JP2009298909A - Utilizing method of pyrolysis char as carbonaceous material for sintering - Google Patents

Utilizing method of pyrolysis char as carbonaceous material for sintering Download PDF

Info

Publication number
JP2009298909A
JP2009298909A JP2008154585A JP2008154585A JP2009298909A JP 2009298909 A JP2009298909 A JP 2009298909A JP 2008154585 A JP2008154585 A JP 2008154585A JP 2008154585 A JP2008154585 A JP 2008154585A JP 2009298909 A JP2009298909 A JP 2009298909A
Authority
JP
Japan
Prior art keywords
coal
pyrolysis
char
gas
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008154585A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kotsuru
広行 小水流
Taku Takeda
卓 武田
Katsushi Kosuge
克志 小菅
Hideaki Yabe
英昭 矢部
Yasuki Namiki
泰樹 並木
Masumi Itonaga
眞須美 糸永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Engineering Co Ltd filed Critical Nippon Steel Engineering Co Ltd
Priority to JP2008154585A priority Critical patent/JP2009298909A/en
Publication of JP2009298909A publication Critical patent/JP2009298909A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To produce a carbonaceous material used in a sintering process in an iron producing process. <P>SOLUTION: Two-stage reactors of a lower gas stream layer gasification oven and an upper gas stream layer thermal decomposition oven are used. In the gasification oven, oxygen or oxygen and steam are charged together with coal, and gasified gas is generated by partial oxidation of the coal. In the thermal decomposition oven, coal is charged and the coal is thermally decomposed by sensible heat of the gasified gas moved from the gasification oven to generate pyrolysis char and thermal decomposed gas. The pyrolysis char is recovered and the recovered char is used as the carbonaceous material in a sintering raw material process in the iron producing process. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、石炭を気流層中で急速にガス化および熱分解させて、ガス、タール、チャーを製造するプロセスから生成したチャーを、製鉄プロセスにおける焼結工程で使用する方法に関するものである。   The present invention relates to a method of using char generated from a process of producing gas, tar and char by rapidly gasifying and pyrolyzing coal in an air flow layer in a sintering process in an iron making process.

鉄鋼製造プロセスにおいて、鉄鉱石は高炉で使用するために原料焼結工程において焼結鉱とする必要がある。原料焼結工程において、現状では、粒径が小さすぎて高炉で使用できない粉コークスに加え、足りない分を石炭等で補充した炭材を、鉄鉱石に混合して、炭材の燃焼熱を用いて焼き固められている。
原料焼結工程における該燃焼の際に炭材中の窒素分より窒素酸化物が発生することは一般に知られており、その結果、焼結排ガス中には窒素酸化物が含まれる。排ガス中の窒素酸化物濃度は厳しく規制されているため、現状は窒素酸化物の発生を抑制するために、炭材として窒素含有量の少ない無煙炭が粉コークス等と混合されて用いられている。
また、粉コークスで足りない分の炭材の他の製造方法として、ロータリーキルンや室炉による石炭等の熱分解による方法が知られている。特許文献1および特許文献2に気流層での石炭熱分解によりガス、タール(オイル)、チャーを製造する方法を示す。同方法では石炭を微粉として気流搬送し、石炭ガス化による高温ガスと混合することで効率良く石炭熱分解を行うことが可能である。
In the steel manufacturing process, iron ore needs to be used as a sintered ore in the raw material sintering process in order to be used in a blast furnace. In the raw material sintering process, at present, in addition to powdered coke that is too small to be used in a blast furnace, carbon material supplemented with coal, etc., is added to iron ore to reduce the combustion heat of the carbon material. It has been baked and hardened.
It is generally known that nitrogen oxides are generated from the nitrogen content in the carbonaceous material during the combustion in the raw material sintering step, and as a result, nitrogen oxides are contained in the sintered exhaust gas. Since the concentration of nitrogen oxides in the exhaust gas is strictly regulated, anthracite coal with a low nitrogen content is used as a carbon material mixed with powdered coke or the like in order to suppress the generation of nitrogen oxides.
In addition, as another method for producing a carbon material in which powder coke is insufficient, a method by thermal decomposition of coal in a rotary kiln or a chamber furnace is known. Patent Document 1 and Patent Document 2 show a method for producing gas, tar (oil), and char by coal pyrolysis in an airflow layer. In this method, coal pyrolysis can be efficiently carried out by air-conveying coal as fine powder and mixing with high-temperature gas by coal gasification.

