JP2003027072A - Method for generating electric power by pyrolytic gasification reaction product of coal - Google Patents

Method for generating electric power by pyrolytic gasification reaction product of coal

Info

Publication number
JP2003027072A
JP2003027072A JP2001214935A JP2001214935A JP2003027072A JP 2003027072 A JP2003027072 A JP 2003027072A JP 2001214935 A JP2001214935 A JP 2001214935A JP 2001214935 A JP2001214935 A JP 2001214935A JP 2003027072 A JP2003027072 A JP 2003027072A
Authority
JP
Japan
Prior art keywords
coal
power generation
gas
gasification
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001214935A
Other languages
Japanese (ja)
Inventor
Hideaki Yabe
英昭 矢部
Takafumi Kawamura
隆文 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001214935A priority Critical patent/JP2003027072A/en
Publication of JP2003027072A publication Critical patent/JP2003027072A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Abstract

PROBLEM TO BE SOLVED: To provide a method for generating an electric power by a pyrolytic gasification reaction product of coal, which makes it possible to generate the electric power at a high efficiency and at a low installation cast by using a coal, particularly a low-grade coal having a high moisture content. SOLUTION: This method for generating the electric power comprises a power generation process wherein the fuel used comprises a pyrolytic gasification reaction product generated from a coal pyrolytic gasifier in which coal is blown into a high-temperature gas generated from a high-temperature gasifier by the gasification of coal with oxygen to effect the rapid heating and pyrolysis reaction of coal in a gas stream layer, and wherein the produced gas is used as the fuel for combined cycle power generation with a gas turbine and a steam turbine, while the produced char is used as the fuel for coal burning power generation with a coal burning boiler and a steam turbine, so that highly efficient power generation can be realized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、石炭を急速に熱分
解ガス化させて発生したガス、チャーを用いた発電方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power generation method using a gas and char generated by rapidly pyrolyzing and gasifying coal.

【0002】[0002]

【従来の技術】石炭は、世界的に見ればもっとも多く用
いられている発電燃料である。その発電方式も、従来方
式である石炭焚きボイラー発電から、より効率が良く、
環境保全性にも優れた石炭ガス化複合発電(IGCC)
へと移行しつつあるため、現在、各方面で石炭をガスに
転換するガス化技術の開発が盛んに行われている。
2. Description of the Related Art Coal is the most widely used power generation fuel in the world. The power generation method is also more efficient than the conventional coal-fired boiler power generation,
Integrated coal gasification combined cycle (IGCC) with excellent environmental conservation
Now, gasification technology for converting coal into gas is being actively developed in various fields.

【0003】本発明者らは現在までに、石炭を急速に加
熱し、熱分解することにより、石炭からガス、タール、
チャーのような有用成分を製造するプロセスに関する提
案を行っている。例えば、特開平1−113491号公
報には、石炭を気相中で、間接的に昇温された熱分解発
生ガスと混合させることによって、石炭を短時間で熱分
解し、石炭中の揮発分の多くをタール、ガスとして回収
する技術が開示されている。特開平5−295371号
公報には、石炭を急速熱分解して得られたチャーの一部
を酸素でガス化し、その高温ガス中に微粉炭を吹き込む
ことによって、石炭の熱分解を行う技術が開示されてい
る。また、特開平11−302666号公報には、圧力
1.0MPa 以上の高圧条件下において、石炭あるいはチ
ャーを酸素によってガス化し、その高温ガス中に石炭を
吹き込み熱分解することによって、従来のガス化炉より
も冷ガス効率が高く、設備コストも低減可能である、主
としてIGCC用の石炭ガス化方法および装置を提案し
ている。更に、特願2000−354734号では、熱
分解ガス化反応炉内において生成するチャーのガス化反
応を促進することによって、チャーの生成量を削減し、
チャーのハンドリングに伴う種々の課題を解決した石炭
の気流床型ガス化方法を提案している。
To date, the inventors of the present invention have rapidly heated and pyrolyzed coal to convert coal to gas, tar,
We are proposing a process for producing useful ingredients such as char. For example, in Japanese Unexamined Patent Publication No. 1-113491, coal is mixed in a gas phase with a pyrolysis gas that is indirectly heated to pyrolyze the coal in a short time, and volatile components in the coal are decomposed. A technique for recovering most of the above as tar and gas is disclosed. Japanese Unexamined Patent Publication No. 5-295371 discloses a technique of pyrolyzing coal by gasifying a portion of char obtained by rapidly pyrolyzing coal with oxygen and blowing pulverized coal into the high temperature gas. It is disclosed. Further, in Japanese Patent Laid-Open No. 11-302666, under the high pressure condition of pressure 1.0 MPa or more, coal or char is gasified with oxygen, and coal is blown into the high temperature gas to thermally decompose the coal or the conventional gasification. It proposes a coal gasification method and apparatus mainly for IGCC, which has higher cold gas efficiency than a furnace and can reduce equipment cost. Furthermore, in Japanese Patent Application No. 2000-354734, the amount of char produced is reduced by promoting the gasification reaction of the char produced in the pyrolysis gasification reactor.
We propose a fluidized bed gasification method for coal that solves various problems associated with char handling.

