JPH04354810A - Method for blowing fine coal into blast furnace and device therefor - Google Patents

Method for blowing fine coal into blast furnace and device therefor

Info

Publication number
JPH04354810A
JPH04354810A JP15577691A JP15577691A JPH04354810A JP H04354810 A JPH04354810 A JP H04354810A JP 15577691 A JP15577691 A JP 15577691A JP 15577691 A JP15577691 A JP 15577691A JP H04354810 A JPH04354810 A JP H04354810A
Authority
JP
Japan
Prior art keywords
pulverized coal
fine coal
blast furnace
furnace
preheating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP15577691A
Other languages
Japanese (ja)
Inventor
Masashi Maeda
正史 前田
Katsuhiro Tanaka
勝博 田中
Morihiro Hasegawa
長谷川 守弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP15577691A priority Critical patent/JPH04354810A/en
Publication of JPH04354810A publication Critical patent/JPH04354810A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)
  • Blast Furnaces (AREA)

Abstract

PURPOSE:To improve combustibility of fine coal and to enable the blowing of a large quantity of fine coal for reducing coke ratio by preheating the fine coal blown into a blast furnace. CONSTITUTION:At the time of blowing the fine coal 14 supplied from a hopper 11 through a supplying piping 13 and a lance 12 into the blast furnace 40 from a tuyere 41, the fine coal 14 is preheated at >=200 deg.C with a preheating device 20 arranged in the supplying piping 13. The preheated fine coal 14 is blown into a raceway 42 from the tuyere 41 together with hot blast 31 fed from a blowing pipe 30. Therefore, the fine coal preheated at >=200 deg.C generates a hydrocarbon series gas. By this gas generation, combustion of the fine coal is quickly started. Further, since trace of the gas generation if remained as gas pores in the fine coal, specific surface area is increased and the combustibility is improved. In this result, the blown fine coal 14 is perfectly burnt in the raceway 42 and unburnt char 43 causing an undesirable furnace condition is not remained in the furnace.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、高炉羽口から熱風と共
に微粉炭を吹き込むことによりコークス比を低減させる
微粉炭吹込み方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pulverized coal injection method and apparatus for reducing a coke ratio by blowing pulverized coal together with hot air from a blast furnace tuyere.

【0002】0002

【従来の技術】羽口から高炉に吹き込まれた微粉炭は、
炉内で熱源として消費される。この微粉炭吹込みによっ
て高価なコークスの使用量が節減され、溶銑の製造コス
トを下げることができる。そのため、高炉に微粉炭を吹
き込む操業法が近年実施されるようになってきている。 また、微粉炭の吹込み量も、コークス消費量を低下させ
る上から増加の一途をたどっている。
[Prior art] Pulverized coal is blown into a blast furnace through a tuyere.
It is consumed as a heat source in the furnace. This pulverized coal injection reduces the amount of expensive coke used and lowers the production cost of hot metal. Therefore, in recent years, an operating method in which pulverized coal is injected into the blast furnace has been implemented. Furthermore, the amount of pulverized coal injected is also increasing in order to reduce coke consumption.

【0003】高炉に吹込まれた微粉炭は、炉内の酸素と
反応して燃焼し、鉄鉱石の還元及び還元された鉄の溶融
に必要な高温雰囲気を維持する。しかし、微粉炭は、燃
焼性が悪く、炉内に堆積し易い。この燃焼性を改善する
ため、微粉炭と共に吹き込まれる熱風の酸素富化率を増
大することが採用されている。
[0003] Pulverized coal injected into a blast furnace reacts with oxygen in the furnace and burns, maintaining a high temperature atmosphere necessary for reducing iron ore and melting the reduced iron. However, pulverized coal has poor combustibility and tends to accumulate in the furnace. In order to improve this combustibility, it has been adopted to increase the oxygen enrichment rate of the hot air blown in with the pulverized coal.