特開平5−295371号公報JP-A-5-295371 特開2004−217868号公報JP 2004-217868 A

焼結排ガス中の窒素酸化物を低減するために使用される低窒素無煙炭は、世界的に見ても産地が限定され、近年入手が困難になってきている。
また、ロータリーキルンや室炉といった方法では、石炭の加熱温度を600〜1100℃程度までしか上げられないため、得られる炭材中の窒素量は、原料石炭に比べて殆ど減少せず、低窒素無煙炭代替として利用できない。
本発明においては、上記問題点に鑑み、原料焼結工程において、粉コークスで足りない分の炭材を補充することができる新規な焼結用炭材を提供することを目的とする。また、従来より使用しているが入手が困難になってきた低窒素無煙炭を代替することが可能な焼結用炭材を提供することを目的とする。
Low nitrogen anthracite used for reducing nitrogen oxides in sintered exhaust gas has a limited production area even in the world and has recently become difficult to obtain.
Moreover, since the heating temperature of coal can only be raised to about 600 to 1100 ° C. by a method such as a rotary kiln or a chamber furnace, the amount of nitrogen in the obtained carbon material is hardly reduced compared to raw material coal, and low nitrogen anthracite coal. It cannot be used as an alternative.
In view of the above problems, an object of the present invention is to provide a novel sintering carbonaceous material that can be supplemented with an amount of powdered coke that is insufficient in the raw material sintering step. Moreover, it aims at providing the carbonaceous material for sintering which can substitute the low nitrogen anthracite which has been used conventionally but has become difficult to obtain.

製鉄プロセスにおける焼結工程では、鉄鉱石を炭材と混合し炭材を燃焼させて鉄鉱石を焼き固めることで焼結鉱を製造する。焼結工程での炭材燃焼時に発生する窒素酸化物は炭材由来のいわゆるFuel NOxが大部分であることは一般に知られている。窒素酸化物の発生を抑制するための最も簡単な方法は窒素を含まない炭材を使用することであるが、窒素含有量の少ない低窒素無煙炭は近年入手が困難になってきている。
窒素含有量の少ない炭材を確保できない場合には、焼結排ガス中から窒素酸化物を除去するための大がかりな脱硝設備が必要となる。また、石炭から窒素含有量の少ない炭材を製造するためには石炭を高温で処理して脱窒素すれば良いが、工業規模で効率的に石炭を処理するプロセスが存在せず、これまで行われてこなかった。
本発明者らは鋭意検討した結果、石炭を気流層で熱分解することで、石炭から揮発分とともに窒素も効率的に除去された炭材(チャー)を製造することが可能であることを見出した。
In the sintering step in the iron making process, iron ore is mixed with carbonaceous material, the carbonaceous material is burned, and the iron ore is baked and solidified to produce sintered ore. It is generally known that so-called Fuel NOx derived from carbonaceous materials is mostly nitrogen oxide generated during carbonaceous material combustion in the sintering process. The simplest method for suppressing the generation of nitrogen oxides is to use a carbon material that does not contain nitrogen, but low nitrogen anthracite with a low nitrogen content has recently become difficult to obtain.
When a carbon material with a low nitrogen content cannot be secured, a large-scale denitration facility for removing nitrogen oxides from the sintered exhaust gas is required. In addition, in order to produce a carbon material having a low nitrogen content from coal, it is sufficient to treat the coal at a high temperature and denitrify it. However, there is no process for efficiently treating coal on an industrial scale. I didn't come.
As a result of intensive studies, the present inventors have found that it is possible to produce a carbonaceous material (char) from which nitrogen is efficiently removed together with volatile matter from coal by thermally decomposing the coal in an air flow layer. It was.

石炭を気流層でガス化および熱分解して炭材を製造する方法としては、例えば、特許文献1や特許文献2に記載されているが、生成するチャーはガス化原料として投入されることが前提となっており、生成するチャーにおいて窒素分が効果的に除去されうることが記載されていないだけでなく、焼結工程での炭材製造は想定されておらず、そのための適正条件についても示されていない。   As a method for producing carbonaceous material by gasifying and pyrolyzing coal in an air flow layer, for example, Patent Document 1 and Patent Document 2 describe, but the generated char may be input as a gasification raw material. Not only is it stated that nitrogen content can be effectively removed in the char that is produced, but it is not envisaged to produce carbonaceous materials in the sintering process, and appropriate conditions for that Not shown.

本発明者等の検討により、下段がガス化炉、上段が熱分解炉の二室二段の反応器を用いて石炭をガス化および熱分解すると、効率的に石炭から窒素成分が抜けて、熱分解により生じた固体のチャーにおいては、窒素成分が少なくなることが判った。更に、熱分解温度が特定の温度以上になると粉コークス中の窒素成分割合と同程度まで窒素の割合が低下し、更に、熱分解圧力が特定の圧力以上になると無煙炭の窒素成分割合と同程度まで窒素の割合が低下することを見出して、発明を為すに至った。   According to the study by the present inventors, when the coal is gasified and pyrolyzed using a two-chamber, two-stage reactor in which the lower stage is a gasification furnace and the upper stage is a pyrolysis furnace, nitrogen components are efficiently removed from the coal, It was found that the nitrogen component is reduced in the solid char produced by pyrolysis. Furthermore, when the pyrolysis temperature exceeds a specific temperature, the ratio of nitrogen decreases to the same level as the nitrogen component ratio in the coke breeze, and when the pyrolysis pressure exceeds a specific pressure, it is approximately the same as the nitrogen component ratio of anthracite. It was found that the ratio of nitrogen was lowered until the invention was made.

