WO2011129192A1 - Coal gasification system and coal gasification method - Google Patents

Coal gasification system and coal gasification method Download PDF

Info

Publication number
WO2011129192A1
WO2011129192A1 PCT/JP2011/057482 JP2011057482W WO2011129192A1 WO 2011129192 A1 WO2011129192 A1 WO 2011129192A1 JP 2011057482 W JP2011057482 W JP 2011057482W WO 2011129192 A1 WO2011129192 A1 WO 2011129192A1
Authority
WO
WIPO (PCT)
Prior art keywords
coal
moisture
reaction vessel
water
coal gasification
Prior art date
Application number
PCT/JP2011/057482
Other languages
French (fr)
Japanese (ja)
Inventor
小水流 広行
小菅 克志
眞須美 糸永
矢部 英昭
卓 武田
良之 幸
泰樹 並木
Original Assignee
新日鉄エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鉄エンジニアリング株式会社 filed Critical 新日鉄エンジニアリング株式会社
Priority to AU2011241630A priority Critical patent/AU2011241630B2/en
Priority to CN201180018831.6A priority patent/CN102892869B/en
Priority to JP2012510610A priority patent/JP5450799B2/en
Publication of WO2011129192A1 publication Critical patent/WO2011129192A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/485Entrained flow gasifiers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/466Entrained flow processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/721Multistage gasification, e.g. plural parallel or serial gasification stages
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/723Controlling or regulating the gasification process
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/15Details of feeding means
    • C10J2200/152Nozzles or lances for introducing gas, liquids or suspensions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0903Feed preparation
    • C10J2300/0906Physical processes, e.g. shredding, comminuting, chopping, sorting
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0903Feed preparation
    • C10J2300/0909Drying
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0956Air or oxygen enriched air
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0959Oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/164Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
    • C10J2300/1656Conversion of synthesis gas to chemicals
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1678Integration of gasification processes with another plant or parts within the plant with air separation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/002Removal of contaminants
    • C10K1/003Removal of contaminants of acid contaminants, e.g. acid gas removal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/02Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment
    • C10K3/04Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment reducing the carbon monoxide content, e.g. water-gas shift [WGS]

Definitions

  • the present invention relates to a coal gasification system and a coal gasification method for producing a product such as methane using coal as a raw material.
  • a product such as methane using coal as a raw material.
  • coal having coal gasification reactors of various configurations such as fixed bed type, fluidized bed type, and fluidized bed type (jet bed) type to gasify coal and efficiently produce combustible gas etc.
  • Gasification systems are being considered.
  • a coal gasification system disclosed in Patent Document 1 is known.
  • This coal gasification system comprises a pyrolysis gasification reactor (upper reaction vessel) for pyrolyzing coal, a heat exchanger for recovering sensible heat from gas etc. generated from the pyrolysis gasification reactor, the gas, etc.
  • a desulfurizer that removes sulfur from the gas from which the char has been separated to purify the gas.
  • the pyrolysis gasification reactor is in communication with the high temperature gasification furnace (lower reaction vessel) on the lower side.
  • the high temperature gasifier is supplied with coal, an oxygen-containing gas such as oxygen or oxygen-enriched air, and water vapor.
  • the high temperature gasification furnace generates a high temperature gas mainly composed of hydrogen gas and carbon monoxide gas.
  • the pyrolysis gasification reactor is provided with a coal blowing nozzle for blowing coal into the pyrolysis gasification reactor, and a steam nozzle for adding water vapor in the pyrolysis gasification reactor. From the coal supplied from the coal blowing nozzle into the pyrolysis gasification reactor, char and volatile gas are generated by the pyrolysis reaction.
  • the char generated here is decomposed into various gases by the following chemical reaction formula.
  • Patent Document 1 describes that, among the above chemical reaction formulas, the reaction rate of the chemical reaction formula (1) is about several times faster than the reaction rate of the chemical reaction formula (2).
  • Supplying steam to make the inside of the pyrolysis gasification reactor a steam-enriched atmosphere is said to be extremely effective in decomposing char.
  • the pyrolysis of coal generates a tar mainly composed of carbon and adheres to the inside of the pyrolysis gasification reactor. If the deposition amount of tar increases, finally, a part of the pyrolysis gasification reactor may be clogged with tar, and the pyrolysis gasification reactor may not be able to operate normally.
  • this tar is also gasified by the chemical reaction of the above-mentioned chemical reaction formulas (1) and (2).
  • the deposition of tar includes the deposition of carbonaceous material derived from tar.
  • the present invention has been made in view of such problems, and it is possible to control the amount of water vapor inside the upper reaction container without requiring an apparatus for supplying water vapor to the upper reaction container.
  • the purpose is to provide a system and a coal gasification method.
  • a coal gasification system comprises drying a coal to dry a moisture-adjusting coal having a predetermined moisture content; and burning the moisture-adjusting coal And a coal gasification reactor for producing hydrogen gas and carbon monoxide gas.
  • the coal gasification reactor is provided with a lower reaction vessel; an upper reaction vessel provided above the lower reaction vessel and in communication with the lower reaction vessel; the moisture control coal and the oxygen-containing gas in the lower reaction vessel.
  • the coal is dried by the drying device to an extent having a predetermined water content to obtain the water content adjusting coal.
  • a high temperature gas mainly composed of carbon monoxide gas is generated inside the lower reaction vessel.
  • the high temperature gas generated inside the lower reaction vessel flows into the upper reaction vessel.
  • the water content adjusting coal is supplied to the upper reaction container through the nozzle unit separately from the amount supplied to the lower reaction container, and is heated by the high temperature gas flowing into the upper reaction container.
  • the moisture control coal is heated from the high temperature gas, the pyrolysis generates carbon-based tar and char.
  • the tar and char chemically react with a predetermined amount of water left in the moisture control coal to gasify (see Formula (1)).
  • coal such as subbituminous coal and lignite contains water of about 30 to 60% (weight%). Therefore, in the process of drying these, it is adjusted so that a predetermined amount of water remains, and the remaining water is used to generate water vapor to promote the gasification of tar. As a result, it is possible to prevent tar from adhering to the inside of the gasification reaction furnace without supplying steam to the upper and lower reaction vessels as in the prior art.
  • the above-mentioned coal gasification system is a pressure measurement part which measures the difference between the pressure in the furnace below the nozzle part and the pressure in the furnace above the upper reaction vessel; and the pressure difference measured by the pressure measurement part And a controller configured to control the drying device based on the above to adjust the amount of water contained in the coal.
  • the pressure measuring unit measures the difference between the pressure in the furnace below the nozzle and the pressure in the furnace above the upper reaction vessel. Then, when a pressure difference at which tar adhesion is recognized is detected, the drying device is controlled to increase the amount of water contained in the coal.
  • the water amount adjustment coal with increased water amount is heated from the high temperature gas, tar and char mainly composed of carbon are generated by thermal decomposition, and the water is vaporized to be water vapor. Tar and char chemically react with part of the generated water vapor and are gasified. Furthermore, the tar deposited on the inner surface of the reaction vessel chemically reacts with the remaining water vapor and is gasified. Thereby, it can suppress that tar adheres to the upper reaction container inner surface.
  • a coal gasification system is a drying apparatus for drying subbituminous coal or lignite containing 20% or more of moisture by mass ratio so as to contain a predetermined amount of moisture to obtain moisture-adjusted coal.
  • a coal gasification reactor for producing at least hydrogen gas and carbon monoxide gas by burning the moisture-regulated coal.
  • the coal gasification reactor has a lower reaction vessel in which a storage space is formed, and an upper reaction vessel provided above the lower reaction vessel.
  • the lower reaction vessel has a burner unit that supplies the moisture-adjusting coal and the oxygen-containing gas at a predetermined ratio without supplying water vapor to the lower reaction vessel and burns the moisture-adjusting coal.
  • the upper reaction vessel supplies only the water content adjusting coal without supplying water vapor to the upper reaction vessel, and a through hole extending in the vertical direction in communication with the storage space of the lower reaction vessel via the reduced diameter portion It has a nozzle part that The predetermined amount is set such that the water does not adhere to the through holes by chemical reaction with the tar generated from the water amount adjusting coal.
  • Subbituminous coal and lignite contain water of about 30 to 60% (weight%).
  • the subbituminous coal or the lignite is dried by the drying apparatus to be the moisture control coal, and the moisture control coal is controlled so as to contain water higher than the residual moisture in the conventional coal gasification system.
  • the chemical reaction between a predetermined amount of water of the moisture control coal and the tar generated from the moisture control coal causes a moisture control such that the tar does not adhere to the through holes. Adjust the amount of water in the coal.
  • the moisture control coal and the oxygen-containing gas are supplied at a predetermined ratio without supplying water vapor from the burner unit to the storage space in the lower reaction container to burn the moisture control coal, and Only moisture regulation coal is supplied to the through hole without supplying water vapor from the nozzle portion.
  • Both carbon and water supplied into the upper reaction vessel are contained in the moisture control coal.