【0004】0004

【発明が解決しようとする課題】酸素富化率を高めた熱
風をキャリアガスとして使用するとき、十分な量の酸素
が供給されるため、微粉炭の燃焼効率が向上する。しか
し、酸素富化率を大幅に高めると、酸素原単位が高くな
り、溶銑コストの低減につながらない。そこで、実操業
上では、依然として微粉炭の燃焼性に問題が残っている
[Problems to be Solved by the Invention] When hot air with an increased oxygen enrichment rate is used as a carrier gas, a sufficient amount of oxygen is supplied, so that the combustion efficiency of pulverized coal is improved. However, significantly increasing the oxygen enrichment rate increases the oxygen consumption rate and does not lead to a reduction in hot metal cost. Therefore, in actual operation, there still remains a problem with the combustibility of pulverized coal.

【0005】多量の微粉炭を高炉に吹き込むとき、炉内
に未燃焼の微粉炭が堆積することが避けられない。その
結果、微粉炭の吹込み量を大きくしても、コークス比の
低減につながらない。また、未燃焼の微粉炭が炉内に堆
積すると、高炉の通気性が低下する。しかも、微粉炭の
堆積が不規則な状態で発生するため、炉内を通過する熱
風に偏流が生じる。その結果、通気性の高い部分では吹
抜けが発生し、通気性の低い部分では十分な製錬反応が
進行しない不安定な操業状態になる。これにより、高炉
の有効内容積が低下し、出銑量の低下を招く。
[0005] When a large amount of pulverized coal is injected into a blast furnace, it is inevitable that unburned pulverized coal will accumulate in the furnace. As a result, even if the amount of pulverized coal injected is increased, it does not lead to a reduction in the coke ratio. Furthermore, when unburned pulverized coal accumulates in the furnace, the ventilation of the blast furnace decreases. Moreover, since the pulverized coal is deposited in an irregular manner, the hot air passing through the furnace is biased. As a result, blow-through occurs in areas with high air permeability, and an unstable operating state occurs in which the smelting reaction does not proceed sufficiently in areas with low air permeability. As a result, the effective internal volume of the blast furnace decreases, leading to a decrease in the amount of iron output.

【0006】本発明は、このような問題を解消すべく案
出されたものであり、高炉に吹込まれる微粉炭を予め予
熱することにより、微粉炭の燃焼性を高め、コークス比
を低下しても安定した炉況を維持し、多量の微粉炭吹込
みによって安価に溶銑を製造することを目的とする。
The present invention was devised to solve these problems, and by preheating the pulverized coal that is injected into the blast furnace, the combustibility of the pulverized coal is increased and the coke ratio is reduced. The purpose of this project is to maintain stable furnace conditions even at low temperatures, and to produce hot metal at a low cost by injecting a large amount of pulverized coal.

【0007】[0007]

【課題を解決するための手段】本発明の微粉炭吹込み方
法は、その目的を達成するため、微粉炭を予め200℃
以上に予熱した後で熱風と接触させ、前記熱風と共に前
記微粉炭を高炉に吹き込むことを特徴とする。高炉に吹
込まれる微粉炭の予熱は、500℃以下にすることが好
ましい。
[Means for Solving the Problems] In order to achieve the purpose of the pulverized coal injection method of the present invention, pulverized coal is heated to 200°C in advance.
After being preheated as described above, the pulverized coal is brought into contact with hot air, and the pulverized coal is blown into the blast furnace together with the hot air. Preheating of the pulverized coal injected into the blast furnace is preferably 500°C or less.

【0008】また、この方法に使用する吹込み装置は、
微粉炭を収容するホッパーとブローパイプを貫通して高
炉羽口内に臨むランスとを接続する微粉炭供給配管と、
該微粉炭供給配管の途中に設けられた予熱装置と、該予
熱装置の下流側に設けられ、予熱後の微粉炭の温度を検
出する温度検出器とを備えており、該温度検出器によっ
て検出された微粉炭の温度に基づいて前記予熱装置の予
熱能力を調整することを特徴とする。
[0008] Furthermore, the blowing device used in this method is
a pulverized coal supply pipe that connects a hopper that accommodates pulverized coal and a lance that passes through the blow pipe and faces into the blast furnace tuyere;
The pulverized coal supply pipe includes a preheating device installed in the middle of the pulverized coal supply pipe, and a temperature detector installed downstream of the preheating device to detect the temperature of the pulverized coal after preheating. The preheating capacity of the preheating device is adjusted based on the temperature of the pulverized coal.