【0004】[0004]

【発明が解決しようとする課題】石炭は、世界中に多種
多様な品質の炭種として存在している。その中でも、近
年特に、水分ならびに揮発分の含有量が大きないわゆる
低品位炭(亜瀝青炭から褐炭クラス)の利用技術の開発
に注目が集まっている。これらの石炭は、全世界におけ
る埋蔵量が豊富であるにもかかわらず、(1)水分が多
いため、単位質量あたりの石炭発熱量が小さくなり、産
炭地から消費地へ輸送した場合のコストが高品位炭の場
合よりも大きくなる、(2)水分が多いため、ボイラー
で燃焼させた場合に水分の蒸発潜熱に余計な熱を奪われ
るため、ボイラー全体での熱効率が低下する、(3)酸
素との反応性が大きいため、自然発火する恐れがあり、
貯蔵や使用法に対しての注意が必要である、等の理由に
よって、充分に利用されていないのが現状である。
Coal exists as a variety of quality coal species throughout the world. Among them, particularly in recent years, attention has been focused on the development of utilization technology of so-called low-grade coal (subbituminous coal to lignite class) having a large content of water and volatile components. Although these coals have abundant reserves in the world, (1) Since they have a large amount of water, the calorific value of coal per unit mass becomes small, and the cost when transported from a coal producing area to a consuming area. Is larger than in the case of high-grade coal. (2) Since there is a large amount of water, extra heat is lost to the latent heat of vaporization of water when burned in the boiler, which reduces the thermal efficiency of the entire boiler. ) Because of its high reactivity with oxygen, it may ignite spontaneously,
At present, it is not fully utilized due to reasons such as the need to pay attention to storage and usage.

【0005】これらの低品位炭の欠点を改善し、より扱
いやすい改質炭へ転換するための技術もいくつか開発さ
れている(例えば、Skillings’ Minin
gReview、Vol.80、No.32、1991
/日本エネルギー学会誌、第72巻、 867ページ、
1993)。これらの技術は低品位炭を熱分解すること
により、チャー(改質炭)、タール、ガスに転換するプ
ロセスであるが、あくまでも改質炭の収率を最大限とす
ることを目的としている(タール、ガスの収率は低く、
特にガスはプロセス内における燃料としてほとんどが消
費されてしまう)。従って、発電用途を想定した場合、
水分および揮発分を削減した改質炭を従来型の発電技術
である石炭焚きボイラー発電の燃料として用いて発電す
るのが一般的である。無論、改質炭を最新鋭の高効率な
発電技術である石炭ガス化複合発電(IGCC)の燃料
として用い、高効率発電を行うことも原理上は可能であ
るが、石炭改質設備、石炭ガス化設備、ならびに発電設
備とを合わせた全体での設備コストは莫大なものとなっ
てしまうため、現実的ではない。
Several techniques have been developed to remedy the disadvantages of these low grade coals and convert them to more manageable reformed coals (eg, Skillings' Minin.
gReview, Vol. 80, No. 32, 1991
/ Journal of the Japan Institute of Energy, Volume 72, page 867,
1993). These technologies are processes for converting charcoal (reformed coal), tar, and gas by pyrolyzing low-grade coal, but the goal is to maximize the yield of reformed coal ( The yield of tar and gas is low,
In particular, most of the gas is consumed as fuel in the process). Therefore, assuming a power generation application,
It is common to use reformed coal with reduced water content and volatile components as fuel for coal-fired boiler power generation, which is a conventional power generation technology, to generate power. Needless to say, it is possible in principle to use reformed coal as fuel for coal gasification combined cycle (IGCC), which is the latest high-efficiency power generation technology. The total equipment cost including the gasification equipment and the power generation equipment becomes enormous, which is not realistic.

【0006】本発明の目的は、水分を多く含有する石炭
(低品位炭)を用い、高効率にかつ低い設備コストで発
電を行うための発電方法を提供することである。
An object of the present invention is to provide a power generation method for generating power with high efficiency and low facility cost by using coal containing a large amount of water (low-grade coal).

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
の本発明の要旨は次の通りである。 (1)石炭の酸素によるガス化によって高温ガス化炉か
ら発生する高温ガス中に石炭を吹き込み、石炭の急速加
熱・熱分解反応を気流層中で行わせる石炭熱分解ガス化
炉から発生する熱分解ガス化反応生成物を燃料として用
いる発電プロセスの発電方法であって、生成したガスを
ガスタービンとスチームタービンからなる複合サイクル
発電用の燃料として用い、かつ生成したチャーを石炭燃
焼ボイラーとスチームタービンからなる石炭焚き発電用
の燃料として用いることを特徴とする。 (2)前項(1)記載の石炭の熱分解ガス化反応生成物
による発電方法において、高温ガス化炉の反応条件を圧
力1.0MPa 以上、温度1400℃〜1700℃とし、
熱分解ガス化反応炉の反応条件を圧力1.0MPa 以上、
温度800℃〜1200℃、ガス滞留時間0.2〜10
sec とすることを特徴とする。 (3)前項(1)または(2)記載の石炭の熱分解ガス
化反応生成物による発電方法において、石炭として、水
分が10%以上含有される石炭を用いることを特徴とす
る。
The gist of the present invention for achieving the above object is as follows. (1) Heat generated from a coal pyrolysis gasification furnace that blows coal into the high-temperature gas generated from the high-temperature gasification furnace by gasification of coal with oxygen to cause rapid heating and pyrolysis reaction of the coal in the gas stream layer A power generation method of a power generation process using a cracked gasification reaction product as a fuel, wherein the generated gas is used as a fuel for combined cycle power generation including a gas turbine and a steam turbine, and the generated char is a coal-fired boiler and a steam turbine. Is used as a fuel for coal-fired power generation. (2) In the power generation method using the thermal decomposition gasification reaction product of coal according to the above item (1), the reaction conditions of the high temperature gasification furnace are a pressure of 1.0 MPa or more and a temperature of 1400 ° C to 1700 ° C.
The reaction conditions of the pyrolysis gasification reactor are pressure 1.0 MPa or more,
Temperature 800 ° C to 1200 ° C, gas residence time 0.2 to 10
The feature is that it is sec. (3) In the power generation method using the thermal decomposition gasification reaction product of coal according to the above item (1) or (2), coal having a water content of 10% or more is used.