  • tar and char mainly composed of carbon are formed.
  • Moisture Content The moisture in the coal is heated in the upper reaction vessel to become water vapor.
  • the tar, char and water vapor immediately after being produced from the moisture control coal are mixed.
  • these tar, char and water vapor are supplied from separate nozzles, the tar and char and the water vapor may be incapable of reacting due to their separated positions.
  • the tar, char and water vapor are mixed, it is possible to prevent them from becoming unreactive.
  • the amount of water contained in the amount-of-water control coal supplied into the upper reaction vessel is controlled by the drying device, and the tar and steam generated by the thermal decomposition of the amount-of-water control coal react with each other to cause through holes.
  • the tar and steam generated by the thermal decomposition of the amount-of-water control coal react with each other to cause through holes.
  • prescribed water content may be set to mass ratio 15%-40% by content in the said water content adjustment coal.
  • the reaction between tar and water vapor in the upper reaction vessel is further promoted, and tar does not adhere to the through holes. can do.
  • the coal gasification reaction furnace is an internal pressure of a portion below the nozzle portion in the through hole of the upper reaction container or an internal pressure of a storage space of the lower reaction container, and the through hole
  • the pressure measurement unit may be configured to measure a pressure difference between the pressure at the upper end portion of
  • the coal gasification system may include a control unit that controls the drying device to adjust the water content of the coal based on the pressure difference measured by the pressure measurement unit. In this case, even if tar generated by thermal decomposition of coal adheres to the upper reaction vessel, the tar is concentrated at a position vertically above the nozzle portion in the through hole of the upper reaction vessel. Adhere to.
  • the control unit can promote the chemical reaction between the tar and the steam by increasing the amount of water in the moisture control coal, and can gasify the tar deposited in the through holes of the upper reaction vessel .
  • the coal gasification method implements the following steps using the coal gasification system described in any of the above.
  • the water content adjusting coal and the oxygen-containing gas are supplied to the lower reaction container without supplying steam from the burner part, and the water content adjusting coal is burned, and the upper reaction container is fed with the water from the nozzle part.
  • a chemical reaction process in which only the water amount adjusting coal is supplied to cause a chemical reaction of the water amount adjusting coal.
  • the coal is dried to obtain a moisture control coal containing a predetermined moisture content; and the water control coal in the lower reaction vessel of the coal gasification reactor.
  • the amount of water vapor in the upper reaction container can be adjusted without requiring an apparatus for supplying water vapor to the upper reaction container.
  • FIG. 1 It is a block diagram of a coal gasification system concerning a 1st embodiment of the present invention. It is the figure which fractured a part of principal part of the same coal gasification system. It is sectional drawing of the drying apparatus of the same coal gasification system. It is a figure which shows the change of the content of the water
  • the coal gasification system 1 synthesizes a synthesis gas containing hydrogen gas and carbon monoxide gas as main components using coal as a raw material, and from this synthesis gas, finally, methane, methanol, ammonia and the like are produced. It is a plant facility that manufactures products.
  • coal used by coal gasification system 1 of this embodiment subbituminous coal or lignite containing 20% or more of moisture by weight can be used.
  • the coal gasification system 1 includes a coal drying and pulverizing facility (drying apparatus) 2, a coal supply facility 3, a coal gasification reactor 4, a heat recovery facility 5, a char recovery facility 6, and a shift reaction facility 7. , Gas purification equipment 8, chemical synthesis equipment 9, and air separation equipment 10.
  • the coal drying and crushing facility 2 has a drying unit 13 for heating coal and a crushing unit 14 for crushing coal to a predetermined particle diameter (outer diameter).
  • coal has an uneven particle size, and subbituminous coal and brown coal contain a large amount of water of, for example, about 30 to 60% by mass ratio. Therefore, the sub-bituminous coal or lignite has a predetermined moisture content by grinding the sub-bituminous coal or lignite heated in the drying unit 13 into particles having a particle diameter of, for example, about 10 ⁇ m to 100 ⁇ m in the crushing unit 14. Adjust as. In this manner, a moisture-regulated coal having a predetermined moisture content is produced from coal having a moisture content of about 30 to 60% by mass ratio.
  • the drying unit 13 and the crushing unit 14 both function as a drying apparatus for drying coal.
  • the moisture content of granular moisture control coal produced by the coal drying and pulverizing facility 2 is set to be 15% or more and 40% or less by mass ratio, which is lower than the moisture content of coal before drying.
  • the measurement of the moisture content of coal before drying and the measurement of the moisture content of dried and pulverized water can be performed using, for example, an infrared moisture meter. For example, by adjusting the heating temperature or heating time in the drying unit 13 or the particle size of coal after crushing in the crushing unit 14, it is possible to adjust the water content of the water amount adjusting coal.
  • the drying unit 13 is configured by a double-pipe structure of an inner cylinder 15 and an outer cylinder 16 coaxially disposed.
  • the inner cylinder 15 and the outer cylinder 16 are disposed such that the tip end side is inclined downward at a constant angle with respect to the horizontal plane.
  • a hopper 17 for introducing coal B into the inner cylinder 15 is connected to the base end side (the obliquely upper side in the vertical direction) of the inner cylinder 15.
  • a delivery mechanism 18 for delivering the coal B to the tip side (obliquely lower side in the vertical direction) is disposed.
  • a flow rate adjusting valve 19 is connected between the outer cylinder 16 and the inner cylinder 15 to supply water vapor at a constant temperature by adjusting the flow rate.
  • the steam supplied between the inner cylinder 15 and the outer cylinder 16 flows so as to face the direction in which the coal B is sent, and is discharged from the discharge pipe 20 connected to the outer cylinder 16.
  • a temperature sensor for measuring the outlet temperature of the pulverizing unit 14 is provided.
  • the drying unit 13 configured as described above operates the flow rate adjusting valve 19 while measuring with the temperature sensor of the crushing unit 14 to adjust the amount of water vapor flowing between the inner cylinder 15 and the outer cylinder 16. And, while conveying the coal B to the tip side inside the inner cylinder 15, the coal B is heated by the steam. Thereby, the amount of water contained in coal B is adjusted.
  • the method of drying coal in a drying part will not be specifically limited if the amount of moisture in coal can be adjusted.
  • a method of heating coal with steam may be used, or a method of heating using a heater or the like may be used.
  • FIG. 4 shows an example of the result of drying the coal B by the coal drying and crushing facility 2.
  • coal B is primarily dried and the water content in coal B is supplied to the drying unit 13 in a state of being dried to 25%.
  • the horizontal axis in FIG. 4 indicates the outlet temperature of the grinding unit 14 measured by the temperature sensor, and the vertical axis indicates the water content in the moisture-adjusting coal after leaving the grinding unit 14.
  • the moisture content of the moisture adjustment coal is 5%
  • the outlet temperature of the crushing unit 14 is 50 ° C.
  • the moisture content in the moisture adjustment coal is 18 %Met.
  • the outlet temperature of the crushing unit 14 becomes higher. Then, when the outlet temperature of the crushing part 14 becomes high, it is understood that the coal B is heated to a higher temperature in the inner cylinder 15, and the water content in the water amount adjusting coal discharged from the outlet of the crushing part 14 decreases. .
  • the water amount adjusting coal pulverized in the pulverizing unit 14 is mixed with the carrier gas in the coal supply facility 3 in order to be able to be supplied into the coal gasification reactor 4.
  • the carrier gas containing the moisture content adjusting coal is pressurized to a predetermined pressure and supplied to the coal gasification reaction furnace 4.
  • the moisture content adjustment coal which evaporated the fixed amount of water
  • the air separation equipment 10 shown in FIG. 1 compresses and liquefies air, and separates oxygen gas, nitrogen gas, and the like which are dried from the air that has become a liquid due to the difference in boiling point.
  • the oxygen gas separated by the air separation facility 10 is supplied to the coal gasification reactor 4.
  • the coal gasification reaction furnace 4 is an apparatus for producing at least hydrogen gas and carbon monoxide gas by burning moisture control coal inside.
  • the coal gasification reaction furnace 4 includes a partial oxidation unit (lower reaction vessel) 26 and a thermal decomposition unit (upper reaction vessel) 28 provided on the upper side D 1 in the vertical direction of the partial oxidation unit 26.
  • the partial oxidation portion 26 has a storage space 26 a formed therein.
  • the thermal decomposition section 28 has a through hole (tubular section) 27 extending in the up-and-down direction D in communication with the accommodation space 26 a of the partial oxidation section 26 via the reduced diameter section 28 a.
  • the coal gasification reaction furnace 4 is formed of a heat-resistant brick or the like.
  • a slag cooling water tank 29 is provided below the partial oxidation unit 26 at D2.
  • the partial oxidation portion 26 and the slag cooling water tank 29 communicate with each other in the vertical direction (vertical direction) D.
  • a small diameter portion whose diameter is reduced is formed at a connection portion between the partial oxidation portion 26 and the slag cooling water tank 29.
  • the partial oxidation portion 26 is formed in a substantially cylindrical shape extending in the vertical direction D.
