操業方法は、微粉炭が多量に
吹き込まれる場合の燃焼性を熱風の脱湿によって確保す
るものであり、高炉羽口から100kg/pt以上の微
粉炭を、温度が1100℃以上で且つ湿分が10g/N
3 以下の酸素富化されていない熱風と共に吹き込むこ
とを特徴とする。
The blast furnace operating method of the present invention secures the combustibility when a large amount of pulverized coal is blown in by dehumidifying the hot air. ℃ or more and moisture content is 10g / N
It is characterized in that it is blown together with hot air of not more than m 3 and not enriched with oxygen.

【0011】[0011]

【作用】熱風の湿分低下により微粉炭の燃焼性が改善さ
れる理由は、次のように説明される。
The reason why the combustibility of pulverized coal is improved by reducing the moisture content of hot air is explained as follows.

【0012】熱風中の湿分、即ちH2 Oは、羽口先に形
成されるレースウェイ内においてC+H2 O→CO+H
2 の吸熱反応により、H2 の分解を引き起こす原因にな
る。その際、吸熱反応により燃焼の焦点温度が低下する
が、微粉炭吹き込み操業の場合は、多量の微粉炭の分解
反応によっても燃焼温度が低下するため、焦点温度の低
下が著しい。そのため、微粉炭から揮発分が抜けて生成
したチャーは、低温となったレースウェイ内では燃焼し
難くなり、燃焼率を低下させる。ここで、熱風中の湿分
を低下させると、レースウェイ内の燃焼の焦点温度は、
脱湿したH2 Oの分解熱分だけ上昇する。従って、熱風
の湿分低下により、微粉炭の燃焼性が改善される。
Moisture in hot air, that is, H 2 O, is C + H 2 O → CO + H in the raceway formed at the tuyere.
The second endothermic reaction, the cause of decomposition of H 2. At that time, the focal point temperature of combustion is lowered by the endothermic reaction, but in the operation of blowing pulverized coal, the combustion temperature is also lowered by the decomposition reaction of a large amount of pulverized coal, so that the focal point temperature is significantly lowered. Therefore, the char generated by removing the volatile components from the pulverized coal becomes difficult to burn in the raceway where the temperature becomes low, and lowers the burning rate. Here, when the moisture content in the hot air is reduced, the focal temperature of combustion in the raceway becomes
It rises by the decomposition heat of dehumidified H 2 O. Therefore, the combustibility of the pulverized coal is improved by reducing the moisture content of the hot air.

【0013】微粉炭吹き込み量が100kg/pt以上
の場合、熱風中の湿分が10g/Nm3 を超えると、酸
素富化がされていない状況下では、微粉炭の燃焼性が充
分に改善されない。従って、熱風中の湿分を10g/N
3 以下とした。この湿分は、微粉炭吹き込み量が多く
なるに連れて低下させるのが良く、150kg/pt以
上では5g/Nm3 以下が望ましい。ちなみに、脱湿さ
れない1100℃以上の熱風中の湿分は、25g/Nm
3 程度である。湿分の下限については、燃焼性の点から
は1g/Nm3 以下でも問題はない。しかし、一般的な
送風脱湿設備では、脱湿能力は高々3〜4g/Nm3
ある。従って、現実的には3g/Nm3 程度が下限にな
る。
When the blowing amount of pulverized coal is 100 kg / pt or more and the moisture content in the hot air exceeds 10 g / Nm 3 , the combustibility of the pulverized coal is not sufficiently improved under the condition that oxygen is not enriched. . Therefore, the moisture content in hot air should be 10 g / N
It was set to m 3 or less. This moisture content should be reduced as the amount of pulverized coal injected increases, and is preferably 5 g / Nm 3 or less at 150 kg / pt or more. By the way, the moisture content in hot air that is not dehumidified above 1100 ° C is 25 g / Nm.
It is about 3 . There is no problem with the lower limit of the moisture content even if it is 1 g / Nm 3 or less from the viewpoint of flammability. However, in a general blower dehumidifying equipment, the dehumidifying capacity is at most 3 to 4 g / Nm 3 . Therefore, in reality, the lower limit is about 3 g / Nm 3 .