【0009】[0009]

【作  用】予熱により微粉炭の燃焼性が向上する理由
は、次の通りと推察される。微粉炭は、温度が200℃
以上になると熱分解し易くなる。熱分解の初期段階では
、CO2 ,H2 O等のガスが発生する。微粉炭の温
度が上昇するに従って、次第に炭化水素系のタールやガ
スが発生する。これらガス等の発生により、予熱した微
粉炭が着火するまでの時間は、予熱しない微粉炭に比較
して格段に短くなっている。しかも、炭化水素系のガス
が微粉炭よりも優先的に燃焼するため、微粉炭の温度が
急激に上昇し、熱分解反応が高速で進行する。
[Operation] The reason why the combustibility of pulverized coal is improved by preheating is presumed to be as follows. The temperature of pulverized coal is 200℃
If the temperature is higher than that, thermal decomposition will easily occur. At the initial stage of thermal decomposition, gases such as CO2 and H2O are generated. As the temperature of pulverized coal rises, hydrocarbon tar and gas are gradually generated. Due to the generation of these gases, the time it takes for preheated pulverized coal to ignite is much shorter than for pulverized coal that is not preheated. Moreover, since the hydrocarbon gas burns preferentially over the pulverized coal, the temperature of the pulverized coal rises rapidly and the thermal decomposition reaction proceeds at high speed.

【0010】微粉炭は、高速の熱分解によって爆裂し、
細粒化する。細粒化に伴って微粉炭から熱分解生成ガス
が離脱すると共に、残留する炭素を主成分とする固体、
すなわちチャーにガス放出の痕跡が多数の気孔となり、
チャーを多孔質にする。その結果、予熱を施さない場合
に比較して、チャーの比表面積が増大する。これによっ
ても、燃焼性の向上が図られる。
[0010] Pulverized coal explodes due to high-speed thermal decomposition,
Refine grains. As the pulverized coal becomes finer, the gas produced by thermal decomposition is released from the pulverized coal, and the remaining solid mainly composed of carbon,
In other words, traces of gas release in the char become many pores,
Makes the char porous. As a result, the specific surface area of the char increases compared to the case without preheating. This also improves combustibility.

【0011】微粉炭の燃焼性向上は、200℃以上の予
熱温度で顕著に現れる。そして、予熱温度を高く設定す
るほど、燃焼性がよくなる。しかし、500℃を超える
予熱温度では、微粉炭から発生するタールの量が多量に
なる。タールは、冷却されたとき凝集して微粉炭供給配
管の内部に堆積し、配管を閉塞させる虞れがある。そこ
で、供給配管に保温装置或いは加熱装置を取り付け、高
炉内部に吹き込まれるまで微粉炭の温度低下を防止する
ことが好ましい。或いは、予熱温度を500℃以下に設
定し、タールの発生を抑制することも有効である。
[0011] The combustibility of pulverized coal is significantly improved at a preheating temperature of 200°C or higher. The higher the preheating temperature is set, the better the combustibility becomes. However, if the preheating temperature exceeds 500°C, a large amount of tar will be generated from the pulverized coal. When the tar is cooled, it aggregates and accumulates inside the pulverized coal supply pipe, potentially clogging the pipe. Therefore, it is preferable to attach a heat retaining device or a heating device to the supply pipe to prevent the temperature of the pulverized coal from decreasing until it is blown into the blast furnace. Alternatively, it is also effective to set the preheating temperature to 500° C. or lower to suppress the generation of tar.

【0012】以下、図面を参照しながら、本発明を具体
的に説明する。微粉炭吹込み装置10は、たとえば図1
に示すように、微粉炭を収容するホッパー11とランス
12とを供給配管13で接続している。ホッパー11に
は、ミル等によって細かく破砕された微粉炭14が収容
されている。ホッパー11の下部に設けられた切出し口
15に、キャリアガス供給管16が臨んでいる。微粉炭
14は、キャリアガス供給管16を介して送られてきた
キャリアガス17によってホッパー11から切り出され
、供給配管13に送り込まれる。
The present invention will be specifically explained below with reference to the drawings. For example, the pulverized coal injection device 10 is shown in FIG.
As shown in the figure, a hopper 11 containing pulverized coal and a lance 12 are connected by a supply pipe 13. The hopper 11 stores pulverized coal 14 that has been finely crushed by a mill or the like. A carrier gas supply pipe 16 faces a cutting opening 15 provided at the bottom of the hopper 11 . Pulverized coal 14 is cut out from hopper 11 by carrier gas 17 sent through carrier gas supply pipe 16 and fed into supply pipe 13 .