【0008】[0008]

【発明の実施の形態】以下、本発明を図面にしたがって
詳細に説明する。図1に本発明に関するフローシートを
示す。微粉砕した石炭は気流床型の熱分解ガス化反応炉
1へ導入され、高温ガス化炉2において発生する高温ガ
ス(主成分はH2 、CO、CO2 、H2 O(水蒸気))
と混合することによって急速加熱、熱分解される。ここ
でいう高温ガス温度は、高温ガス化炉温に依存するが、
1400℃〜1700℃程度であることが、また、急速
加熱速度は100℃/sec〜1000000℃/sec、好ま
しくは1000℃/sec〜500000℃/sec程度である
ことが望ましい。熱分解ガス化反応炉1内において石炭
は、まず最初に、通常熱分解反応時間0.2sec 以内の
短時間に完了する熱分解一次反応によって、熱分解ガ
ス、タール、オイルに分解される。これらの熱分解反応
生成物は、引き続き熱分解二次反応によって、熱分解ガ
ス中の炭化水素ガスは更に低分子量の炭化水素ガスへ、
タールは熱分解ガスへと分解され、また、チャーの一部
は、主として(1)および(2)式によって表されるチ
ャーガス化反応(吸熱反応)によって、COおよびH2
ガスへと転換する。 C(チャー)+H2 O→CO+H2 ・・・・・・・(1) C(チャー)+CO2 →2CO ・・・(2)
DETAILED DESCRIPTION OF THE INVENTION The present invention will be described in detail below with reference to the drawings. FIG. 1 shows a flow sheet relating to the present invention. The finely pulverized coal is introduced into the gas-flow bed type pyrolysis gasification reaction furnace 1 and the high-temperature gas generated in the high-temperature gasification furnace 2 (main components are H 2 , CO, CO 2 , H 2 O (steam)).
Rapid heating and pyrolysis by mixing with. The high temperature gas temperature here depends on the high temperature gasification furnace temperature,
It is desirable that the temperature is about 1400 ° C to 1700 ° C, and the rapid heating rate is about 100 ° C / sec to 1000000 ° C / sec, preferably about 1000 ° C / sec to 500000 ° C / sec. In the pyrolysis gasification reactor 1, coal is firstly decomposed into pyrolysis gas, tar, and oil by a pyrolysis primary reaction which is completed within a short time, which is usually a pyrolysis reaction time of 0.2 sec. These pyrolysis reaction products are subsequently subjected to a pyrolysis secondary reaction to convert the hydrocarbon gas in the pyrolysis gas into a hydrocarbon gas having a lower molecular weight,
Tar is decomposed into pyrolysis gas, and part of char is mainly converted to CO and H 2 by a char gasification reaction (endothermic reaction) represented by the formulas (1) and (2).
Convert to gas. C (char) + H 2 O → CO + H 2・ ・ ・ ・ (1) C (char) + CO 2 → 2CO ・ ・ ・ (2)

【0009】このチャーガス化反応に関する反応速度
は、圧力、温度、ガス化剤(水蒸気またはCO2 )濃度
の上昇に伴って上昇するため、これらの反応条件を変化
させることによって最終的に製品として得られるチャー
の収率を任意の値に調整することが可能である。しか
し、反応圧力は生成するガスを使用する後段のプロセス
において要求される圧力に、熱分解温度はタールが生成
しないための最低温度(炭種によっても異なるが800
〜1100℃程度)に、またガス化剤濃度は高温ガス化
炉内におけるガス化条件に応じた平衡濃度に、ある程度
固定されるため、最終的なチャーの収率は熱分解ガス化
反応炉内のチャーの滞留時間によって決定される。
The reaction rate relating to this char gasification reaction increases with the increase of pressure, temperature and concentration of gasifying agent (steam or CO 2 ). Therefore, by changing these reaction conditions, the final product can be obtained. It is possible to adjust the yield of the obtained char to any value. However, the reaction pressure is the pressure required in the subsequent process that uses the generated gas, and the pyrolysis temperature is the minimum temperature at which tar does not form (800 depending on the type of coal,
To about 1100 ° C) and the gasification agent concentration is fixed to an equilibrium concentration according to the gasification conditions in the high temperature gasification furnace, so the final char yield is in the pyrolysis gasification reaction furnace. Is determined by the residence time of the char.