【0014】熱風の温度については、100kg/pt
以上の微粉炭吹き込み操業では、安定操業のために11
00℃以上が必要であり、上限は1200℃強とするの
が望ましい。
The temperature of the hot air is 100 kg / pt
In the above pulverized coal blowing operation, for stable operation, 11
The temperature is required to be 00 ° C or higher, and the upper limit is preferably 1200 ° C or higher.

【0015】熱風の湿分低下によってコークス比が低減
される理由は、次のように説明される。
The reason why the coke ratio is reduced by reducing the moisture content of the hot air is explained as follows.

【0016】先に説明したように、熱風中の湿分は、レ
ースウェイ内においてH2 O+C→H2 +COの反応に
よって遊離H2 が分解される。この反応は、吸熱反応で
あるために、熱バランス上、コークス比の上昇を招く。
ここで、熱風中の湿分が低下されると、その分、吸熱反
応が抑えられ、コークス比は低減される。
As described above, the moisture in the hot air is decomposed into free H 2 by the reaction of H 2 O + C → H 2 + CO in the raceway. Since this reaction is an endothermic reaction, it causes an increase in the coke ratio in terms of heat balance.
When the moisture content in the hot air is reduced, the endothermic reaction is suppressed and the coke ratio is reduced accordingly.

【0017】また、熱風中の湿分を低下させるにもかか
わらず、水素投入量不足による操業不安定が回避される
理由は、次のとおりである。
Further, the reason why the unstable operation due to the shortage of hydrogen input can be avoided despite the reduction of the moisture content in the hot air is as follows.

【0018】かってオールコークス操業においては、湿
分による吸熱反応の回避と湿分変動による炉内熱変動の
防止を目的として、熱風の脱湿が多くの高炉で実施され
ていた。ところが、羽口前の冷却剤(例えば微粉炭、重
油、タールなどの補助燃料、もしくは水蒸気、水スプレ
ーなど)が存在しないオールコークス操業においては、
逆に羽口からのH2 供給の欠如や、レースウェイ内の燃
焼温度のオーバーヒートにより、炉況が不安定となり、
熱風の脱湿は廃止となった。しかるに、微粉炭吹き込み
操業においては、微粉炭からH2 が供給され、且つ、微
粉炭の分解により燃焼温度がむしろ下限近くまで低下し
ている。そのため、熱風の脱湿により熱風中のH2 が減
少し、燃焼温度が上昇しても、炉況不安定の問題は生じ
ない。
In the all coke operation, hot air was dehumidified in many blast furnaces for the purpose of avoiding endothermic reaction due to moisture and preventing heat fluctuation in the furnace due to humidity fluctuation. However, in the all coke operation where there is no coolant in front of the tuyere (for example, pulverized coal, heavy oil, auxiliary fuel such as tar, steam, water spray, etc.),
On the contrary, due to the lack of H 2 supply from the tuyere and the overheating of the combustion temperature in the raceway, the furnace condition became unstable,
Dehumidification of hot air has been abolished. However, in the pulverized coal blowing operation, H 2 is supplied from the pulverized coal, and the combustion temperature is rather lowered to the lower limit due to the decomposition of the pulverized coal. Therefore, even if the H 2 in the hot air decreases due to dehumidification of the hot air and the combustion temperature rises, the problem of unstable furnace conditions does not occur.

【0019】[0019]

【実施例】微粉炭吹き込みによる高炉操業において、熱
風の湿分が微粉炭の燃焼性に及ぼす影響を調べるため
に、下記の実験を行った。実験装置を図1に示す。
[Examples] In a blast furnace operation by blowing pulverized coal, the following experiment was conducted in order to investigate the influence of the moisture content of hot air on the combustibility of pulverized coal. The experimental apparatus is shown in FIG.