  • a plurality of gasification burners (burner units) 30 formed in a cylindrical shape extending along the axis C1 are provided on the inner peripheral surface of the partial oxidation unit 26.
  • the gasification burner 30 is connected to the coal supply facility 3 and the air separation facility 10, and the partial oxidation unit 26 is a moisture control coal and an oxygen-containing gas, and (hereinafter referred to as "moisture control coal etc.” Can be supplied at a predetermined rate.
  • the gasification burner 30 is disposed such that its tip end side is directed obliquely downward with respect to the horizontal plane, and its axis C 1 is at a position of twist with respect to the central axis C 2 of the partial oxidation portion 26. Thereby, the gasification burner 30 is arranged such that the flow of the gas to be jetted becomes a swirling flow that swirls about the central axis C2 of the partial oxidation unit 26. Further, a cooling means (not shown) is provided on the outer peripheral surface of the partial oxidation portion 26, and the partial oxidation portion 26 heated by the combustion of the moisture content adjusting coal can be cooled.
  • the thermal decomposition section 28 is formed in a tubular or cylindrical shape extending in the up-down direction D.
  • the inner diameter of the through hole 27 is smaller than the inner diameter of the accommodation space 26 a of the partial oxidation portion 26.
  • a plurality of nozzle portions 31 for supplying only the moisture content adjusting coal to the thermal decomposition portion 28 is provided in the middle portion of the thermal decomposition portion 28 in the vertical direction D.
  • the nozzle portion 31 is connected to the coal supply facility 3.
  • the thermal decomposition unit 28 is not provided with a steam nozzle for supplying water vapor to the thermal decomposition unit as in the conventional thermal decomposition unit. Further, the number of the gasification burner 30 and the number of the nozzle portion 31 is not limited, and may be any number.
  • the end portion 27 a of the upper portion D 1 of the through hole 27 of the thermal decomposition section 28 is connected to the heat recovery facility 5.
  • the coal gasification system 1 is provided with a pressure measurement device (pressure measurement unit) 33 that measures the pressure difference in the through holes 27 of the thermal decomposition unit 28.
  • the pressure measuring device 33 has a first pipe 34, a second pipe 35, and a main body 36.
  • the first pipe 34 is connected to the accommodation space 26 a of the partial oxidation portion 26, and the second pipe 35 is connected to the end 27 a of the through hole 27.
  • the main body 36 measures a pressure difference between the internal pressure of the first pipe 34 and the internal pressure of the pipe of the second pipe 35.
  • a predetermined amount of water W is accommodated in the slag cooling water tank 29, and as described later, the slag flowing from the partial oxidation unit 26 is cooled.
  • the moisture control coal and the like are supplied from the gasification burner 30 into the partial oxidation unit 26 at a predetermined flow rate.
  • Each gasification burner 30 is arrange
  • the inside of the partial oxidation portion 26 is high temperature and high pressure (for example, the temperature is 1300 ° C. or more and 1700 ° C.
  • the gas, slag and the like generated in the partial oxidation portion 26 expand at high temperature and expand by receiving a force in the upward direction D1 by buoyancy, and ascends in the partial oxidation portion 26 while turning.
  • the slag generated in the partial oxidation portion 26 is in a molten state.
  • a part of the slag is cooled by the above-mentioned cooling means on the inner peripheral surface of the partial oxidation portion 26 and adheres to the inner peripheral surface, and the other portion is provided inside the slag cooling water tank 29 provided below the partial oxidation portion 26. It is dropped into water W, cooled, and recovered.
  • Gas such as water vapor generated in the partial oxidation unit 26, tar, char and the like are sent out from the partial oxidation unit 26 and rise in the through holes 27 of the thermal decomposition unit 28.
  • the temperature in the partial oxidation portion 26 is adjusted to 1000 ° C. or more, and the pressure is adjusted to 1 MPa or more.
  • the nozzle portion 31 supplies the moisture control coal to the inside of the through hole 27.
  • the moisture control coal is dried by the coal drying and grinding facility 2 and adjusted to have the above-mentioned predetermined moisture amount.
  • the water amount adjustment coal supplied from the nozzle unit 31 generates tar by thermal decomposition.
  • a predetermined amount of water contained in the water amount adjusting coal is heated to become water vapor.
  • the tar and water vapor generated from the water amount adjusting coal supplied from the nozzle 31 are mixed with the tar and water vapor rising from the inside of the partial oxidation portion 26, and carbon monoxide gas and carbon monoxide gas are obtained according to the following chemical reaction formula (6). It is decomposed into hydrogen gas.
  • a part of carbon in the water amount adjustment coal supplied to the thermal decomposition unit 28 reacts with carbon dioxide gas in the thermal decomposition unit 28 and becomes carbon monoxide gas by the following chemical reaction formula (7) .
  • FIG. 5 shows the relationship between the rate of increase of the amount of deposition of tar in the through holes 27 and the amount of water in the moisture control coal.
  • the horizontal axis in FIG. 5 represents the amount of water in the moisture-regulating coal, and the vertical axis represents the rate of increase in the amount of attached tar.
  • Water content control As the water content in the coal increases, the reaction between tar and water vapor is promoted, and the rate of increase in the amount of tar attached decreases. Specifically, if the amount of water in the water amount adjusting coal is smaller than 15%, the amount of adhesion of tar increases and tar adheres in the through holes 27.
  • the water content in the moisture control coal is greater than 15%, tar will not adhere in the through hole 27 and even if tar adheres in the through hole 27 for some reason, the tar will It is decomposed into gas and disappears.
  • the water content in the water amount adjustment coal is 40 It does not exceed%.
  • a high temperature synthesis gas containing hydrogen gas and carbon monoxide gas as main components is transported from the thermal decomposition unit 28 together with char and is supplied to the heat recovery facility 5.
  • the temperature of the steam rises due to the heat exchange between the synthesis gas transported from the thermal decomposition unit 28 and the steam outside. This water vapor is supplied to the aforementioned drying unit 13 and the like for the purpose of drying coal etc.
  • the synthesis gas cooled by the heat recovery facility 5 is supplied from the heat recovery facility 5 to the char recovery facility 6, and the char recovery facility 6 recovers the char contained in the synthesis gas.
  • the synthesis gas that has passed through the char recovery facility 6 is supplied to the shift reaction facility 7.
  • the synthesis gas whose components have been adjusted in the shift reaction equipment 7 is supplied to the gas purification equipment 8, and carbon dioxide gas contained in the synthesis gas, a gas containing sulfur as a component, and the like are recovered.
  • the synthesis gas purified by the gas purification facility 8 is supplied to the chemical synthesis facility 9 to produce products such as methane and methanol.
  • the driver reduces the flow rate of the water vapor flowing through the drying unit 13 by a predetermined amount using the flow rate adjustment valve 19 of the drying unit 13.
  • the temperature of the temperature sensor is lowered to T1 and the water content of the moisture control coal obtained by the drying unit 13 is increased from X0 to X1.
  • the water amount adjusting coal having the water amount increased to X1 from the nozzle portion 31 into the through hole 27, more water vapor is generated from the water amount adjusting coal.
  • the reaction between the tar attached to the through hole 27 and the water vapor is promoted by the chemical reaction formula (6), and the attached tar gasifies and disappears.
  • the flow control valve 19 is used to control the flow rate of the steam flowing through the drying unit 13 in order to maintain the reaction speed in the thermal decomposition unit 28 at a predetermined value or more.
  • the flow rate may be increased.
  • the temperature of the temperature sensor may be raised to, for example, T0 or T2, and the water content of the water content adjusting coal may be reduced to X0 or X2.
  • the sub-bituminous coal or the lignite containing 20% or more of moisture by weight ratio is dried by the coal drying and grinding facility 2.
  • a moisture control coal having a predetermined moisture amount larger than the residual moisture amount in the conventional coal gasification system is manufactured.
  • the predetermined amount of water contained in the water amount adjusting coal chemically reacts with the tar generated from the water amount adjusting coal so that the tar does not adhere to the through holes 27 As such, adjust the amount of water in the coal.
  • the moisture control coal and the oxygen-containing gas are supplied at a predetermined ratio without supplying steam from the gasification burner 30 to the storage space 26 a in the partial oxidation unit 26 to burn the moisture control coal.
  • the oxygen-containing gas refers to a gas containing oxygen, and includes not only oxygen gas but also air and oxygen-enriched air.
  • a high concentration oxygen gas having an oxygen content of 85% or more as the oxygen-containing gas.
  • Both carbon and water supplied into the thermal decomposition section 28 are contained in the moisture control coal, and from the moisture control coal, tar and char mainly composed of carbon are generated by thermal decomposition. Further, the moisture in the moisture control coal is heated in the thermal decomposition section 28 to become steam. The tar, char and water vapor immediately after being produced from the moisture control coal are mixed. Therefore, as in the case where they are supplied from separate nozzles, water vapor is supplied to a position away from tar and char, which prevents them from becoming unresponsive.