本発明の要旨とするところは、以下の通りである。
(1)下段が気流層ガス化炉、上段が気流層熱分解炉の上下二室二段の反応器を使用し、前記ガス化炉において、石炭と共に、酸素、又は、酸素及び水蒸気を投入して、当該石炭の部分酸化によりガス化ガスを生成し、前記熱分解炉において、石炭を投入して、当該石炭を前記ガス化炉から移動してきた前記ガス化ガスの顕熱により熱分解して、熱分解チャーと熱分解ガスを生成すると共に、前記熱分解チャーを回収し、当該回収したチャーを、鉄鋼業における焼結原料工程での炭材として使用することを特徴とする熱分解チャーの焼結用炭材としての利用方法。
(2)前記熱分解炉内の温度を1200℃以上とすることを特徴とする請求項1記載の熱分解チャーの焼結用炭材としての利用方法。
(3)前記熱分解炉内の圧力を2.0MPa以上とすることを特徴とする請求項2記載の熱分解チャーの焼結用炭材としての利用方法。
The gist of the present invention is as follows.
(1) Using a two-stage reactor with two upper and lower chambers in which the lower stage is a gas-bed gasification furnace and the upper stage is a gas-flow bed pyrolysis furnace, in the gasification furnace, oxygen or oxygen and water vapor are introduced together with coal. Then, a gasified gas is generated by partial oxidation of the coal, and in the pyrolysis furnace, the coal is injected, and the coal is pyrolyzed by sensible heat of the gasified gas that has moved from the gasification furnace. The pyrolysis char is characterized in that the pyrolysis char and pyrolysis gas are generated, the pyrolysis char is recovered, and the recovered char is used as a carbon material in a sintering raw material process in the steel industry. Usage as a carbon material for sintering.
(2) The method of using the pyrolysis char as a sintering carbon material according to claim 1, wherein the temperature in the pyrolysis furnace is 1200 ° C or higher.
(3) The method for using the pyrolysis char as a sintering carbon material according to claim 2, wherein the pressure in the pyrolysis furnace is 2.0 MPa or more.

本発明により、製鉄プロセスの原料焼結工程に使用する炭材中の窒素含有量を低減し、焼結工程からの窒素酸化物の発生を抑制することが可能となる。更に、焼結工程において、入手が困難になってきている無煙炭の一部または全部を削減することが可能となる。   By this invention, it becomes possible to reduce the nitrogen content in the carbonaceous material used for the raw material sintering step of the iron making process, and to suppress the generation of nitrogen oxides from the sintering step. Furthermore, it becomes possible to reduce a part or all of the anthracite which has become difficult to obtain in the sintering process.

本発明に用いる石炭熱分解装置は、下にガス化炉、上に熱分解炉を有する二室二段の反応器である。ガス化炉において石炭を、酸素をガス化剤としてガス化を行なうと、主に一酸化炭素、二酸化炭素、水素、水蒸気で構成されるガス化ガスが生成する。ガス化炉の温度は、ガス化する石炭に含まれる灰分を溶融排出する必要からその融点以上とし、一般には1300から1600℃程度である。ガス化炉から出て行くガスもその温度であり、熱分解炉においてこのガス化ガスと石炭および必要に応じて水素を混合することで石炭を昇温、熱分解反応を起こし生成物を得ることが二段式反応器を使用した石炭の熱分解方法である。   The coal pyrolysis apparatus used in the present invention is a two-chamber, two-stage reactor having a gasification furnace below and a pyrolysis furnace above. When coal is gasified using oxygen as a gasifying agent in a gasification furnace, a gasification gas mainly composed of carbon monoxide, carbon dioxide, hydrogen, and water vapor is generated. The temperature of the gasification furnace is not lower than its melting point because it is necessary to melt and discharge the ash contained in the coal to be gasified, and is generally about 1300 to 1600 ° C. The temperature of the gas leaving the gasification furnace is also the temperature. By mixing this gasification gas with coal and hydrogen as required in the pyrolysis furnace, the temperature of the coal is raised to cause a pyrolysis reaction to obtain a product. Is a pyrolysis method of coal using a two-stage reactor.