【0010】熱分解ガス化反応炉1内の反応条件は、熱
分解一次反応によって生成したタールが引き続き充分な
熱分解二次反応によって完全に熱分解ガスへ分解される
レベルの反応条件を選択しなければならない。そのよう
な反応条件は炭種によっても異なるが、一般的には反応
条件が、圧力1.0MPa 未満、温度(熱分解初期温度)
800℃未満、ガス滞留時間0.2sec 以下のいずれか
一つに該当すると、タールの完全熱分解ガス化は不可能
となる。なお、反応条件(圧力,温度,ガス滞留時間)
を高めることは、タールの完全熱分解ガス化およびチャ
ーガス化反応の促進のためには有利であるが、必要以上
に過剰に反応条件を高めることは、一方で設備コストの
増大(圧力、温度、ガス滞留時間を高めすぎた場合)、
エネルギー効率の低下(温度、ガス滞留時間を高めすぎ
た場合)、ススの発生(温度、滞留時間を高めすぎた場
合)を招くため好ましくない。従って各々の反応条件
は、製品となるガスおよびチャーを利用する後段の発電
プロセスにおいて要求される条件(圧力、各製品の収
率)に対応し、かつ過度のエネルギー効率の低下や設備
コストの増大を招くことのない程度とすることが望まし
い。すなわち、各々の反応条件は、圧力5MPa 、温度
(熱分解初期温度)1200℃、ガス滞留時間10sec
を上限とすることが好適である。
The reaction conditions in the pyrolysis gasification reactor 1 are selected such that the tar produced by the pyrolysis primary reaction is subsequently completely decomposed into pyrolysis gas by a sufficient pyrolysis secondary reaction. There must be. Such reaction conditions vary depending on the type of coal, but generally the reaction conditions are pressure less than 1.0 MPa, temperature (initial temperature of thermal decomposition)
If the temperature falls below 800 ° C. and the gas retention time is 0.2 sec or less, complete pyrolysis gasification of tar becomes impossible. Reaction conditions (pressure, temperature, gas retention time)
It is advantageous to increase the total pyrolysis gasification of tar and to promote the char gasification reaction, but increasing the reaction conditions excessively more than necessary increases the equipment cost (pressure, temperature, If the gas retention time is too high),
It is not preferable because it causes reduction of energy efficiency (when temperature and gas retention time are too high) and soot generation (when temperature and gas retention time is too high). Therefore, each reaction condition corresponds to the conditions (pressure, yield of each product) required in the subsequent power generation process that uses the product gas and char, and excessively reduces energy efficiency and increases facility costs. It is desirable that the amount does not cause That is, the respective reaction conditions are as follows: pressure 5 MPa, temperature (initial temperature of thermal decomposition) 1200 ° C., gas residence time 10 sec.
Is preferably the upper limit.

【0011】熱分解ガス化反応炉1から排出されたガス
およびチャーは、熱回収器(シンガスクーラー)5によ
って顕熱をスチームとして回収後、サイクロン6によっ
て分離され、更にガスはガス精製設備7によって精製さ
れて製品ガスとして利用される。この製品ガスはCOお
よびH2 リッチ(両者を合計して50%〜95%程度)
な組成となる。ガスと分離されたチャーは、元の石炭
(原炭)よりも低水分、低揮発分、低硫黄分である改質
炭として、後段の発電設備8において利用される。この
改質炭を原炭と比較した場合、水分が少ないため、ボイ
ラーで燃焼させた場合の熱効率が上昇するのは無論のこ
と、単位質量あたりの発熱量が増加しているため、石炭
を輸送する際のコスト(輸送のための消費エネルギー)
を削減できるメリットがある。また、硫黄含有量が少な
いため、ボイラー後段の脱硫設備を削減できるメリット
もある。
The gas and char discharged from the pyrolysis gasification reaction furnace 1 are recovered by the heat recovery device (syngas cooler) 5 as sensible heat as steam, and then separated by the cyclone 6, and the gas is further purified by the gas purification facility 7 Is purified by and used as product gas. This product gas is rich in CO and H 2 (total of about 50% to 95%)
It has a different composition. The char separated from the gas is used in the power generation facility 8 in the latter stage as reforming coal having lower water content, lower volatile content, and lower sulfur content than the original coal (raw coal). Compared with raw coal, this reformed coal has less water content, so of course the thermal efficiency when burned in a boiler is increased, and the calorific value per unit mass is increased. Cost of doing (energy consumption for transportation)
There is a merit that can reduce. Moreover, since the sulfur content is low, there is an advantage that the desulfurization equipment in the latter stage of the boiler can be reduced.