  • the amount of water in the water amount adjusting coal supplied to the inside of the thermal decomposition portion 28 is adjusted to such an amount that the tar and the steam chemically react with each other by the coal drying and grinding facility 2 and tar does not adhere in the through holes 27 It is done. Therefore, the amount of tar adhering to the through hole 27 does not increase and the through hole 27 is not clogged. Then, the steam supplied from the outside into the thermal decomposition unit 28 from the outside is prevented in the prior art in order to prevent the tar from adhering by reacting the steam, tar and char in the mixed state in the thermal decomposition unit 28 more reliably.
  • the chemical reaction in the thermal decomposition section 28 can be promoted by reducing or eliminating the need.
  • the moisture is supplied to the thermal decomposition section 28 in a state of being contained in the moisture control coal. Therefore, a device for supplying steam to the thermal decomposition unit 28 such as a steam nozzle is not necessary, and the manufacturing cost of the coal gasification system 1 can be reduced.
  • a certain amount of energy is required to heat the coal.
  • coal having a high water content is supplied to the thermal decomposition unit 28 without being dried to the residual water content of coal in a conventional coal gasification system. And, by causing the water in the moisture control coal to react effectively in the thermal decomposition section 28, it is possible to reduce part of the energy that was conventionally required to dry the coal.
  • the amount of water in the water amount adjusting coal is set to 15% or more, the reaction between tar and water vapor in the thermal decomposition portion 28 can be further promoted, and tar can be prevented from adhering to the through holes 27. .
  • tar generated by thermal decomposition of the moisture control coal may be attached.
  • the inventors have determined that the predetermined position D1 above the nozzle portion 31 in the through hole 27 of the thermal decomposition portion 28 (for example, several hundred mm in the upper portion D1 above the nozzle portion 31) It was found that tar was attached intensively at the position). That is, the first pipe 34 of the pressure measuring device 33 is connected to the accommodation space 26 a of the partial oxidation unit 26, and the second pipe 35 is connected to the end 27 a of the upper D 1 of the through hole 27.
  • the pressure measuring device 33 By configuring the pressure measuring device 33 in this manner, it is possible to prevent the pipes 34 and 35 from being clogged by tar and to reliably measure the pressure difference. Since it is known that tar does not easily adhere to the portion D2 lower than the nozzle portion 31 in the through hole 27 of the thermal decomposition portion 28, the first pipe 34 may be connected to this portion.
  • the pressure measurement device 33 is not provided. It is also good. It is not necessary for the water contained in the moisture control coal supplied to the partial oxidation unit 26 and the water contained in the moisture control coal supplied to the thermal decomposition unit 28 to be the same. For example, by preparing two lines of coal drying and crushing and supply system equipment, it is possible to supply moisture-regulating coal having different moisture amounts to the partial oxidation unit 26 and the thermal decomposition unit 28.
  • Water content adjustment coal supplied to the partial oxidation unit 26 will be reduced if the amount of water in the coal is too high, leading to a decrease in efficiency, and water contained in the water amount adjustment coal supplied to the thermal decomposition unit 28 will be large because it leads to adhesion prevention Is preferred.
  • the coal gasification system 41 of the present embodiment has the water content based on the pressure difference measured by the pressure measurement device 33 in addition to the components of the coal gasification system 1 of the first embodiment.
  • the control unit 42 is provided to adjust the amount of water in the adjustment coal.
  • the control unit 42 includes a memory and an arithmetic unit (not shown).
  • the control unit 42 is electrically connected to the pressure measuring device 33, the drying unit 13, and the temperature sensors of the crushing unit 14.
  • the memory as shown in FIG. 7, the relationship between the temperature of the temperature sensor of the crushing unit 14 as shown in FIG. 4 and the amount of water in the moisture control coal after leaving the coal drying and crushing facility 2;
  • a relational expression between the pressure difference measured by the pressure measuring device 33 and the water amount in the water amount adjusting coal necessary to return the pressure difference to a normal value is stored.
  • the arithmetic unit can receive the signal from the pressure measurement device 33 and can control the drying unit 13 based on the above-described relational expression stored in the memory.
  • the arithmetic unit of the control unit 42 detects that the pressure difference has become large by receiving the signal from the pressure measuring device 33. Then, the arithmetic unit calculates X1 of the water content corresponding to P1 of the pressure difference from the relational expression between the pressure difference of the pressure measuring device 33 and the water content adjustment coal shown in FIG. 7 stored in the memory. . Furthermore, the arithmetic unit calculates T1 of the temperature of the temperature sensor corresponding to X1 of the water content from the relational expression between the temperature of the temperature sensor and the water content adjustment in the moisture adjustment coal shown in FIG.
  • the arithmetic unit controls the drying unit 13 to adjust the temperature of the temperature sensor to T1.
  • the water amount adjusting coal whose water amount has increased to X1 is supplied from the nozzle portion 31 of the coal gasification reaction furnace 4 into the thermal decomposition portion 28.
  • the control unit 42 start the above control when the pressure difference measured by the pressure measuring device 33 rises by 10 to 30% compared to that in the normal operation.
  • the arithmetic unit calculates T0 and T2 of the temperature corresponding to P0 and P2 of the pressure difference from both relational expressions, and sets the temperature of the temperature sensor to T0 or T2.
  • the water content of the water control coal may be reduced to X0 or X2 by adjustment.
  • the amount of water supplied to the thermal decomposition unit 28 can be adjusted without requiring an apparatus for supplying water vapor to the thermal decomposition unit 28. Furthermore, when tar adheres to the inside of the through hole 27, the pressure difference measured by the pressure measuring device 33 becomes large. At this time, the chemical reaction between tar and water vapor is further promoted by the arithmetic unit increasing the moisture content of the coal by adjusting the amount of moisture by the coal drying and grinding facility 2, and the tar adhering to the through holes 27 of the thermal decomposition section 28 Can be gasified.
  • the water amount adjusting coal to be supplied to the partial oxidation unit 26 from the amount of steam required for the partial oxidation unit 26 It is conceivable that the amount of water contained in the medium is higher.
  • the coal drying and crushing facility 2 two types of coal, one containing a water content suitable for supplying to the thermal decomposition part 28, and the coal for the partial oxidation part 26 having a water content smaller than that of coal. Manufacture. Then, the two types of coal may be supplied to each of the partial oxidation unit 26 and the thermal decomposition unit 28.
  • the temperature in the partial oxidation unit 26 is 1300 ° C.
  • the water content adjustment coal supplied from the gasification burner 30 into the partial oxidation unit 26 is 18% water content adjustment coal, oxygen-containing gas
  • the flow rates of oxygen gas were 650 (kg / h) and 345 (Nm 3 / h), respectively. Water vapor is not supplied to the partial oxidation unit 26.
  • the drying apparatus used the apparatus which doubles as a grinder shown in FIG. 3, and dried and grind
  • tar is not attached to the through-hole 27 when 150 kg / h of water-regulating coal with a water content of 18% is supplied from the nozzle portion 31 to the thermal decomposition portion 28 and steam is not supplied. I found that.
  • tar can be prevented from adhering and stable operation can be performed without installing devices such as a steam nozzle and a steam supply pump.
  • the equipment as a whole could be made into a compact equipment configuration.
  • the pressure difference between the inside of the partial oxidation unit 26 and the thermal decomposition unit 28 was measured by the first pipe 34 and the second pipe 35 using the above-described coal gasification system 1. Then, coal 606 (kg / h) having a water content of 10% and oxygen-containing gas (oxygen gas in the present embodiment) 330 (Nm 3 / h) were supplied into the partial oxidation section 26. In addition, 136 (kg / h) of water content adjusting coal having a water content of 12% was supplied from the nozzle portion 31 into the thermal decomposition portion 28 and operated. In addition, the drying apparatus used the apparatus which served as the crusher of FIG.
  • the amount of water vapor in the upper reaction container can be adjusted without requiring an apparatus for supplying water vapor to the upper reaction container.
  • coal gasification system coal drying and pulverizing equipment (drying device) 4 coal gasification reactor 26 partial oxidation part (lower reaction vessel) 26a accommodation space 27 through hole 28 thermal decomposition part (upper reaction vessel) 28a diameter reduction Unit 30 Gasification burner (burner unit) 33 Pressure measuring device (pressure measurement unit) 42 Control unit D Vertical direction

Abstract

Disclosed are a coal gasification system and a coal gasification method, comprising a drying apparatus which turns subbituminous coal or brown coal into moisture-regulated coal by drying until same contain a specified moisture content; and a coal gasification reaction furnace which produces at least hydrogen gas and carbon monoxide gas by burning the moisture-regulated coal. The specified moisture content is set to a quantity such that when the moisture vapour emitted from the moisture-regulated coal and tar are chemically reacted, the tar does not stick inside through holes.

Description

石炭ガス化システムおよび石炭ガス化方法Coal gasification system and coal gasification method
 本発明は、石炭を原料としてメタン等の製品を製造する石炭ガス化システムおよび石炭ガス化方法に関する。
 本願は、2010年4月16日に、日本に出願された特願2010-095497号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a coal gasification system and a coal gasification method for producing a product such as methane using coal as a raw material.