また、二室二段とすることで石炭のガス化を行う部分と熱分解を行う部分を完全に分けることができ、各部分の操作条件を個別に設定することが可能となる。ここで二室の反応器とは、反応器の構造でガス化炉と熱分解炉の間に絞りを入れて部分的に流速を増加させることにより、上室に投入された石炭粒子等が下室に落下することを防ぎ、各室で独立した反応条件を設定できる反応器を言う。   Moreover, by using two chambers and two stages, it is possible to completely separate the part that performs coal gasification and the part that performs thermal decomposition, and it is possible to set the operating conditions of each part individually. Here, the two-chamber reactor is a reactor structure in which a constriction is placed between the gasification furnace and the pyrolysis furnace to partially increase the flow velocity, so that the coal particles and the like put into the upper chamber are lowered. A reactor that prevents falling into a chamber and allows independent reaction conditions to be set in each chamber.

以下に、詳細に本発明を説明する。図1において本発明方法の概略図を示す。本装置は、熱分解炉1、ガス化炉2および両者を接続する絞り部のスロート3で主に構成される。
原料の石炭17は石炭粉砕・供給装置11で粉砕され窒素ガス等による気流搬送でガス化炉2および熱分解炉1に気流搬送される。
The present invention will be described in detail below. FIG. 1 shows a schematic diagram of the method of the present invention. This apparatus mainly includes a pyrolysis furnace 1, a gasification furnace 2, and a throttle throat 3 that connects the two.
The raw material coal 17 is pulverized by the coal pulverization / supply device 11 and is air-flowed to the gasification furnace 2 and the pyrolysis furnace 1 by air-flow conveyance using nitrogen gas or the like.

ガス化炉2には、ガス化用の石炭9を酸素12、または、酸素12および水蒸気13とともに投入するための、1本または複数本のガス化バーナー5が設置されている。ガス化炉2においては、投入されるガス化用の石炭9にふくまれる炭素、水素をできるだけ多くCO、H2に転換するためガス化用の石炭9と酸素12、水蒸気13を素早く混合しガス化用の石炭9から発生する揮発分をすす化する前に酸素12や水蒸気13と酸化反応させる必要がある。
そのために、ガス化炉2へのガス化用の石炭9と酸素12、水蒸気13はガス化バーナー5で吹き込まれ、急速に混合される。ガス化炉2で生成したガス化ガス14はスロート3を通り熱分解炉1に送られる。熱分解炉1では熱分解用の石炭10が投入されて熱分解反応が起こる。この熱分解反応によって石炭から熱分解ガス、固体の熱分解チャー(単にチャーとも言う)が生成し、また、タールについては熱分解ガスの冷却により得られる。熱分解ガスおよびタールは燃料や化学原料として使用可能である。
In the gasification furnace 2, one or a plurality of gasification burners 5 for introducing the coal 9 for gasification together with the oxygen 12 or the oxygen 12 and the water vapor 13 are installed. In the gasification furnace 2, in order to convert as much carbon and hydrogen contained in the gasification coal 9 as possible into CO and H 2 , the gasification coal 9, oxygen 12, and steam 13 are quickly mixed to form a gas. It is necessary to oxidize oxygen 12 and water vapor 13 before sooting the volatile matter generated from the chemical coal 9.
For this purpose, coal 9 for gasification into the gasification furnace 2, oxygen 12, and steam 13 are blown by the gasification burner 5 and rapidly mixed. The gasification gas 14 generated in the gasification furnace 2 passes through the throat 3 and is sent to the pyrolysis furnace 1. In the pyrolysis furnace 1, coal 10 for pyrolysis is introduced to cause a pyrolysis reaction. By this pyrolysis reaction, pyrolysis gas and solid pyrolysis char (also simply referred to as char) are generated from coal, and tar is obtained by cooling the pyrolysis gas. Pyrolysis gas and tar can be used as fuel and chemical feedstock.

ガス化炉2の温度は、ガス化炉天井部に設置されたガス化炉温度測定用熱電対23により、また、熱分解炉1の温度は、熱分解炉1の側壁で高さ方向には熱分解石炭吹き込みノズル4より上方に設置された熱分解温度測定用熱電対24でそれぞれ測定される。   The temperature of the gasification furnace 2 is measured by a thermocouple 23 for gasification furnace temperature measurement installed on the gasification furnace ceiling, and the temperature of the pyrolysis furnace 1 is increased in the height direction on the side wall of the pyrolysis furnace 1. It measures with the thermocouple 24 for pyrolysis temperature measurement installed above the pyrolysis coal blowing nozzle 4, respectively.

ガス化用の石炭9に含まれる灰分は1500℃程度の高温により溶融状態のスラグ15となるため、ガス化炉2の下部から排出できるように、スラグタップ6およびスラグ15を捕集する水槽8を設けることが好ましい。水槽8で捕集されたスラグ15は固化して水砕スラグ18として排出される。   Since the ash contained in the coal 9 for gasification becomes a molten slag 15 at a high temperature of about 1500 ° C., the water tank 8 for collecting the slag tap 6 and the slag 15 so as to be discharged from the lower part of the gasification furnace 2. Is preferably provided. The slag 15 collected in the water tank 8 is solidified and discharged as a granulated slag 18.