【0012】高温ガス化炉2内においては、ガス化剤で
ある酸素によって石炭が1400℃〜1700℃の高温
でガス化(部分酸化=不完全燃焼)され、可燃性の高温
ガス(主成分はCO,H2 )に転換される。また、高温
ガス化炉2内の温度制御の目的も兼ねて、ガス化剤とし
て水蒸気を酸素と併用しても良い。なお、高温ガス化炉
2内を1400℃未満の温度とすることは、石炭が充分
にガス化せず、かつスラグ(石炭中の灰分が溶融したも
の)を連続的に安定して高温ガス化炉2の底部より抜き
出すこともできなくなるため好ましくない。また一方
で、1700℃を越えた温度とすることは、高温ガス化
炉2の炉壁の寿命を極度に短縮し、かつ放熱による熱損
失も増加するため好ましくない。一般的には、この際の
ガス化温度は、放熱による熱損失を最小限にするため、
石炭が充分にガス化し(炭素転換率90%以上)、かつ
スラグ(石炭中の灰分が溶融したもの)を連続的に安定
して高温ガス化炉2の底部より抜き出すことができる最
低温度となるように1400℃〜1700℃の間で設定
することが望ましい。また、熱分解ガス化反応炉1から
のガスの逆流がないように、高温ガス化炉2内の圧力は
熱分解ガス化反応炉1内の圧力以上とすることが望まし
い。
In the high temperature gasification furnace 2, coal is gasified (partial oxidation = incomplete combustion) at a high temperature of 1400 ° C. to 1700 ° C. by oxygen which is a gasifying agent, and combustible high temperature gas (main component is CO, H 2 ). Further, for the purpose of controlling the temperature in the high temperature gasification furnace 2, steam may be used together with oxygen as a gasifying agent. In addition, when the temperature in the high temperature gasification furnace 2 is set to a temperature lower than 1400 ° C., coal is not sufficiently gasified, and slag (melted ash in coal) is continuously and stably gasified at high temperature. It is not preferable because it cannot be extracted from the bottom of the furnace 2. On the other hand, it is not preferable to set the temperature over 1700 ° C. because the life of the furnace wall of the high temperature gasification furnace 2 is extremely shortened and the heat loss due to heat radiation increases. Generally, the gasification temperature at this time is to minimize heat loss due to heat dissipation,
Coal is sufficiently gasified (carbon conversion rate of 90% or more), and the slag (melted ash content of coal) becomes the stable and continuous minimum temperature that can be extracted from the bottom of the high temperature gasification furnace 2. Therefore, it is desirable to set the temperature between 1400 ° C and 1700 ° C. Further, it is desirable that the pressure in the high temperature gasification furnace 2 be equal to or higher than the pressure in the pyrolysis gasification reaction furnace 1 so that there is no backflow of gas from the pyrolysis gasification reaction furnace 1.

【0013】高温ガス化炉2を熱分解ガス化反応炉1と
一体化し、熱分解ガス化反応炉1の下部に設置すること
によって、高温ガスの顕熱は、放熱を最小限として効率
良く、熱分解ガス化反応炉1へ導入され、熱分解ガス化
反応炉内で必要な反応熱として有効に利用される。
By integrating the high-temperature gasification furnace 2 with the pyrolysis gasification reaction furnace 1 and installing it in the lower part of the pyrolysis gasification reaction furnace 1, the sensible heat of the high-temperature gas is efficiently discharged with minimum heat dissipation, It is introduced into the pyrolysis gasification reaction furnace 1 and is effectively utilized as reaction heat required in the pyrolysis gasification reaction furnace.

【0014】生成した熱分解反応生成物(製品ガス、チ
ャー)は発電設備8,9における燃料として利用され
る。この場合の発電方式としては、ガスは低負荷運転へ
の切り替えが容易で、かつその際の発電効率も高い複合
サイクル発電(ガスタービン+スチームタービン)燃料
とし、チャーは石炭焚きボイラー発電(ボイラー+スチ
ームタービン)燃料とするのが最適である。このように
することによって、水分含有量の多い石炭(低品位炭)
を直接石炭焚きボイラー発電用の燃料として用いる場合
よりも高効率に発電を行うことが可能となる。
The generated thermal decomposition reaction products (product gas, char) are used as fuel in the power generation facilities 8 and 9. As a power generation method in this case, gas is a combined cycle power generation (gas turbine + steam turbine) fuel that can be easily switched to low load operation and has high power generation efficiency at that time, and char is a coal-fired boiler power generation (boiler + boiler). It is best to use it as a steam turbine) fuel. By doing this, coal with a high water content (low-grade coal)
It is possible to generate electricity with higher efficiency than in the case where is directly used as fuel for coal-fired boiler power generation.

【0015】本発明の技術は、特に、水分含有量の多い
石炭(低品位炭)を直接ボイラー用燃料として使用して
いる既存の発電施設(石炭焚きボイラー発電)におい
て、既存設備を有効に活用しつつ設備を増設、改造する
ことによって、電力出力を従来よりも増加させる場合
(リパワリング)に適用することが好適である。すなわ
ち、既存の発電設備(石炭焚きボイラー、スチームター
ビン)は改質炭の発電設備として使用し、石炭ガス化複
合発電用の設備(石炭熱分解ガス化設備、ガスタービ
ン)を増設すれば、新たな設備投資コストを最小限に抑
えつつ、既存の効率の低い発電施設のリパワリングが可
能となる。
The technique of the present invention effectively uses the existing equipment, particularly in the existing power generation facility (coal-fired boiler power generation) that directly uses coal with a high water content (low-grade coal) as fuel for the boiler. However, it is preferable to apply it to the case where the power output is increased (repowering) as compared with the conventional case by adding or modifying the equipment. In other words, if existing power generation equipment (coal-fired boiler, steam turbine) is used as power generation equipment for reformed coal, and equipment for coal gasification combined cycle power generation (coal pyrolysis gasification equipment, gas turbine) is added, It is possible to repower existing low-efficiency power generation facilities while minimizing capital investment costs.