【0020】耐火物で内張した内寸が1500L×10
00D×2500Hmmの燃焼炉1内に粒度25〜30
mmのコークス2を充填し、羽口3から熱風と共に微粉
炭を燃焼炉1内に吹き込んだ。熱風は酸素富化されない
1100℃の空気(酸素濃度は21容量%で一定、湿分
は種々に調整)とし、その吹き込み量は600m3 /H
とした。微粉炭は、揮発分約33%、灰分約12%の品
位とし、その吹き込み量は50kg/pt,100kg
/pt,150kg/ptの3種類とした。
Inner size lined with refractory is 1500L × 10
Particle size 25-30 in the combustion furnace 1 of 00D x 2500Hmm
mm coke 2 was charged, and pulverized coal was blown into the combustion furnace 1 from the tuyere 3 together with hot air. The hot air is air that is not enriched with oxygen at 1100 ° C. (oxygen concentration is constant at 21% by volume, moisture content is adjusted variously), and the blowing rate is 600 m 3 / H
And Pulverized coal has a volatile content of about 33% and an ash content of about 12%, and the blowing rate is 50 kg / pt, 100 kg.
/ Pt and 150 kg / pt.

【0021】コークス2および微粉炭の燃焼によって発
生した排ガスは、燃焼炉1の炉頂から排出し、燃焼によ
って消費されたコークスは、炉頂からのコークス装入に
よって補い、コークス充填層の高さを一定に維持した。
微粉炭の燃焼性は、羽口3の反対側から燃焼炉1内に挿
入したプローブ4により、羽口3から種々の距離の地点
で燃焼ガスをサンプリングし、サンプリングガス中の未
燃ダストを分析することにより評価した。プローブ4
は、羽口レベルとその上方700mmの2段に設置し
た。実験結果を図2に示す。
Exhaust gas generated by the combustion of coke 2 and pulverized coal is discharged from the furnace top of the combustion furnace 1, and the coke consumed by the combustion is supplemented by the charging of coke from the furnace top, and the height of the coke packed bed is increased. Was kept constant.
For the combustibility of pulverized coal, combustion gas is sampled at various distances from the tuyere 3 by the probe 4 inserted into the combustion furnace 1 from the opposite side of the tuyere 3 to analyze unburned dust in the sampling gas. It evaluated by doing. Probe 4
Were installed in two stages at the tuyere level and 700 mm above it. The experimental results are shown in FIG.

【0021】微粉炭吹き込み量が50kg/ptの場合
は、熱風湿分25g/Nm3 (非脱湿)の条件下でも、
微粉炭の燃焼率はレースウェイ先端で95%を超え、羽
口から1000mmの地点でほぼ100%になってい
る。熱風湿分が25g/Nm3 のままで微粉炭吹き込み
量を100kg/ptに増加すると、微粉炭の燃焼率
は、レースウェイ先端で70%強、羽口から1000m
mの地点で90%程度まで低下する。しかし、熱風湿分
を8g/Nm3 に低下させると、微粉炭の燃焼率は大幅
に向上し、羽口から1000mmの地点ではほぼ100
%となる。
When the pulverized coal blowing rate is 50 kg / pt, even under the condition of hot air humidity of 25 g / Nm 3 (non-dehumidified),
The combustion rate of pulverized coal exceeds 95% at the tip of the raceway, and is almost 100% at a point 1000 mm from the tuyere. Increasing the pulverized coal injection rate to 100 kg / pt while the hot air humidity remains 25 g / Nm 3 , the combustion rate of pulverized coal is over 70% at the tip of the raceway and 1000 m from the tuyere.
It drops to about 90% at the point of m. However, when the hot air humidity is reduced to 8 g / Nm 3 , the combustion rate of pulverized coal is significantly improved, and it is almost 100 at a point 1000 mm from the tuyere.
%.