チャーは熱分解炉出口7から出た熱分解ガス、チャー16を固気分離器20で固体分離することで得られる。固気分離器20の形態としては、サイクロ(登録商標)ンやフィルターが挙げられる。回収されたチャーは微粉のため、圧縮造粒機や押し出し造粒機、転動造粒機等の造粒機21で適度な粒度に造粒され焼結工程22に送られる。   The char is obtained by solid-separating the pyrolysis gas and char 16 emitted from the pyrolysis furnace outlet 7 with the solid-gas separator 20. Examples of the form of the solid-gas separator 20 include a cyclo (registered trademark) and a filter. Since the recovered char is fine powder, it is granulated to an appropriate particle size by a granulator 21 such as a compression granulator, an extrusion granulator, or a rolling granulator, and sent to the sintering step 22.

固体のチャーは炭素および少量の灰分で主に構成されており、焼結工程における炭材として使用可能である。焼結工程においては、炭材は鉄鉱石と混合され焼結機で炭材を燃焼させ、燃焼熱により焼結鉱を製造する。   Solid char is mainly composed of carbon and a small amount of ash, and can be used as a carbonaceous material in the sintering process. In the sintering process, the carbonaceous material is mixed with iron ore, the carbonaceous material is burned by a sintering machine, and the sintered ore is produced by combustion heat.

チャーに含まれる窒素については二室二段の気流層熱分解反応を用いることで熱分解炉においてチャーの一部がガス化炉からの水蒸気等によりガス化されることにより、石炭の熱分解がより進行することから窒素含有量が低下する。   For the nitrogen contained in the char, by using a two-chamber, two-stage, gas-bed pyrolysis reaction, part of the char is gasified with steam from the gasifier in the pyrolysis furnace, so that the pyrolysis of the coal Since it progresses more, the nitrogen content decreases.

尚、熱分解炉1、ガス化炉2内部の温度および圧力としては、脱窒素反応を促進し、従来焼結工程で使用されている粉コークス中の窒素含有量のレベルまで窒素含有量を低減させることが可能になるため、熱分解炉温度は1200℃以上が好ましく、更に、無煙炭中の窒素含有量のレベルまで窒素含有量を低減させるためには、圧力は2.0MPa以上であることが好ましい。また、熱分解炉1の温度はガス化用の石炭9に含まれる灰分の融点以上ではスラッギングが発生するため融点以下であることが好ましく、圧力に関しては高圧になるほど設備費が上昇するため2.5〜3MPa程度がより好ましい。
上記方法にて製造したチャーは焼結工程で使用するにあたり、0.25mm以上、好ましくは直径1mm〜3mm程度の粒径に造粒して使用する。造粒方法としては特に規定するものではないが、バインダーとしてセメントを用いる方法がある。
なお、一般に製鉄所での焼結工程における無煙炭使用は焼結工程で使用する炭材の40%程度であり、10万ton/年程度の量となる。当該使用する無煙炭と同等量のチャーを製造するための本発明方法での石炭処理量は2000ton/日程度である。
As for the temperature and pressure inside the pyrolysis furnace 1 and gasification furnace 2, the denitrification reaction is promoted and the nitrogen content is reduced to the level of the nitrogen content in the powder coke used in the conventional sintering process. In order to reduce the nitrogen content to the level of nitrogen content in the anthracite coal, the pressure is preferably 2.0 MPa or more. . The temperature of the pyrolysis furnace 1 is preferably below the melting point since slagging occurs above the melting point of the ash contained in the coal 9 for gasification, and the equipment cost increases as the pressure increases. About 3 MPa is more preferable.
The char produced by the above method is granulated to a particle size of 0.25 mm or more, preferably about 1 mm to 3 mm in diameter when used in the sintering step. A granulation method is not particularly specified, but there is a method using cement as a binder.
In general, the use of anthracite in the sintering process at steelworks is about 40% of the carbonaceous material used in the sintering process, which is about 100,000 tons / year. The amount of coal treated in the method of the present invention for producing char equivalent to the anthracite used is about 2000 tons / day.