【0016】本発明の技術に適用する石炭は、改質した
場合のメリット(ボイラーの熱効率上昇、輸送コスト削
減)が大きくなるような、水分を10%以上含有する石
炭(低品位炭)であることが望ましい。また、低品位炭
を使用した場合の本技術の立地先としては、石炭の輸送
コストがかからないように産炭地の近くとすることが最
適である。
The coal applied to the technique of the present invention is a coal (low-grade coal) containing 10% or more of water, which has a large merit (increase of thermal efficiency of boiler, reduction of transportation cost) when reformed. Is desirable. Moreover, when using low-grade coal, the location of this technology is best located near the coal-producing area so that the transportation cost of coal is not incurred.

【0017】なお、生成した製品ガスを発電燃料として
使用せずに、各種化学品合成用の原料ガス(メタノー
ル、ジメチルエーテル、アンモニア、メタン等)として
用いることも可能である。
It is also possible to use the produced product gas as a raw material gas (methanol, dimethyl ether, ammonia, methane, etc.) for synthesizing various chemicals without using it as a power generation fuel.

【0018】[0018]

【実施例】図1に示したフローに従って、石炭4000
t/day の熱分解ガス化を実施した。図2にプロセスのマ
スバランス(試験結果)を示す。熱分解ガス化反応炉内
の反応条件は、温度(石炭吹き込みノズルより10cm上
方の位置で測定したガス温度)を900℃、圧力を2.
0MPa 、ガス滞留時間を1sec とし、粉砕した後におい
ても水分を22.0質量%含有する石炭(微粉炭)70
t/hrを、下部の高温ガス化炉(1500℃)から発生す
る高温のガス化ガス(CO,H2 リッチ/18万Nm3 /h
r-wet /8376 kJ/Nm3 、ガス中に若干量の未燃チャ
ーおよび飛散スラグを含む)と共に、熱分解ガス化反応
炉内へ導入した。その結果、石炭はガスとチャーに熱分
解し、最終的な製品としてCOを主成分とする製品ガス
が18万Nm3 /hr-dry 、またチャー(改質炭)が30t/
hr生成した。こうして得られたチャー(改質炭)は、原
炭と比較して低水分(4.0質量%)、低揮発分(6.
1質量%)、低酸素含有量(0.5質量%-dry・ashfre
e)であり、単位質量あたりの発熱量も1.5倍に増加
するため、輸送および貯蔵の際のコストが削減可能とな
った。また、微粉炭ボイラー等で燃焼させた場合、熱効
率が向上するのは無論のこと(蒸発潜熱に伴う熱損失が
減少するため)、石炭中の硫黄含有量の減少に伴って、
ボイラー後段の排ガス脱硫設備の規模を低減することも
可能である。
EXAMPLE Coal 4000 according to the flow shown in FIG.
Pyrolysis gasification was performed on t / day. FIG. 2 shows the mass balance (test results) of the process. The reaction conditions in the pyrolysis gasification reactor are: temperature (gas temperature measured at a position 10 cm above the coal injection nozzle) at 900 ° C. and pressure of 2.
Coal (pulverized coal) 70 with 0MPa, gas retention time of 1 sec, and water content of 22.0 mass% even after crushing
t / hr is the high-temperature gasification gas (CO, H 2 rich / 180,000 Nm 3 / h) generated from the high-temperature gasification furnace (1500 ° C) below
r-wet / 8376 kJ / Nm 3 and a small amount of unburned char and scattered slag in the gas) were introduced into the pyrolysis gasification reactor. As a result, coal is thermally decomposed into gas and char, and the final product is CO gas-based product gas of 180,000 Nm 3 / hr-dry and char (reformed coal) of 30 t /
hr generated. The char (reformed coal) thus obtained has a lower water content (4.0% by mass) and a lower volatile content (6.
1% by mass), low oxygen content (0.5% by mass-dry / ashfre
e), and the amount of heat generated per unit mass is also increased by a factor of 1.5, which makes it possible to reduce the cost for transportation and storage. In addition, when burning with a pulverized coal boiler or the like, it goes without saying that the thermal efficiency is improved (because the heat loss due to the latent heat of vaporization is reduced), and with the decrease of the sulfur content in the coal,
It is also possible to reduce the scale of the exhaust gas desulfurization equipment downstream of the boiler.

【0019】なお、下段の高温ガス化炉においては、1
00t/hrの石炭を5.3万Nm3 /hrの酸素によって15
00℃でガス化し、発生したCO、H2 リッチな高温ガ
スを直ちに上段へ設置した熱分解ガス化反応炉へと導入
した。
In the lower high temperature gasification furnace, 1
Coal of 00t / hr with oxygen of 53,000 Nm 3 / hr 15
The high temperature gas rich in CO and H 2 which was gasified at 00 ° C. was immediately introduced into the pyrolysis gasification reaction furnace installed in the upper stage.