【0022】微粉炭吹き込み量を150kg/ptまで
増加させた場合は、熱風湿分が25g/Nm3 のままで
は、微粉炭の燃焼率は極端に低下し、レースウェイ先端
で60%弱、羽口から1000mmの地点で80%程度
に過ぎない。しかし、熱風湿分を10g/Nm3 に低下
させると、微粉炭の燃焼率は羽口から100mmの地点
で95%程度まで改善され、熱風湿分を更に低下させて
5g/Nm3 とした場合は、羽口から1000mmの地
点でほぼ100%となる。
When the blowing amount of pulverized coal was increased to 150 kg / pt, the burning rate of pulverized coal was extremely reduced with the hot air humidity remaining at 25 g / Nm 3 , and the wing was less than 60% at the tip of the raceway. Only about 80% at a point 1000 mm from the mouth. However, when the hot air humidity was reduced to 10 g / Nm 3 , the combustion rate of pulverized coal was improved to about 95% at the point 100 mm from the tuyere, and when the hot air moisture was further reduced to 5 g / Nm 3. Is almost 100% at a point 1000 mm from the tuyere.

【0023】ちなみに、熱風湿分を25g/Nm3 のま
まにして酸素富化により同程度の燃焼率を確保しようと
した場合は、次のようになる。微粉炭吹き込み量が10
0kg/ptで熱風湿分が8g/Nm3 のときと同程度
の燃焼率を得るためには、約+2.0容量%の酸素富化が
必要になる。150kg/ptで5g/Nm3 の燃焼率
を得るには、約+2.5容量%の酸素富化が必要になる。
By the way, when the hot air humidity is kept at 25 g / Nm 3 and an attempt is made to secure a similar burning rate by enriching oxygen, the following will occur. Pulverized coal injection amount is 10
Oxygen enrichment of about + 2.0% by volume is required in order to obtain the same burning rate as when hot air humidity is 8 g / Nm 3 at 0 kg / pt. To obtain a burn rate of 5 g / Nm 3 at 150 kg / pt, an oxygen enrichment of about +2.5 vol% is required.

【0024】[0024]

【発明の効果】以上の説明から明らかなように、本発明
の高炉操業方法は、100kg/pt以上の多量の微粉
炭を吹き込むにもかかわらず、優れた燃焼性を確保す
る。しかも、燃焼性の確保に酸素を使用せず、熱風の脱
湿を用い、脱湿によるコストの増加分はコークス比の低
減により相殺される。そのため、酸素富化を実施する場
合に比して、高炉操業コストを著しく低下させることが
できる。更に、熱風の脱湿に伴う操業不安定も回避され
る。従って、微粉炭吹き込み操業の推進に大きな効果を
発揮する。
As is apparent from the above description, the blast furnace operating method of the present invention ensures excellent combustibility despite blowing a large amount of pulverized coal of 100 kg / pt or more. Moreover, oxygen is not used to secure combustibility, hot air is dehumidified, and the increase in cost due to dehumidification is offset by the reduction in coke ratio. Therefore, the blast furnace operating cost can be significantly reduced as compared with the case where oxygen enrichment is performed. Further, unstable operation due to dehumidification of hot air can be avoided. Therefore, it has a great effect on the promotion of the pulverized coal blowing operation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施効果を調査するための実験装置を
示す模式図である。
FIG. 1 is a schematic diagram showing an experimental device for investigating the effect of implementing the present invention.

【図2】本発明の実施効果の調査結果を示す図表であ
る。
FIG. 2 is a chart showing the results of an investigation of the effects of implementing the present invention.