【0013】供給配管13の途中には、予熱装置20が
設けられている。図示の場合、供給配管13の外周に熱
媒導管21を巻き付け、高温ガス22を熱媒導管21に
送り込んでいる。高温ガス22の熱は、熱媒導管21及
び供給配管13の管壁を介して供給配管13内を流動し
ている微粉炭14に伝達され、微粉炭14を昇温する。 高温ガス22としては、燃焼排ガスや高炉排ガス等を使
用することができる。なお、本発明は、図1に示した加
熱方式に拘束されるものではなく、たとえば電熱ヒータ
を供給配管13の外周に巻き付けた加熱方式,供給配管
13内を流動する微粉炭14にプラズマ,電子ビームを
照射する直接加熱方式等を適宜採用することができる。
A preheating device 20 is provided in the middle of the supply pipe 13. In the illustrated case, a heat medium conduit 21 is wound around the outer periphery of the supply pipe 13, and high temperature gas 22 is sent into the heat medium conduit 21. The heat of the high-temperature gas 22 is transferred to the pulverized coal 14 flowing in the supply pipe 13 via the heat medium conduit 21 and the pipe wall of the supply pipe 13, raising the temperature of the pulverized coal 14. As the high temperature gas 22, combustion exhaust gas, blast furnace exhaust gas, etc. can be used. Note that the present invention is not limited to the heating method shown in FIG. A direct heating method using a beam irradiation, etc. can be adopted as appropriate.

【0014】予熱装置20の下流側には、温度検出器2
3が設けられている。温度検出器23の検出端子24は
、供給配管13の内部に臨んでおり、供給配管13を流
動している微粉炭14或いはキャリアガス17の温度を
直接測定する。この時、微粉炭14は、非常に細かな粒
径であるので、キャリアガス17と実質的に同じ温度と
なっている。測定結果は、適宜の制御回路(図示せず)
を介して高温ガス供給系統に送られ、熱媒導管21に送
り込まれる高温ガス22の流量を制御する。これにより
、微粉炭14が200℃以上の一定温度に予熱される。 なお、微粉炭14の温度測定は、供給配管13内を流動
する微粉炭14の温度を直接測定する方式に代え、供給
配管13の管壁を介した間接測定によって行うこともで
きる。
A temperature detector 2 is provided downstream of the preheating device 20.
3 is provided. The detection terminal 24 of the temperature detector 23 faces the inside of the supply pipe 13 and directly measures the temperature of the pulverized coal 14 or carrier gas 17 flowing through the supply pipe 13. At this time, since the pulverized coal 14 has a very fine particle size, it has substantially the same temperature as the carrier gas 17. The measurement results are displayed using an appropriate control circuit (not shown).
The flow rate of the hot gas 22 that is sent to the hot gas supply system through the heat medium conduit 21 is controlled. Thereby, the pulverized coal 14 is preheated to a constant temperature of 200° C. or higher. Note that the temperature measurement of the pulverized coal 14 can be performed by indirect measurement via the pipe wall of the supply pipe 13 instead of directly measuring the temperature of the pulverized coal 14 flowing in the supply pipe 13.

【0015】予熱された微粉炭14が、ランス12を経
て高炉40の羽口41から炉内に吹き込まれるまでの間
に、大気によって冷却される場合がある。そこで、ラン
ス12の外周に保温材25を巻き付け、微粉炭14の温
度低下を防止する。これにより、微粉炭14から生じた
タールが供給配管13或いはランス12内に凝集・堆積
することがないので、安定した条件下で微粉炭14を炉
内に送り込むことが可能になる。
The preheated pulverized coal 14 may be cooled by the atmosphere before it is blown into the furnace from the tuyere 41 of the blast furnace 40 through the lance 12. Therefore, a heat insulating material 25 is wrapped around the outer periphery of the lance 12 to prevent the temperature of the pulverized coal 14 from decreasing. This prevents the tar generated from the pulverized coal 14 from coagulating and depositing in the supply pipe 13 or the lance 12, making it possible to feed the pulverized coal 14 into the furnace under stable conditions.