【0020】ここで得られた製品は、図3に示す発電設
備において燃料として利用した。製品ガスは、まず第一
にガスタービン10において高温燃焼し、発電に利用す
ることによって230MWの発電出力が得られた。ガスタ
ービン10から排出される排ガスは排熱回収ボイラー1
1において顕熱を回収され、回収したスチームはスチー
ムタービン13へ導入することによって更に発電を行っ
た(複合サイクル発電)。一方のチャー(改質炭)は、
微粉炭燃焼ボイラー12において燃焼させ、スチームを
回収した。このスチームは、先に図3に示した石炭熱分
解ガス化プロセスにおいて回収されたスチーム、および
ガスタービン排ガスの排熱から回収したスチームと共に
スチームタービン13に導入することによって、340
MWの発電出力が得られた。
The product obtained here was used as a fuel in the power generation equipment shown in FIG. First, the product gas burned at a high temperature in the gas turbine 10 and was used for power generation to obtain a power generation output of 230 MW. Exhaust gas discharged from the gas turbine 10 is an exhaust heat recovery boiler 1
The sensible heat was recovered in 1 and the recovered steam was introduced into the steam turbine 13 to further generate power (combined cycle power generation). One char (reformed coal) is
Combustion was carried out in the pulverized coal combustion boiler 12 to recover steam. This steam is introduced into the steam turbine 13 together with the steam recovered in the coal pyrolysis gasification process shown in FIG. 3 and the steam recovered from the exhaust heat of the gas turbine exhaust gas to generate 340.
The power output of MW was obtained.

【0021】なお、今回、微粉炭燃焼ボイラー12およ
びスチームタービン13は既設の発電設備を利用した
(発電所のリパワリング)。また、微粉炭燃焼ボイラー
12後の脱硫設備14は高性能のものに更新したが、改
質炭中の硫黄分が原炭中よりも少なくなったため、従来
よりも設備規模を削減することが可能であった。
Incidentally, this time, the pulverized coal combustion boiler 12 and the steam turbine 13 utilized the existing power generation equipment (repowering of the power plant). Also, the desulfurization equipment 14 after the pulverized coal combustion boiler 12 was upgraded to high performance, but the sulfur content in the reformed coal was less than in the raw coal, so the equipment scale can be reduced compared to the conventional one. Met.

【0022】[0022]

【発明の効果】本発明により、石炭、特に水分を多く含
有する石炭を用い、高効率にかつ低い設備コストで発電
を行うことが可能となる。
Industrial Applicability According to the present invention, it is possible to generate electricity with high efficiency and low equipment cost by using coal, particularly coal containing a large amount of water.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に関するフローシートである。FIG. 1 is a flow sheet relating to the present invention.

【図2】本発明の実施例におけるプロセスのマスバラン
ス(試験結果)である。
FIG. 2 is a mass balance (test result) of a process in an example of the present invention.

【図3】本発明の実施例における発電方法である。FIG. 3 is a power generation method according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 熱分解ガス化反応炉 2 高温ガス発生炉 3 石炭吹き込みノズル 4 石炭吹き込みノズル 5 熱回収器(シンガスクーラー) 6 サイクロン 7 ガス精製設備 8 発電設備 9 発電設備 10 ガスタービンおよび発電機 11 排熱回収ボイラー 12 微粉炭燃焼ボイラー 13 スチームタービンおよび発電機 14 脱硫設備 1 Pyrolysis gasification reactor 2 High temperature gas generation furnace 3 coal injection nozzle 4 coal injection nozzle 5 Heat recovery unit (Singus cooler) 6 cyclones 7 gas purification equipment 8 power generation equipment 9 power generation equipment 10 Gas turbine and generator 11 Exhaust heat recovery boiler 12 Pulverized coal combustion boiler 13 Steam turbines and generators 14 Desulfurization equipment

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 石炭の酸素によるガス化によって高温ガ
ス化炉から発生する高温ガス中に石炭を吹き込み、石炭
の急速加熱・熱分解反応を気流層中で行わせる石炭熱分
解ガス化炉から発生する熱分解ガス化反応生成物を燃料
として用いる発電プロセスの発電方法であって、生成し
たガスをガスタービンとスチームタービンからなる複合
サイクル発電用の燃料として用い、かつ生成したチャー
を石炭燃焼ボイラーとスチームタービンからなる石炭焚
き発電用の燃料として用いることを特徴とする石炭の熱
分解ガス化反応生成物による発電方法。
1. Generated from a coal pyrolysis gasification furnace in which coal is blown into a high temperature gas generated from a high temperature gasification furnace by gasification of coal with oxygen to cause rapid heating / pyrolysis reaction of coal in a gas stream layer. A power generation method of a power generation process using a pyrolysis gasification reaction product as a fuel, wherein the generated gas is used as a fuel for combined cycle power generation including a gas turbine and a steam turbine, and the generated char is used as a coal combustion boiler. A power generation method using a thermal decomposition gasification reaction product of coal, which is used as a fuel for coal-fired power generation, which comprises a steam turbine.
【請求項2】 高温ガス化炉の反応条件を圧力1.0MP
a 以上、温度1400℃〜1700℃とし、熱分解ガス
化反応炉の反応条件を圧力1.0MPa 以上、温度800
℃〜1200℃、ガス滞留時間0.2〜10sec とする
ことを特徴とする請求項1記載の石炭の熱分解ガス化反
応生成物による発電方法。
2. The reaction condition of the high temperature gasification furnace is set to a pressure of 1.0 MP.
a, the temperature is 1400 ° C. to 1700 ° C., the reaction conditions of the pyrolysis gasification reactor are pressure 1.0 MPa or more, temperature 800
C. to 1200.degree. C. and gas residence time of 0.2 to 10 seconds, the method for power generation by the thermal decomposition gasification reaction product of coal according to claim 1.
【請求項3】 石炭として、水分を10%以上含有する
石炭を用いることを特徴とする請求項1または2記載の
石炭の熱分解ガス化反応生成物による発電方法。
3. The power generation method using the thermal decomposition gasification reaction product of coal according to claim 1 or 2, wherein coal containing 10% or more of water is used as the coal.
JP2001214935A 2001-07-16 2001-07-16 Method for generating electric power by pyrolytic gasification reaction product of coal Withdrawn JP2003027072A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001214935A JP2003027072A (en) 2001-07-16 2001-07-16 Method for generating electric power by pyrolytic gasification reaction product of coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001214935A JP2003027072A (en) 2001-07-16 2001-07-16 Method for generating electric power by pyrolytic gasification reaction product of coal