Priority is claimed on Japanese Patent Application No. 2010-095497, filed April 16, 2010, the content of which is incorporated herein by reference.
 従来、石炭をガス化して可燃性ガス等を効率的に生産するために、固定床型、流動床型、および気流床(噴流床)型等の様々な構成の石炭ガス化反応炉を有する石炭ガス化システムが検討されている。
 その1つとして、たとえば、特許文献1に開示されている石炭ガス化システムが知られている。この石炭ガス化システムは、石炭を熱分解する熱分解ガス化反応炉(上部反応容器)と、熱分解ガス化反応炉から発生したガス等から顕熱を回収する熱交換器と、このガス等からチャー(char:未ガス化石炭残滓または熱分解残滓)を分離するサイクロンと、チャーを分離したガスから硫黄分を除去してガスを精製する脱硫装置とを備えている。
Conventionally, coal having coal gasification reactors of various configurations such as fixed bed type, fluidized bed type, and fluidized bed type (jet bed) type to gasify coal and efficiently produce combustible gas etc. Gasification systems are being considered.
As one of them, for example, a coal gasification system disclosed in Patent Document 1 is known. This coal gasification system comprises a pyrolysis gasification reactor (upper reaction vessel) for pyrolyzing coal, a heat exchanger for recovering sensible heat from gas etc. generated from the pyrolysis gasification reactor, the gas, etc. And a desulfurizer that removes sulfur from the gas from which the char has been separated to purify the gas.
 熱分解ガス化反応炉は、下方側で高温ガス化炉(下部反応容器)に連通している。高温ガス化炉には、石炭、酸素や酸素富化空気等の酸素含有ガス、および水蒸気が供給される。高温ガス化炉は、水素ガスと一酸化炭素ガスを主成分とする高温ガスを発生する。
 熱分解ガス化反応炉には、熱分解ガス化反応炉内に石炭を吹き込む石炭吹き込みノズルと、熱分解ガス化反応炉内に水蒸気を添加する水蒸気ノズルとが設けられている。石炭吹き込みノズルから熱分解ガス化反応炉内へ供給された石炭からは、熱分解反応によりチャーと揮発性ガス等が発生する。ここで発生したチャーは以下の化学反応式により各種のガスに分解される。
The pyrolysis gasification reactor is in communication with the high temperature gasification furnace (lower reaction vessel) on the lower side. The high temperature gasifier is supplied with coal, an oxygen-containing gas such as oxygen or oxygen-enriched air, and water vapor. The high temperature gasification furnace generates a high temperature gas mainly composed of hydrogen gas and carbon monoxide gas.
The pyrolysis gasification reactor is provided with a coal blowing nozzle for blowing coal into the pyrolysis gasification reactor, and a steam nozzle for adding water vapor in the pyrolysis gasification reactor. From the coal supplied from the coal blowing nozzle into the pyrolysis gasification reactor, char and volatile gas are generated by the pyrolysis reaction. The char generated here is decomposed into various gases by the following chemical reaction formula.
 C(チャー)+H2O→CO+H2 ・・・(1)
 C(チャー)+CO2→2CO  ・・・(2)
C (char) + H 2 O → CO + H 2 (1)
C (char) + CO 2 → 2 CO (2)
 特許文献1では、上記の化学反応式のうち、化学反応式(1)の反応速度は化学反応式(2)の反応速度よりも数倍程度速いことが記載され、このことから、水蒸気ノズルから水蒸気を供給して熱分解ガス化反応炉内を水蒸気富化雰囲気とすることが、チャーを分解するのに極めて有効であるとしている。
 また一方で、一般的に、石炭の熱分解により炭素を主成分とするタールが発生して熱分解ガス化反応炉内に付着する。タールの付着量が増加すると、最終的に熱分解ガス化反応炉の一部にタールが詰まり、熱分解ガス化反応炉が正常に運転できなくなる恐れがある。しかし、このタールも上記の化学反応式(1)および(2)の化学反応によりガス化される。ここで、タールの付着とはタールに由来する炭素質物質の付着を含む。
Patent Document 1 describes that, among the above chemical reaction formulas, the reaction rate of the chemical reaction formula (1) is about several times faster than the reaction rate of the chemical reaction formula (2). Supplying steam to make the inside of the pyrolysis gasification reactor a steam-enriched atmosphere is said to be extremely effective in decomposing char.
On the other hand, generally, the pyrolysis of coal generates a tar mainly composed of carbon and adheres to the inside of the pyrolysis gasification reactor. If the deposition amount of tar increases, finally, a part of the pyrolysis gasification reactor may be clogged with tar, and the pyrolysis gasification reactor may not be able to operate normally. However, this tar is also gasified by the chemical reaction of the above-mentioned chemical reaction formulas (1) and (2). Here, the deposition of tar includes the deposition of carbonaceous material derived from tar.
日本国特開2002-155289号公報Japanese Patent Application Laid-Open No. 2002-155289
 しかしながら、熱分解ガス化反応炉に供給する水蒸気量が増加すると、熱分解ガス化反応炉内の温度が低下して上記の化学反応の反応速度が遅くなってしまう。また、水蒸気を熱分解ガス化反応炉に供給するには、水蒸気ノズルや水蒸気供給ポンプ等の一定の装置が必要になり、石炭ガス化システムが大型化するという問題がある。 However, when the amount of water vapor supplied to the pyrolysis gasification reactor increases, the temperature in the pyrolysis gasification reactor decreases and the reaction rate of the above-mentioned chemical reaction becomes slow. In addition, in order to supply steam to the pyrolysis gasification reactor, a certain device such as a steam nozzle or a steam supply pump is required, and there is a problem that the coal gasification system is upsized.
 本発明は、このような問題点に鑑みてなされたものであって、上部反応容器に水蒸気を供給する装置を必要とせず、上部反応容器の内部における水蒸気量を調節することができる石炭ガス化システムおよび石炭ガス化方法の提供を目的とする。 The present invention has been made in view of such problems, and it is possible to control the amount of water vapor inside the upper reaction container without requiring an apparatus for supplying water vapor to the upper reaction container. The purpose is to provide a system and a coal gasification method.
 上記の目的を達成するために、本発明の一態様に係る石炭ガス化システムは、石炭を乾燥させて所定の水分量を有する水分量調節石炭とする乾燥装置と;前記水分量調節石炭を燃焼させて水素ガスおよび一酸化炭素ガスを生成する石炭ガス化反応炉と;を備えている。前記石炭ガス化反応炉は、下部反応容器と;前記下部反応容器の上方に設けられ、前記下部反応容器と連通する上部反応容器と;前記下部反応容器に前記水分量調節石炭および酸素含有ガスを供給し、前記水分量調節石炭を燃焼させるバーナ部と;前記上部反応容器に前記水分調節石炭を供給するノズル部と;を有する。 In order to achieve the above object, a coal gasification system according to one aspect of the present invention comprises drying a coal to dry a moisture-adjusting coal having a predetermined moisture content; and burning the moisture-adjusting coal And a coal gasification reactor for producing hydrogen gas and carbon monoxide gas. The coal gasification reactor is provided with a lower reaction vessel; an upper reaction vessel provided above the lower reaction vessel and in communication with the lower reaction vessel; the moisture control coal and the oxygen-containing gas in the lower reaction vessel. A burner unit for supplying and burning the moisture control coal; and a nozzle unit for supplying the moisture control coal to the upper reaction vessel.
 上記の石炭ガス化システムによれば、石炭を、乾燥装置によって所定の水分量を有する程度に乾燥させて水分量調節石炭とする。この水分量調節石炭を、酸素含有ガスとともに下部反応容器に供給し、バーナ部で燃焼させると、下部反応容器内部で一酸化炭素ガスを主成分とする高温ガスが発生する。下部反応容器内部で発生した高温ガスは、上部反応容器に流入する。さらに、上記水分量調節石炭を、下部反応容器に供給される分とは別に、ノズル部を通じて上部反応容器に供給し、上部反応容器に流入した高温ガスにより加熱する。水分量調節石炭が高温ガスより加熱されると、熱分解により炭素を主成分とするタール、チャーが生成される。このタールおよびチャーは、水分量調節石炭にあえて残された所定量の水分と化学反応し、ガス化される(式(1)参照)。
 一般に、亜瀝青炭、褐炭などの石炭には、30~60%(重量%)程度もの水分が含まれている。そこで、これらを乾燥させる過程であえて所定の水分量が残るように調節しておき、その残存水分を利用して水蒸気を発生させ、タールのガス化を促す。これにより、従来のように上部、下部の各反応容器に水蒸気を供給しなくても、ガス化反応炉内にタールが付着するのを防止することができる。その結果、ガス化反応炉に供給される水蒸気量の増加に伴う炉内の温度低下、およびその温度低下に起因する化学反応の反応速度の遅れを改善することができる。また、ガス化反応炉に水蒸気を供給する設備を設ける必要がなくなるので、石炭ガス化システムの小型化が実現できる。
According to the above coal gasification system, the coal is dried by the drying device to an extent having a predetermined water content to obtain the water content adjusting coal. When the moisture control coal is supplied to the lower reaction vessel together with the oxygen-containing gas and burned in the burner unit, a high temperature gas mainly composed of carbon monoxide gas is generated inside the lower reaction vessel. The high temperature gas generated inside the lower reaction vessel flows into the upper reaction vessel. Furthermore, the water content adjusting coal is supplied to the upper reaction container through the nozzle unit separately from the amount supplied to the lower reaction container, and is heated by the high temperature gas flowing into the upper reaction container. When the moisture control coal is heated from the high temperature gas, the pyrolysis generates carbon-based tar and char. The tar and char chemically react with a predetermined amount of water left in the moisture control coal to gasify (see Formula (1)).