【0016】ランス12の先端は、ブローパイプ30の
管壁を貫通して、羽口41に臨んでいる。そして、ブロ
ーパイプ30を経て送り込まれる熱風31と共に、微粉
炭14が羽口41から炉内に吹き込まれる。
The tip of the lance 12 passes through the wall of the blow pipe 30 and faces the tuyere 41. The pulverized coal 14 is blown into the furnace from the tuyere 41 together with the hot air 31 sent through the blow pipe 30.

【0017】吹き込まれた微粉炭14は、予め200℃
以上の温度に加熱されているので、レースウェイ42に
到達すると同時に、炭化水素系ガスの発生及び燃焼を開
始する。また、その結果生じたチャーも、レースウェイ
42内で迅速に燃焼する。すなわち、未燃のチャーが発
生し難く、安定した炉況が維持される。このように、微
粉炭14を予熱することによって、羽口41及びレース
ウェイ42における微粉炭或いはチャーの燃焼を迅速に
行わせ、未燃焼のチャーが炉内に残留することが防止さ
れる。その結果、コークス比を低減して多量の微粉炭を
吹き込む高炉操業が可能となる。
The blown pulverized coal 14 is heated to 200°C in advance.
Since it has been heated to the above temperature, the generation and combustion of hydrocarbon gas starts as soon as it reaches the raceway 42. The resulting char also burns quickly within the raceway 42. That is, unburned char is less likely to occur, and a stable furnace condition is maintained. By preheating the pulverized coal 14 in this way, the combustion of the pulverized coal or char in the tuyere 41 and raceway 42 is carried out quickly, and unburned char is prevented from remaining in the furnace. As a result, it becomes possible to operate the blast furnace by reducing the coke ratio and injecting a large amount of pulverized coal.

【0018】これに対し、予熱を施さない微粉炭14が
吹き込む操業では、未燃焼のチャー43が多量に発生す
ることが、炉内に挿入したプローブによって観察された
。未燃焼のチャー43が炉内を上昇するとコークス層4
4に捕捉され、炉内の通気性を低下させる。また、炉心
45に未燃焼のチャー43が堆積すると、炉心45の通
気性及び通液性が悪化する。そのため、微粉炭の吹込み
量に上限があり、また吹込み量を増加させてもコークス
比の低減につながらない事態になる。
On the other hand, in an operation in which pulverized coal 14 is injected without preheating, it was observed with a probe inserted into the furnace that a large amount of unburned char 43 was generated. When unburned char 43 rises inside the furnace, a coke layer 4
4 and reduces the ventilation inside the furnace. Furthermore, if unburned char 43 accumulates in the core 45, the air permeability and liquid permeability of the core 45 will deteriorate. Therefore, there is an upper limit to the amount of pulverized coal injected, and even if the amount of pulverized coal is increased, the coke ratio will not be reduced.

【0019】[0019]

【実施例】半径1.5mの扇形断面を持ったコークス燃
焼炉を使用して、本発明法を検証した。予熱装置20,
ブローパイプ30等は図1と同様に配置し、微粉炭14
の予熱に電熱ヒータを使用した。また、レースウェイ4
2の外部に排出される未燃焼のチャー43を採取するプ
ローブをコークス燃焼炉に挿入した。
EXAMPLE The method of the present invention was verified using a coke combustion oven having a fan-shaped cross section with a radius of 1.5 m. preheating device 20,
The blow pipe 30 etc. are arranged in the same manner as in Fig. 1, and the pulverized coal 14
An electric heater was used for preheating. Also, Raceway 4
A probe for collecting unburned char 43 discharged to the outside of the coke combustion furnace was inserted into the coke combustion furnace.