(実施例1)
図1に記載の石炭熱分解装置を用いた実施例を以下に示す。
ガス化炉には平均粒径30μmに粉砕した石炭を気流搬送で500kg/h投入し、酸素350Nm3/h、水蒸気50kg/hを用いてガス化を行った。熱分解炉では同様に粉砕した石炭を気流搬送で130kg/h投入した。ガス化炉および熱分解炉内での圧力は2.5MPa(絶対圧)とした。ガス化炉温度は1550℃、熱分解炉における熱分解温度は1220℃で、1270Nm3/hの熱分解ガスおよび73kg/hのチャーが回収された。
得られたガスの発熱量は2400kcal/Nm3で燃料ガスとして使用可能である。使用した石炭の組成はC:70質量%、H:5質量%、N:1.7質量%であったのに対し、得られたチャーの組成はC:76質量%、H:0.7質量%、N:0.35質量%となり窒素含有量の少ないチャーとなった。なお、石炭、チャー等の分析は、JISに沿って行ない、たとえば、全水分はJISM8812に、元素分析(C、H、N)はJISM8813、JISM8819に、元素分析(T−S、灰分中S)はJISM8813などに基いて行なった。
図2に同様の方法で熱分解炉に投入する石炭量を変化させることで熱分解炉の温度を変化させて生成したチャーの窒素と炭素の質量比率を示す。熱分解温度の増加に伴いチャー中窒素の炭素に対する割合が減少しており、1050℃で粉コークスレベル、1200℃で低窒素無煙炭のレベルに達している。
(Example 1)
An example using the coal pyrolysis apparatus shown in FIG. 1 is shown below.
The gasification furnace was charged with 500 kg / h of coal pulverized to an average particle size of 30 μm by airflow conveyance, and gasification was performed using 350 Nm 3 / h oxygen and 50 kg / h water vapor. In the pyrolysis furnace, similarly pulverized coal was supplied at 130 kg / h by airflow conveyance. The pressure in the gasification furnace and the pyrolysis furnace was 2.5 MPa (absolute pressure). The gasifier temperature was 1550 ° C., the pyrolysis temperature in the pyrolysis furnace was 1220 ° C., and 1270 Nm 3 / h pyrolysis gas and 73 kg / h char were recovered.
The calorific value of the obtained gas is 2400 kcal / Nm 3 and can be used as fuel gas. The composition of coal used was C: 70% by mass, H: 5% by mass, and N: 1.7% by mass, whereas the composition of the obtained char was C: 76% by mass, H: 0.7%. % By mass, N: 0.35% by mass and char with a low nitrogen content. The analysis of coal, char, etc. is performed in accordance with JIS. For example, the total moisture is in JISM8812, elemental analysis (C, H, N) is in JISM8813, JISM8819, and elemental analysis (TS, S in ash). Was performed based on JISM8813.
FIG. 2 shows the mass ratio of char nitrogen and carbon generated by changing the temperature of the pyrolysis furnace by changing the amount of coal charged into the pyrolysis furnace by the same method. As the pyrolysis temperature increases, the ratio of nitrogen to carbon in the char decreases, reaching the level of fine coke at 1050 ° C and the level of low nitrogen anthracite at 1200 ° C.

(実施例2)
実施例1と同様の装置を用いて、ガス化炉および熱分解炉での圧力を0.3MPa(絶対圧)とした場合の実施例を示す。
ガス化炉での石炭量500kg/h、熱分解炉での石炭量70kg/hで、ガス化炉での酸素供給量370Nm3/h、水蒸気投入量50kg/hとし、ガス化温度1550℃、熱分解温度1220℃で操業を行い、熱分解ガス1140Nm3/h、チャー67kg/hが回収された。
得られた熱分解ガスの発熱量は1820kcal/Nm3で燃料ガスとして使用可能である。使用した石炭の組成は実施例と同じC:70質量%、H:5質量%、N:1.7質量%、得られたチャーの組成はC:75質量%、H:0.7質量%、N:1.0質量%となり窒素含有量の少ないチャーとなった。
図2に同様の方法で熱分解炉に投入する石炭量を変化させることで熱分解炉の温度を変化させて生成したチャーの窒素と炭素の比率を示す。熱分解温度の増加に伴いチャー中窒素の炭素に対する割合が減少している。
(Example 2)
An example in which the pressure in the gasification furnace and the pyrolysis furnace is set to 0.3 MPa (absolute pressure) using the same apparatus as in Example 1 will be described.
The amount of coal in the gasifier is 500 kg / h, the amount of coal in the pyrolysis furnace is 70 kg / h, the amount of oxygen supplied in the gasifier is 370 Nm 3 / h, the amount of steam input is 50 kg / h, the gasification temperature is 1550 ° C, Operation was performed at a pyrolysis temperature of 1220 ° C., and pyrolysis gas 1140 Nm 3 / h and char 67 kg / h were recovered.
The calorific value of the obtained pyrolysis gas is 1820 kcal / Nm 3 and can be used as fuel gas. The composition of the coal used is the same as in the examples C: 70% by mass, H: 5% by mass, N: 1.7% by mass, and the composition of the obtained char is C: 75% by mass, H: 0.7% by mass. , N: 1.0% by mass and char with a low nitrogen content.
FIG. 2 shows the ratio of nitrogen and carbon of char produced by changing the temperature of the pyrolysis furnace by changing the amount of coal put into the pyrolysis furnace by the same method. As the pyrolysis temperature increases, the ratio of nitrogen to carbon in the char decreases.