In general, coal such as subbituminous coal and lignite contains water of about 30 to 60% (weight%). Therefore, in the process of drying these, it is adjusted so that a predetermined amount of water remains, and the remaining water is used to generate water vapor to promote the gasification of tar. As a result, it is possible to prevent tar from adhering to the inside of the gasification reaction furnace without supplying steam to the upper and lower reaction vessels as in the prior art. As a result, it is possible to improve the temperature decrease in the furnace accompanying the increase in the amount of water vapor supplied to the gasification reactor, and the delay in the reaction rate of the chemical reaction resulting from the temperature decrease. In addition, since it is not necessary to provide equipment for supplying water vapor to the gasification reactor, downsizing of the coal gasification system can be realized.
 上記の石炭ガス化システムは、前記ノズル部よりも下方の炉内圧力と、前記上部反応容器上部の炉内圧力との差を測定する圧力測定部と;前記圧力測定部によって測定された圧力差に基づいて前記乾燥装置を制御し、前記石炭に含有される水分量を調節する制御部と;を備えていてもよい。 The above-mentioned coal gasification system is a pressure measurement part which measures the difference between the pressure in the furnace below the nozzle part and the pressure in the furnace above the upper reaction vessel; and the pressure difference measured by the pressure measurement part And a controller configured to control the drying device based on the above to adjust the amount of water contained in the coal.
 タールは、ノズル部よりも上方の上部反応容器内面に集中して付着する傾向がある。そこで、本発明の石炭ガス化システムによれば、前記ノズル部よりも下方の炉内圧力と、前記上部反応容器上部の炉内圧力との差を圧力測定部によって測定する。そして、タールの付着が認められる程度の圧力差を検出した場合に、乾燥装置を制御し、石炭に含有される水分量を増加させる。水分量を増した水分量調節石炭が高温ガスより加熱されると、熱分解により炭素を主成分とするタール、チャーが生成されるとともに、水分が気化して水蒸気となる。タール、チャーは発生した水蒸気の一部と化学反応し、ガス化される。さらに、反応容器内面に付着したタールは、残った水蒸気と化学反応し、ガス化される。これにより、上部反応容器内面にタールが付着するのを抑制することができる。 Tar tends to concentrate and adhere to the upper reaction vessel inner surface above the nozzle portion. Therefore, according to the coal gasification system of the present invention, the pressure measuring unit measures the difference between the pressure in the furnace below the nozzle and the pressure in the furnace above the upper reaction vessel. Then, when a pressure difference at which tar adhesion is recognized is detected, the drying device is controlled to increase the amount of water contained in the coal. When the water amount adjustment coal with increased water amount is heated from the high temperature gas, tar and char mainly composed of carbon are generated by thermal decomposition, and the water is vaporized to be water vapor. Tar and char chemically react with part of the generated water vapor and are gasified. Furthermore, the tar deposited on the inner surface of the reaction vessel chemically reacts with the remaining water vapor and is gasified. Thereby, it can suppress that tar adheres to the upper reaction container inner surface.
 また、本発明の一態様に係る石炭ガス化システムは、水分を質量比で20%以上含有する亜瀝青炭または褐炭を所定量の水分を含有するように乾燥させて水分量調節石炭とする乾燥装置と、前記水分量調節石炭を燃焼させることで少なくとも水素ガスおよび一酸化炭素ガスを製造する石炭ガス化反応炉と、を備える。前記石炭ガス化反応炉は、内部に収容空間が形成された下部反応容器と、前記下部反応容器の上方に設けられた上部反応容器と、を有している。前記下部反応容器は、前記下部反応容器に水蒸気を供給することなく前記水分量調節石炭、および酸素含有ガスを所定の割合で供給し前記水分量調節石炭を燃焼させるバーナー部を有している。前記上部反応容器は、縮径部を介して前記下部反応容器の前記収容空間と連通し上下方向に延びる貫通孔と、前記上部反応容器に水蒸気を供給することなく前記水分量調節石炭のみを供給するノズル部を有している。前記所定量は、前記水分が前記水分量調節石炭から発生したタールと化学反応することで前記貫通孔内にタールが付着しないように設定されている。 Further, a coal gasification system according to one aspect of the present invention is a drying apparatus for drying subbituminous coal or lignite containing 20% or more of moisture by mass ratio so as to contain a predetermined amount of moisture to obtain moisture-adjusted coal. And a coal gasification reactor for producing at least hydrogen gas and carbon monoxide gas by burning the moisture-regulated coal. The coal gasification reactor has a lower reaction vessel in which a storage space is formed, and an upper reaction vessel provided above the lower reaction vessel. The lower reaction vessel has a burner unit that supplies the moisture-adjusting coal and the oxygen-containing gas at a predetermined ratio without supplying water vapor to the lower reaction vessel and burns the moisture-adjusting coal. The upper reaction vessel supplies only the water content adjusting coal without supplying water vapor to the upper reaction vessel, and a through hole extending in the vertical direction in communication with the storage space of the lower reaction vessel via the reduced diameter portion It has a nozzle part that The predetermined amount is set such that the water does not adhere to the through holes by chemical reaction with the tar generated from the water amount adjusting coal.
 亜瀝青炭や褐炭には、30~60%(重量%)程度もの水分が含有されている。この発明によれば、まず乾燥装置により亜瀝青炭または褐炭を乾燥させて水分量調節石炭とし、水分量調節石炭が従来の石炭ガス化システムにおける残留水分量より多い水分を含有するように調節する。具体的には、上部反応容器において、水分量調節石炭の所定量の水分と、水分量調節石炭から発生したタールとが化学反応することで、貫通孔内にタールが付着ないように水分量調節石炭中の水分量を調整しておく。
 そして、下部反応容器内の収容空間にバーナー部から水蒸気を供給することなく水分量調節石炭、および酸素含有ガスを所定の割合で供給して水分量調節石炭を燃焼させるとともに、上部反応容器内の貫通孔に、ノズル部から水蒸気を供給することなく、水分量調節石炭のみを供給する。
Subbituminous coal and lignite contain water of about 30 to 60% (weight%). According to the present invention, first, the subbituminous coal or the lignite is dried by the drying apparatus to be the moisture control coal, and the moisture control coal is controlled so as to contain water higher than the residual moisture in the conventional coal gasification system. Specifically, in the upper reaction vessel, the chemical reaction between a predetermined amount of water of the moisture control coal and the tar generated from the moisture control coal causes a moisture control such that the tar does not adhere to the through holes. Adjust the amount of water in the coal.
Then, the moisture control coal and the oxygen-containing gas are supplied at a predetermined ratio without supplying water vapor from the burner unit to the storage space in the lower reaction container to burn the moisture control coal, and Only moisture regulation coal is supplied to the through hole without supplying water vapor from the nozzle portion.
 上部反応容器内に供給される炭素と水分は、ともに水分量調節石炭中に含まれている。水分量調節石炭の加熱分解により、炭素を主成分とするタールやチャーが生成する。水分量調節石炭中の水分は、上部反応容器内で加熱されて水蒸気となる。水分量調節石炭から生成した直後のタール、チャーおよび水蒸気は混合状態となる。これらタール、チャーおよび水蒸気が別々のノズルから供給された場合には、タールおよびチャーと水蒸気とが離れた位置にあるために反応できなくなることがある。しかし、上記の態様によれば、タール、チャーおよび水蒸気は混合状態となるので、これらが反応できなくなることが防止される。
 このとき、上部反応容器内に供給される水分量調節石炭中に含まれる水分量は、乾燥装置によって調節され、水分量調節石炭の熱分解によって発生するタールと水蒸気とが化学反応して貫通孔内にタールが付着しない量になっている。そのため、貫通孔内に付着するタールの量が増加して貫通孔が詰まることがない。このように、上部反応容器内で混合状態となっている水蒸気とタールおよびチャーとを、より確実に反応させることができる。そのため、タールを上部反応容器内に付着させないために上部反応容器内に供給する水蒸気を低減又は不要にすることができる。
Both carbon and water supplied into the upper reaction vessel are contained in the moisture control coal. By the thermal decomposition of the moisture control coal, tar and char mainly composed of carbon are formed. Moisture Content The moisture in the coal is heated in the upper reaction vessel to become water vapor. The tar, char and water vapor immediately after being produced from the moisture control coal are mixed. When these tar, char and water vapor are supplied from separate nozzles, the tar and char and the water vapor may be incapable of reacting due to their separated positions. However, according to the above aspect, since the tar, char and water vapor are mixed, it is possible to prevent them from becoming unreactive.