【符号の説明】[Explanation of symbols]

1 燃焼炉 2 コークス 3 羽口 1 combustion furnace 2 coke 3 tuyeres

Claims (1)

【特許請求の範囲】 【請求項1】 高炉羽口から100kg/pt以上の微
粉炭を、温度が1100℃以上で且つ湿分が10g/N
3 以下の酸素富化されていない熱風と共に吹き込むこ
とを特徴とする高炉操業方法。
Claims: 1. A pulverized coal of 100 kg / pt or more from a tuyere of a blast furnace at a temperature of 1100 ° C. or more and a moisture content of 10 g / N.
A method for operating a blast furnace, which comprises blowing with hot air of m 3 or less that is not oxygen-enriched.
JP18543491A 1991-06-28 1991-06-28 Method for operating blast furnace Pending JPH059517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18543491A JPH059517A (en) 1991-06-28 1991-06-28 Method for operating blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18543491A JPH059517A (en) 1991-06-28 1991-06-28 Method for operating blast furnace

Publications (1)

Publication Number Publication Date
JPH059517A true JPH059517A (en) 1993-01-19

Family

ID=16170724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18543491A Pending JPH059517A (en) 1991-06-28 1991-06-28 Method for operating blast furnace

Country Status (1)

Country Link
JP (1) JPH059517A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002146414A (en) * 2000-11-06 2002-05-22 Nippon Steel Corp Method for operating blast furnace
CN103782002A (en) * 2011-08-26 2014-05-07 罗伯特·博世有限公司 Dosing system for a liquid reducing agent
US9200557B2 (en) 2010-06-21 2015-12-01 Scania Cv Ab Method pertaining to air removal from a dosing system at an SCR system and a SCR system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002146414A (en) * 2000-11-06 2002-05-22 Nippon Steel Corp Method for operating blast furnace
JP4598256B2 (en) * 2000-11-06 2010-12-15 新日本製鐵株式会社 Blast furnace operation method
US9200557B2 (en) 2010-06-21 2015-12-01 Scania Cv Ab Method pertaining to air removal from a dosing system at an SCR system and a SCR system
CN103782002A (en) * 2011-08-26 2014-05-07 罗伯特·博世有限公司 Dosing system for a liquid reducing agent

Similar Documents

Publication Publication Date Title
US6206949B1 (en) NOx reduction using coal based reburning
KR100381931B1 (en) A method for providing a blast stream into a blast furnace
JP3771728B2 (en) Blowing pulverized coal and reducing gas into the blast furnace
JP2003286511A (en) Method for improving flammability of low-volatile pulverized coal in blast furnace
CN112342327A (en) Vanadium titano-magnetite blast furnace smelting method based on theoretical combustion temperature control
KR101341758B1 (en) Arc furnace steelmaking process using palm shell charcoal
JPH059517A (en) Method for operating blast furnace
JP6098765B2 (en) Method of injecting pulverized coal into oxygen blast furnace
EP1430255B1 (en) Method for largely unsupported combustion of petroleum coke
KR101657019B1 (en) Method for producing pig iron and blast furnace facility using same
CN109252006A (en) The coal powder injection apparatus of blast furnace and its control method of controllable medium-speed pulverizer entrance oxygen content
JP3855635B2 (en) Blast furnace operation method
JPH06128614A (en) Operation of blast furnace
JP4555666B2 (en) Method for promoting combustion of blast furnace-blown pulverized coal
WO2017170100A1 (en) Method for operating blast furnace
JP2018024941A (en) Blast furnace operation method
JPH04354810A (en) Method for blowing fine coal into blast furnace and device therefor
RU2171848C2 (en) Method of hot blowing of blast furnace
SU1766948A1 (en) Method for preparation of artificial gases to combustion
JPH062020A (en) Method for blowing powdery fuel into blast furnace
SU1244183A2 (en) Method of feeding natural gas to blast furnace tuyeres
JP2627232B2 (en) Blast furnace operation method
JPH0778246B2 (en) Method of blowing pulverized coal into the blast furnace
JPS6357704A (en) Operation of blast furnace
JPH0130045B2 (en)