(比較例)
ロータリーキルンを用いて実施例と同じ石炭を熱分解したチャーの窒素と炭素の比率を図2に示す。設備制約上800℃までしか熱分解温度は上げられていない。熱分解温度に伴い、N/Cの低下は見られているが、実施例に比べるとその低下は小さい。
(Comparative example)
FIG. 2 shows the ratio of nitrogen and carbon in char obtained by pyrolyzing the same coal as in the example using a rotary kiln. The thermal decomposition temperature is raised only up to 800 ° C due to equipment constraints. A decrease in N / C is observed with the pyrolysis temperature, but the decrease is small compared to the examples.

本発明に係る、石炭熱分解装置の概略図である。It is the schematic of the coal pyrolysis apparatus based on this invention. 熱分解温度を変更した際のチャー中N/C質量比の変化を示した図である。It is the figure which showed the change of N / C mass ratio in char when changing thermal decomposition temperature.

符号の説明Explanation of symbols

1 熱分解炉
2 ガス化炉
3 スロート
4 熱分解石炭吹き込みノズル
5 ガス化バーナー
6 スラグタップ
7 熱分解炉出口
8 水槽
9 ガス化用の石炭
10 熱分解用の石炭
11 石炭粉砕・供給装置
12 酸素
13 水蒸気
14 ガス化ガス
15 スラグ
16 熱分解ガス、チャー
17 石炭
18 水砕スラグ
19 ガス、タール
20 固気分離器
21 造粒機
22 焼結工程
23 ガス化温度測定用熱電対
24 熱分解温度測定用熱電対
DESCRIPTION OF SYMBOLS 1 Pyrolysis furnace 2 Gasification furnace 3 Throat 4 Pyrolysis coal injection nozzle 5 Gasification burner 6 Slag tap 7 Pyrolysis furnace exit 8 Water tank 9 Coal for gasification 10 Coal for pyrolysis 11 Coal grinding | pulverization and supply apparatus 12 Oxygen 13 Steam 14 Gasification Gas 15 Slag 16 Pyrolysis Gas, Char 17 Coal 18 Granulated Slag 19 Gas, Tar 20 Solid-gas Separator 21 Granulator 22 Sintering Process 23 Thermocouple for Gasification Temperature Measurement 24 Pyrolysis Temperature Measurement Thermocouple for

Claims (3)

下段が気流層ガス化炉、上段が気流層熱分解炉の上下二室二段の反応器を使用し、
前記ガス化炉において、石炭と共に、酸素、又は、酸素及び水蒸気を投入して、当該石炭の部分酸化によりガス化ガスを生成し、前記熱分解炉において、石炭を投入して、当該石炭を前記ガス化炉から移動してきた前記ガス化ガスの顕熱により熱分解して、熱分解チャーと熱分解ガスを生成すると共に、前記熱分解チャーを回収し、当該回収したチャーを、鉄鋼業における焼結原料工程での炭材として使用することを特徴とする熱分解チャーの焼結用炭材としての利用方法。
Using a two-stage reactor with two upper and lower chambers in the lower part of the gas bed gasification furnace and the upper part of the gas bed pyrolysis furnace,
In the gasification furnace, together with coal, oxygen or oxygen and water vapor are input to generate gasified gas by partial oxidation of the coal. In the pyrolysis furnace, coal is input, and the coal is Pyrolysis is performed by sensible heat of the gasification gas that has moved from the gasification furnace to generate pyrolysis char and pyrolysis gas, and the pyrolysis char is recovered, and the recovered char is baked in the steel industry. A method of using pyrolytic char as a carbon material for sintering, characterized in that it is used as a carbon material in a sintering raw material process.
前記熱分解炉内の温度を1200℃以上とすることを特徴とする請求項1記載の熱分解チャーの焼結用炭材としての利用方法。   The method for using the pyrolysis char as a sintering carbon material according to claim 1, wherein the temperature in the pyrolysis furnace is 1200 ° C or higher. 前記熱分解炉内の圧力を2.0MPa以上とすることを特徴とする請求項2記載の熱分解チャーの焼結用炭材としての利用方法。   The method for using the pyrolysis char as a sintering carbon material according to claim 2, wherein the pressure in the pyrolysis furnace is 2.0 MPa or more.
JP2008154585A 2008-06-12 2008-06-12 Utilizing method of pyrolysis char as carbonaceous material for sintering Pending JP2009298909A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008154585A JP2009298909A (en) 2008-06-12 2008-06-12 Utilizing method of pyrolysis char as carbonaceous material for sintering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008154585A JP2009298909A (en) 2008-06-12 2008-06-12 Utilizing method of pyrolysis char as carbonaceous material for sintering