【0020】プローブを介して得られた未燃焼のチャー
を分析し、分析値及び採取量からコークス燃焼炉に吹込
まれた微粉炭14の燃焼効率を算出した。算出結果を、
操業条件と共に表1に示す。なお、表1には、各操業条
件での微粉炭吹込み量と熱風風量との比に対応する実炉
での微粉炭比を掲げた。また、予熱しない微粉炭を吹込
んだ場合を、比較例として併せ示した。
[0020] The unburned char obtained through the probe was analyzed, and the combustion efficiency of the pulverized coal 14 injected into the coke combustion furnace was calculated from the analyzed value and the amount collected. The calculation result,
Table 1 shows the operating conditions. Note that Table 1 lists the pulverized coal ratio in the actual furnace corresponding to the ratio between the amount of pulverized coal injected and the amount of hot air air under each operating condition. In addition, a case where pulverized coal without preheating was injected was also shown as a comparative example.

【0021】[0021]

【表1】[Table 1]

【0022】表1から明らかなように、微粉炭を予熱し
ないことを除き、実施例1〜3と同じ操業条件を採用し
た比較例1においては、微粉炭の燃焼効率が68%と極
めて低い値を示している。これに対し、微粉炭を予熱し
た実施例1〜3では、96%以上の高い燃焼効率が得ら
れている。また、実施例1〜3とほぼ同じ燃焼効率を得
るためには、比較例2でみられるように、酸素富化率を
6%と高くすることが必要であった。この対比から、微
粉炭の予熱によって燃焼効率が向上し、コークス比を低
下させた高い微粉炭比で高炉を操業できることが判る。
As is clear from Table 1, in Comparative Example 1, which adopted the same operating conditions as Examples 1 to 3 except that the pulverized coal was not preheated, the combustion efficiency of pulverized coal was an extremely low value of 68%. It shows. On the other hand, in Examples 1 to 3 in which pulverized coal was preheated, a high combustion efficiency of 96% or more was obtained. Furthermore, in order to obtain substantially the same combustion efficiency as Examples 1 to 3, it was necessary to increase the oxygen enrichment rate to 6%, as seen in Comparative Example 2. This comparison shows that combustion efficiency is improved by preheating pulverized coal, and the blast furnace can be operated at a high pulverized coal ratio with a lower coke ratio.

【0023】[0023]

【発明の効果】以上に説明したように、高炉に吹込まれ
る微粉炭を予熱することによって、微粉炭の燃焼性を向
上させ、羽口やレースウェイにおける微粉炭の燃焼を図
っている。そのため、未燃焼のチャーが炉内を上昇して
コークス層に堆積したり、炉心に堆積して炉内の通気性
,通液性等を悪化させることがない。そのため、炉況を
不安定にすることなく多量の微粉炭吹込みが可能となり
、コークス比を低減させ、溶銑の製造コストを下げるこ
とができる。
[Effects of the Invention] As explained above, by preheating the pulverized coal that is injected into the blast furnace, the combustibility of the pulverized coal is improved and the pulverized coal is combusted in the tuyeres and raceways. Therefore, unburned char does not rise in the furnace and accumulate in the coke layer, or in the core, thereby deteriorating the air permeability, liquid permeability, etc. in the furnace. Therefore, a large amount of pulverized coal can be injected without making the furnace conditions unstable, the coke ratio can be reduced, and the production cost of hot metal can be lowered.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】  本発明に従った微粉炭吹込み装置の一例を
示す。
FIG. 1 shows an example of a pulverized coal injection device according to the present invention.

【符号の説明】[Explanation of symbols]

11  ホッパー          12  ランス
          13  微粉炭供給配管 14  微粉炭            20  予熱
装置        23  温度検出器 30  ブローパイプ      40  高炉   
         41  羽口
11 Hopper 12 Lance 13 Pulverized coal supply pipe 14 Pulverized coal 20 Preheating device 23 Temperature detector 30 Blow pipe 40 Blast furnace
41 Tuyere