At this time, the amount of water contained in the amount-of-water control coal supplied into the upper reaction vessel is controlled by the drying device, and the tar and steam generated by the thermal decomposition of the amount-of-water control coal react with each other to cause through holes. There is an amount that tar does not stick inside. Therefore, the amount of tar adhering to the inside of the through hole does not increase and the through hole is not clogged. In this way, the steam and the tar and char mixed in the upper reaction vessel can be reacted more reliably. Therefore, it is possible to reduce or eliminate the water vapor supplied into the upper reaction vessel in order to prevent tar from adhering to the upper reaction vessel.
 また、上記の石炭ガス化システムにおいて、前記所定の水分量は、前記水分量調節石炭中の含有量で15%以上40%以下の質量比に設定されていてもよい。
 この場合、水分量調節石炭における水分の含有量を質量比で15%以上とすることで、上部反応容器内におけるタールと水蒸気との反応をより促進させ、貫通孔内にタールが付着しないようにすることができる。
Moreover, in said coal gasification system, the said predetermined | prescribed water content may be set to mass ratio 15%-40% by content in the said water content adjustment coal.
In this case, by setting the water content in the water control coal to 15% or more by mass ratio, the reaction between tar and water vapor in the upper reaction vessel is further promoted, and tar does not adhere to the through holes. can do.
 また、上記の石炭ガス化システムにおいて、前記石炭ガス化反応炉は、前記上部反応容器の貫通孔における前記ノズル部より下方の部分の内圧または前記下部反応容器の収容空間の内圧と、前記貫通孔の上方の端部の内圧との間の圧力差を測定する圧力測定部を有してもよい。この場合、石炭ガス化システムは、前記圧力測定部が測定した前記圧力差に基づいて、前記乾燥装置を制御して前記石炭が有する水分量を調節する制御部を備えてもよい。
 この場合、石炭が熱分解することにより発生するタールが上部反応容器内に付着する状態になったとしても、タールは上部反応容器の貫通孔におけるノズル部より鉛直方向における上方の位置に集中的に付着する。したがって、圧力差を測定する位置の一方を上部反応容器の貫通孔におけるノズル部より鉛直方向における下方の部分または下部反応容器の収容空間とし、他方を貫通孔の上方の端部とすることで、圧力差を測定する箇所がタールにより詰まることを防止し圧力差を確実に測定することができる。
 また、貫通孔内にタールが付着した場合には、圧力測定部で測定される圧力差が大きくなる。このときに制御部が、水分量調節石炭中の水分量を増加させることでタールと水蒸気との化学反応がより促進され、上部反応容器の貫通孔内に付着したタールをガス化させることができる。
Further, in the above coal gasification system, the coal gasification reaction furnace is an internal pressure of a portion below the nozzle portion in the through hole of the upper reaction container or an internal pressure of a storage space of the lower reaction container, and the through hole The pressure measurement unit may be configured to measure a pressure difference between the pressure at the upper end portion of In this case, the coal gasification system may include a control unit that controls the drying device to adjust the water content of the coal based on the pressure difference measured by the pressure measurement unit.
In this case, even if tar generated by thermal decomposition of coal adheres to the upper reaction vessel, the tar is concentrated at a position vertically above the nozzle portion in the through hole of the upper reaction vessel. Adhere to. Therefore, by setting one of the positions at which the pressure difference is measured as the lower portion in the vertical direction from the nozzle portion in the through hole of the upper reaction container or the storage space of the lower reaction container, the other is the upper end of the through hole, The pressure difference can be reliably measured by preventing the tar from clogging the portion where the pressure difference is measured.
In addition, when tar adheres to the inside of the through hole, the pressure difference measured by the pressure measurement unit becomes large. At this time, the control unit can promote the chemical reaction between the tar and the steam by increasing the amount of water in the moisture control coal, and can gasify the tar deposited in the through holes of the upper reaction vessel .
 本発明の一態様に係る石炭ガス化方法は、上記のいずれかに記載の石炭ガス化システムを用いて、次の工程を実施する。前記亜瀝青炭または褐炭を所定の水分量を有するように乾燥させて前記水分量調節石炭とする乾燥工程。前記下部反応容器に、前記バーナー部から水蒸気を供給することなく前記水分量調節石炭、および酸素含有ガスを供給し、前記水分量調節石炭を燃焼させるとともに、前記上部反応容器に前記ノズル部から前記水分量調節石炭のみを供給して前記水分量調節石炭を化学反応させる化学反応工程。 The coal gasification method according to an aspect of the present invention implements the following steps using the coal gasification system described in any of the above. A drying step of drying the sub bituminous coal or lignite so as to have a predetermined water content to obtain the water content adjusting coal. The water content adjusting coal and the oxygen-containing gas are supplied to the lower reaction container without supplying steam from the burner part, and the water content adjusting coal is burned, and the upper reaction container is fed with the water from the nozzle part. A chemical reaction process in which only the water amount adjusting coal is supplied to cause a chemical reaction of the water amount adjusting coal.
 上記の石炭ガス化方法は、前記化学反応工程において、前記水分量調節石炭から発生するタールと、前記水分量調節石炭に含まれる水分が加熱されて発生する水蒸気と、を化学反応させて、少なくとも一酸化炭素ガスおよび水素ガスを製造してもよい。 In the above-described coal gasification method, in the chemical reaction step, at least the tar generated from the water amount adjusting coal and the water vapor generated by heating the water contained in the water amount adjusting coal are chemically reacted, Carbon monoxide gas and hydrogen gas may be produced.
 また、本発明の一態様に係る石炭ガス化方法は、石炭を乾燥させて所定の水分量を含む水分量調節石炭とする工程と;石炭ガス化反応炉の下部反応容器に前記水分量調節石炭および酸素含有ガスを供給する工程と;前記水分量調節石炭を燃焼させて高温ガスを発生させる工程と;前記石炭ガス化反応炉の前記下部反応容器に連通する上部反応容器に前記水分調節石炭を供給する工程と;前記上部反応容器に供給された前記水分調節石炭を、前記下部反応容器から前記上部反応器に流入した前記高温ガスにより加熱する工程と;を含む。 In the coal gasification method according to one aspect of the present invention, the coal is dried to obtain a moisture control coal containing a predetermined moisture content; and the water control coal in the lower reaction vessel of the coal gasification reactor. And a step of supplying an oxygen-containing gas; a step of burning the moisture-regulating coal to generate a high-temperature gas; and an upper reaction vessel communicating with the lower reaction vessel of the coal gasification reactor with the moisture-regulating coal. And supplying the moisture-regulated coal supplied to the upper reaction vessel with the high-temperature gas flowing from the lower reaction vessel to the upper reactor.
 上部反応容器に供給された水分量調節石炭が高温ガスより加熱されると、熱分解により炭素を主成分とするタール、チャーが生成される。このタールおよびチャーは、水分量調節石炭にあえて残された所定量の水分と化学反応し、ガス化される。これにより、従来のように上部、下部の各反応容器に水蒸気を供給しなくても、ガス化反応炉内にタールが付着するのを防止することができる。その結果、ガス化反応炉に供給される水蒸気量の増加に伴う炉内の温度低下、およびその温度低下に起因する化学反応の反応速度の遅れを改善することができる。また、ガス化反応炉に水蒸気を供給する設備を設ける必要がなくなるので、石炭ガス化システムの小型化が実現できる。 When the water amount adjusting coal supplied to the upper reaction vessel is heated by the high temperature gas, the carbon-based tar and char are generated by thermal decomposition. The tar and char chemically react with a predetermined amount of water left in the moisture control coal to be gasified. As a result, it is possible to prevent tar from adhering to the inside of the gasification reaction furnace without supplying steam to the upper and lower reaction vessels as in the prior art. As a result, it is possible to improve the temperature decrease in the furnace accompanying the increase in the amount of water vapor supplied to the gasification reactor, and the delay in the reaction rate of the chemical reaction resulting from the temperature decrease. In addition, since it is not necessary to provide equipment for supplying water vapor to the gasification reactor, downsizing of the coal gasification system can be realized.
 本発明の石炭ガス化システムおよび石炭ガス化方法によれば、上部反応容器に水蒸気を供給する装置を必要とせず、上部反応容器内における水蒸気量を調整することができる。 According to the coal gasification system and the coal gasification method of the present invention, the amount of water vapor in the upper reaction container can be adjusted without requiring an apparatus for supplying water vapor to the upper reaction container.