Publications (1)

Publication Number Publication Date
JP2009298909A true JP2009298909A (en) 2009-12-24

Family

ID=41546138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008154585A Pending JP2009298909A (en) 2008-06-12 2008-06-12 Utilizing method of pyrolysis char as carbonaceous material for sintering

Country Status (1)

Country Link
JP (1) JP2009298909A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010106756A1 (en) * 2009-03-16 2010-09-23 新日本製鐵株式会社 Process for producing sintered ore
CN109486533A (en) * 2018-11-30 2019-03-19 西北化工研究院有限公司 A kind of method that one chemical fuel of carbon reacts producing synthesis gas with polynary conjugated manner

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0285324A (en) * 1988-09-21 1990-03-26 Nisshin Steel Co Ltd Operating method for sintering low in nox
JPH05230558A (en) * 1992-02-19 1993-09-07 Nisshin Steel Co Ltd Production of sintered ore
JPH05239560A (en) * 1992-02-27 1993-09-17 Nisshin Steel Co Ltd Manufacture of sintered ore
JPH11228973A (en) * 1998-02-10 1999-08-24 Nippon Steel Corp Thermal hydrocracking process for coal
JP2000319672A (en) * 1999-05-07 2000-11-21 Nippon Steel Corp Method for generating electricity by means of reaction product from coal thermal cracking
JP2003027072A (en) * 2001-07-16 2003-01-29 Nippon Steel Corp Method for generating electric power by pyrolytic gasification reaction product of coal

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0285324A (en) * 1988-09-21 1990-03-26 Nisshin Steel Co Ltd Operating method for sintering low in nox
JPH05230558A (en) * 1992-02-19 1993-09-07 Nisshin Steel Co Ltd Production of sintered ore
JPH05239560A (en) * 1992-02-27 1993-09-17 Nisshin Steel Co Ltd Manufacture of sintered ore
JPH11228973A (en) * 1998-02-10 1999-08-24 Nippon Steel Corp Thermal hydrocracking process for coal
JP2000319672A (en) * 1999-05-07 2000-11-21 Nippon Steel Corp Method for generating electricity by means of reaction product from coal thermal cracking
JP2003027072A (en) * 2001-07-16 2003-01-29 Nippon Steel Corp Method for generating electric power by pyrolytic gasification reaction product of coal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010106756A1 (en) * 2009-03-16 2010-09-23 新日本製鐵株式会社 Process for producing sintered ore
JP4837799B2 (en) * 2009-03-16 2011-12-14 新日本製鐵株式会社 Method for producing sintered ore
CN109486533A (en) * 2018-11-30 2019-03-19 西北化工研究院有限公司 A kind of method that one chemical fuel of carbon reacts producing synthesis gas with polynary conjugated manner

Similar Documents

Publication Publication Date Title
JP4377824B2 (en) Waste melting treatment method using biomass
JP2011514443A (en) Process for melting pig iron with recirculation of blast furnace gas and addition of hydrocarbons
RU2477755C2 (en) Method and device for preparation of reducing agent to be used during metal production, metal production process and metal production unit using above described device
JP2015507082A (en) Method for manufacturing pig iron or basic products in carbothermal or electrothermal method
JP2017071692A (en) Gasification method of carbonaceous fuel, operation method of iron mill and manufacturing method of gasified gas
JP4731988B2 (en) Gasification method and apparatus for carbonaceous resources
CN107429176B (en) Method for operating coal gasification system
JP4829708B2 (en) Waste melting treatment method
JP4191636B2 (en) Waste melting treatment method using bulk biomass
JP6066461B2 (en) Waste gasification and melting apparatus and waste gasification and melting method
JP2009298909A (en) Utilizing method of pyrolysis char as carbonaceous material for sintering
JPH07228910A (en) Method and equipment for manufacturing iron
JP2008018371A (en) Method for using organic waste
JP2005249279A (en) Waste melting and treating method utilizing biomass
KR101657019B1 (en) Method for producing pig iron and blast furnace facility using same
JP4734776B2 (en) Organic or hydrocarbon waste recycling method and blast furnace equipment suitable for recycling
JP6016196B2 (en) Waste gasification and melting apparatus and waste gasification and melting method
KR100259970B1 (en) Scrap melting method
KR101660696B1 (en) Tar decomposition device, apparatus and method for manufacturing molten irons
JP2004077118A (en) Operation method of waste gasifying melting furnace
JP3597714B2 (en) Small melting furnace with carbonization device and smelting reduction method
JP5929491B2 (en) Effective utilization of oil palm core
JP2005213460A (en) Operation method of gasification furnace
KR102328389B1 (en) Apparatus for manufacturing molten irons and method for manufacturing the same
JP2013108629A (en) Waste melting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A521 Written amendment

Effective date: 20130401

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130423