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  微粉炭を予め200℃以上に予熱した
後で熱風と接触させ、前記熱風と共に前記微粉炭を高炉
に吹き込むことを特徴とする高炉への微粉炭吹込み方法
1. A method for injecting pulverized coal into a blast furnace, which comprises preheating pulverized coal to 200° C. or higher, bringing it into contact with hot air, and blowing the pulverized coal together with the hot air into the blast furnace.
【請求項2】  微粉炭を収容するホッパーとブローパ
イプを貫通して高炉羽口内に臨むランスとを接続する微
粉炭供給配管と、該微粉炭供給配管の途中に設けられた
予熱装置と、該予熱装置の下流側に設けられ、予熱され
た微粉炭の温度を検出する温度検出器とを備えており、
該温度検出器によって検出された微粉炭の温度に基づい
て前記予熱装置の予熱能力を調整することを特徴とする
微粉炭吹込み装置。
2. A pulverized coal supply pipe that connects a hopper containing pulverized coal and a lance that passes through a blow pipe and faces into the blast furnace tuyere, a preheating device provided in the middle of the pulverized coal supply pipe, It is equipped with a temperature detector that is installed downstream of the preheating device and detects the temperature of the preheated pulverized coal.
A pulverized coal injection device, characterized in that the preheating capacity of the preheating device is adjusted based on the temperature of the pulverized coal detected by the temperature detector.
JP15577691A 1991-05-30 1991-05-30 Method for blowing fine coal into blast furnace and device therefor Withdrawn JPH04354810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15577691A JPH04354810A (en) 1991-05-30 1991-05-30 Method for blowing fine coal into blast furnace and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15577691A JPH04354810A (en) 1991-05-30 1991-05-30 Method for blowing fine coal into blast furnace and device therefor

Publications (1)

Publication Number Publication Date
JPH04354810A true JPH04354810A (en) 1992-12-09

Family

ID=15613159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15577691A Withdrawn JPH04354810A (en) 1991-05-30 1991-05-30 Method for blowing fine coal into blast furnace and device therefor

Country Status (1)

Country Link
JP (1) JPH04354810A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003524700A (en) * 1997-10-15 2003-08-19 ポール ヴルス エス.エイ. Method and apparatus for injecting reducing agent into blast furnace
KR100605715B1 (en) * 2001-12-26 2006-08-01 주식회사 포스코 Method for increasing the pulverized coal combustion at blast furnace operation
JP2019059985A (en) * 2017-09-27 2019-04-18 Jfeスチール株式会社 Blast furnace operation method and fine coal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003524700A (en) * 1997-10-15 2003-08-19 ポール ヴルス エス.エイ. Method and apparatus for injecting reducing agent into blast furnace
KR100605715B1 (en) * 2001-12-26 2006-08-01 주식회사 포스코 Method for increasing the pulverized coal combustion at blast furnace operation
JP2019059985A (en) * 2017-09-27 2019-04-18 Jfeスチール株式会社 Blast furnace operation method and fine coal

Similar Documents

Publication Publication Date Title
KR100381931B1 (en) A method for providing a blast stream into a blast furnace
JP6354962B2 (en) Oxygen blast furnace operation method
KR850001278B1 (en) Direct reduction rotary kiln with improved air injection
KR100187693B1 (en) Scrap melting method
JPH04354810A (en) Method for blowing fine coal into blast furnace and device therefor
CA1092833A (en) Method and apparatus for recovering lead from battery mud
JP2005213591A (en) Method for blowing solid fuel into blast furnace and blowing lance
JP2000192129A (en) Operation of converter
US4772318A (en) Process for the production of steel from scrap
JP3395943B2 (en) Combustion burners used in metallurgical furnaces
JPH06128614A (en) Operation of blast furnace
JP2015157979A (en) Production method of sintered ore
CA1119001A (en) Process of directly reducing iron oxide-containing materials
KR101981452B1 (en) Apparatus and Method for Manufacturing Sintered Ore
JPH09217065A (en) Dry quenching of coke
KR100406377B1 (en) Device for removing the tar of burner for recompensing deoxidation gas
JPH0723502B2 (en) Hot metal manufacturing method
JP3132312B2 (en) How to blow pulverized coal into the blast furnace
JP2002303412A (en) Method for gasifying and melting waste
WO2020022631A1 (en) Method for manufacturing molten iron and apparatus for manufacturing molten iron
JPH0778246B2 (en) Method of blowing pulverized coal into the blast furnace
JPH01129094A (en) Method and apparatus for gasification of red-hot coke wherein cdq is utilized
JP2005213590A (en) Method for blowing solid fuel into blast furnace and blowing lance
JPH06172829A (en) Operation of blast furnace in blowing pulverized coal
JPH0723503B2 (en) Hot metal manufacturing method

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980806