Publications (1)

Publication Number Publication Date
JP2003027072A true JP2003027072A (en) 2003-01-29

Family

ID=19049666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001214935A Withdrawn JP2003027072A (en) 2001-07-16 2001-07-16 Method for generating electric power by pyrolytic gasification reaction product of coal

Country Status (1)

Country Link
JP (1) JP2003027072A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005314549A (en) * 2004-04-28 2005-11-10 Ishikawajima Harima Heavy Ind Co Ltd Gasification furnace apparatus
JP2009298909A (en) * 2008-06-12 2009-12-24 Nippon Steel Engineering Co Ltd Utilizing method of pyrolysis char as carbonaceous material for sintering
WO2011129192A1 (en) * 2010-04-16 2011-10-20 新日鉄エンジニアリング株式会社 Coal gasification system and coal gasification method
JP2012017371A (en) * 2010-07-06 2012-01-26 Central Res Inst Of Electric Power Ind Gasification furnace fuel supply method
CN105602593A (en) * 2014-11-23 2016-05-25 陕西煤业化工集团(上海)胜帮化工技术有限公司 Method for pyrolyzing fine coal by riser

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005314549A (en) * 2004-04-28 2005-11-10 Ishikawajima Harima Heavy Ind Co Ltd Gasification furnace apparatus
JP2009298909A (en) * 2008-06-12 2009-12-24 Nippon Steel Engineering Co Ltd Utilizing method of pyrolysis char as carbonaceous material for sintering
WO2011129192A1 (en) * 2010-04-16 2011-10-20 新日鉄エンジニアリング株式会社 Coal gasification system and coal gasification method
CN102892869A (en) * 2010-04-16 2013-01-23 新日铁住金工程技术株式会社 Coal gasification system and coal gasification method
AU2011241630B2 (en) * 2010-04-16 2013-10-24 Nippon Steel & Sumikin Engineering Co., Ltd. Coal gasification system and coal gasification method
JP5450799B2 (en) * 2010-04-16 2014-03-26 新日鉄住金エンジニアリング株式会社 Coal gasification system and coal gasification method
JP2012017371A (en) * 2010-07-06 2012-01-26 Central Res Inst Of Electric Power Ind Gasification furnace fuel supply method
CN105602593A (en) * 2014-11-23 2016-05-25 陕西煤业化工集团(上海)胜帮化工技术有限公司 Method for pyrolyzing fine coal by riser

Similar Documents

Publication Publication Date Title
Zheng et al. Comparison of Shell, Texaco, BGL and KRW gasifiers as part of IGCC plant computer simulations
AU2008347043B2 (en) Method and apparatus to facilitate substitute natural gas production
US6588212B1 (en) Combustion turbine fuel inlet temperature management for maximum power outlet
Phillips Different types of gasifiers and their integration with gas turbines
Ye et al. Techno-economic analysis of methanol and electricity poly-generation system based on coal partial gasification
US8357216B2 (en) Two stage dry feed gasification system and process
Niu et al. Simulation of a new biomass integrated gasification combined cycle (BIGCC) power generation system using Aspen Plus: performance analysis and energetic assessment
US20080190024A1 (en) System and method for producing substittue natural gas from coal
US20110315096A1 (en) Gasifier Hybrid combined cycle power plant
JPS5947137B2 (en) Method of generating electricity from carbon-based or hydrocarbon-based fuels
JP2005112956A (en) Gasification method for biomass
Hantoko et al. Supercritical water gasification of sewage sludge and combined cycle for H2 and power production–a thermodynamic study
AU2012229849B2 (en) Complex system for utilizing coal in manufacture of char and raw material gas and electric power generation
CN104059705B (en) Overall steam gasification and entrained flow gasification system and method for inferior fuel
JP2010285564A (en) Coal gasification furnace, method and program for controlling the same, and coal gasification combined power generator equipped with the furnace
JP2003027072A (en) Method for generating electric power by pyrolytic gasification reaction product of coal
KR100637273B1 (en) High temperature air gasification process for hydrogen production and apparatus thereof
WO1996006901A1 (en) Process for cooling a hot gas stream
JP4435966B2 (en) Coal air bed type gasification method
Fossum et al. Co-combustion: Biomass fuel gas and natural gas
Doering et al. Advances in the Shell coal gasification process
JP3559163B2 (en) Gasification method using biomass and fossil fuel
US8597581B2 (en) System for maintaining flame stability and temperature in a Claus thermal reactor
JP2000319672A (en) Method for generating electricity by means of reaction product from coal thermal cracking
Kalisz et al. Energy balance of high temperature air/steam gasification of biomass in updraft, fixed bed type gasifier

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061108

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20061208

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081007