本発明の第1実施形態に係る石炭ガス化システムのブロック図である。It is a block diagram of a coal gasification system concerning a 1st embodiment of the present invention. 同石炭ガス化システムの要部の一部を破断した図である。It is the figure which fractured a part of principal part of the same coal gasification system. 同石炭ガス化システムの乾燥装置の断面図である。It is sectional drawing of the drying apparatus of the same coal gasification system. 同石炭ガス化システムの粉砕部の出口温度に対する水分量調節石炭中の水分の含有量の変化を示す図である。It is a figure which shows the change of the content of the water | moisture content in moisture content adjustment coal with respect to the exit temperature of the crushing part of the same coal gasification system. 同石炭ガス化システムにおける水分量調節石炭中の水分量に対する貫通孔におけるタールの付着量の増加速度の関係を示す図である。It is a figure which shows the relationship of the increase rate of the adhesion amount of tar in a through-hole with respect to the moisture content in the moisture content adjustment coal in the same coal gasification system. 本発明の第2実施形態に係る石炭ガス化システムの要部の一部を破断した図である。It is the figure which fractured a part of principal part of a coal gasification system concerning a 2nd embodiment of the present invention. 同石炭ガス化システムの圧力測定装置で測定される圧力差と、その圧力差を通常の値に戻すのに必要な水分量調節石炭中の水分量との関係を示す図である。It is a figure which shows the relationship between the pressure difference measured with the pressure measurement apparatus of the same coal gasification system, and the water content in water content adjustment coal required in order to return the pressure difference to a normal value.
(第1実施形態)
 以下、本発明に係る石炭ガス化システムの第1実施形態を、図1から図5を参照しながら説明する。図1に示すように、石炭ガス化システム1は、石炭を原料として水素ガスと一酸化炭素ガスを主成分とする合成ガスを合成し、この合成ガスから最終的にメタン、メタノールおよびアンモニア等の製品を製造するプラント設備である。本実施形態の石炭ガス化システム1で使用される石炭としては、水分を重量比で20%以上含有する亜瀝青炭または褐炭を用いることができる。
 石炭ガス化システム1は、石炭乾燥及び粉砕設備(乾燥装置)2と、石炭供給設備3と、石炭ガス化反応炉4と、熱回収設備5と、チャー回収設備6と、シフト反応設備7と、ガス精製設備8と、化学合成設備9と、空気分離設備10とを備えている。
First Embodiment
Hereinafter, a first embodiment of a coal gasification system according to the present invention will be described with reference to FIGS. 1 to 5. As shown in FIG. 1, the coal gasification system 1 synthesizes a synthesis gas containing hydrogen gas and carbon monoxide gas as main components using coal as a raw material, and from this synthesis gas, finally, methane, methanol, ammonia and the like are produced. It is a plant facility that manufactures products. As coal used by coal gasification system 1 of this embodiment, subbituminous coal or lignite containing 20% or more of moisture by weight can be used.
The coal gasification system 1 includes a coal drying and pulverizing facility (drying apparatus) 2, a coal supply facility 3, a coal gasification reactor 4, a heat recovery facility 5, a char recovery facility 6, and a shift reaction facility 7. , Gas purification equipment 8, chemical synthesis equipment 9, and air separation equipment 10.
 図2に示すように、石炭乾燥及び粉砕設備2は、石炭を加熱する乾燥部13と、石炭を所定の粒径(外径)に粉砕する粉砕部14とを有している。
 一般に、石炭は粒径が不均一であり、亜瀝青炭や褐炭には、たとえば質量比で30~60%程度の多量の水分が含まれている。そこで、乾燥部13において加熱した亜瀝青炭または褐炭を、粉砕部14で、粒径がたとえば10μm以上100μm以下程度の粒状となるように粉砕することで、亜瀝青炭または褐炭が所定の水分量を有するように調節する。このようにして、質量比で30~60%程度の水分量を有する石炭から、所定の水分量を有する水分量調節石炭を製造する。加熱した石炭を粒状とすることで石炭から水分が蒸発するため、水分量調節石炭中の水分量は、水分量調節石炭が粉砕部14から出たときに定まる。このように、乾燥部13および粉砕部14が、ともに、石炭を乾燥させる乾燥装置として機能する。
 石炭乾燥及び粉砕設備2で製造された粒状の水分量調節石炭が有する水分量は、乾燥前の石炭が有する水分量よりも低い、質量比で15%以上40%以下に設定されている。
 乾燥前の石炭の水分量の測定、及び、乾燥及び粉砕後の水分量調節石炭の水分量の測定は、例えば、赤外線水分計を用いて行うことができる。例えば、乾燥部13における加熱温度、加熱時間、又は粉砕部14における粉砕後の石炭の粒径を調節することで、水分量調節石炭の水分量の調整を行うことが可能である。
As shown in FIG. 2, the coal drying and crushing facility 2 has a drying unit 13 for heating coal and a crushing unit 14 for crushing coal to a predetermined particle diameter (outer diameter).
In general, coal has an uneven particle size, and subbituminous coal and brown coal contain a large amount of water of, for example, about 30 to 60% by mass ratio. Therefore, the sub-bituminous coal or lignite has a predetermined moisture content by grinding the sub-bituminous coal or lignite heated in the drying unit 13 into particles having a particle diameter of, for example, about 10 μm to 100 μm in the crushing unit 14. Adjust as. In this manner, a moisture-regulated coal having a predetermined moisture content is produced from coal having a moisture content of about 30 to 60% by mass ratio. Since moisture is evaporated from the coal by making the heated coal into particles, the moisture content in the moisture content adjustment coal is determined when the moisture content adjustment coal comes out of the grinding unit 14. Thus, the drying unit 13 and the crushing unit 14 both function as a drying apparatus for drying coal.
The moisture content of granular moisture control coal produced by the coal drying and pulverizing facility 2 is set to be 15% or more and 40% or less by mass ratio, which is lower than the moisture content of coal before drying.
The measurement of the moisture content of coal before drying and the measurement of the moisture content of dried and pulverized water can be performed using, for example, an infrared moisture meter. For example, by adjusting the heating temperature or heating time in the drying unit 13 or the particle size of coal after crushing in the crushing unit 14, it is possible to adjust the water content of the water amount adjusting coal.
 図3に示すように、乾燥部13は、同軸上に配置された内筒15と外筒16との二重管構造により構成されている。内筒15および外筒16は、先端側が水平面に対して一定の角度、下方に傾くように配置されている。内筒15の基端側(鉛直方向の斜め上方側)には石炭Bを内筒15内に導入するホッパ17が接続されている。内筒15内には、石炭Bを先端側(鉛直方向の斜め下方側)に送り出す送出し機構18が配置されている。
 外筒16の先端部には、外筒16と内筒15との間に、一定の温度の水蒸気を流量を調整して供給する流量調整バルブ19が接続されている。内筒15と外筒16の間に供給された水蒸気は石炭Bが送られる方向に対向するように流れて、外筒16に接続された排出管20から排出される。
 図2に示す粉砕部14の出口には、粉砕部14の出口温度を測定する温度センサが設けられている。
As shown in FIG. 3, the drying unit 13 is configured by a double-pipe structure of an inner cylinder 15 and an outer cylinder 16 coaxially disposed. The inner cylinder 15 and the outer cylinder 16 are disposed such that the tip end side is inclined downward at a constant angle with respect to the horizontal plane. A hopper 17 for introducing coal B into the inner cylinder 15 is connected to the base end side (the obliquely upper side in the vertical direction) of the inner cylinder 15. In the inner cylinder 15, a delivery mechanism 18 for delivering the coal B to the tip side (obliquely lower side in the vertical direction) is disposed.
At the tip of the outer cylinder 16, a flow rate adjusting valve 19 is connected between the outer cylinder 16 and the inner cylinder 15 to supply water vapor at a constant temperature by adjusting the flow rate. The steam supplied between the inner cylinder 15 and the outer cylinder 16 flows so as to face the direction in which the coal B is sent, and is discharged from the discharge pipe 20 connected to the outer cylinder 16.
At the outlet of the pulverizing unit 14 shown in FIG. 2, a temperature sensor for measuring the outlet temperature of the pulverizing unit 14 is provided.
 このように構成された乾燥部13は、粉砕部14の温度センサで測定しながら流量調整バルブ19を操作して内筒15と外筒16の間を流れる水蒸気の量を調整する。そして、石炭Bを内筒15内を先端側に搬送する間に、水蒸気により石炭Bを加熱する。これにより、石炭Bに含まれる水分量が調整される。
 なお、乾燥部における石炭を乾燥する方法は、石炭中の水分量を調節できるものであれば特に限定されない。例えば、本実施形態のように水蒸気で石炭を加熱する方法でもよいし、ヒータ等で加熱する方法でもよい。図3に示す本実施形態の乾燥部13を使用すると、石炭の粉砕と乾燥を1つの装置で同時に行うことができ、設備のコンパクト化及びコスト低減が可能である。
The drying unit 13 configured as described above operates the flow rate adjusting valve 19 while measuring with the temperature sensor of the crushing unit 14 to adjust the amount of water vapor flowing between the inner cylinder 15 and the outer cylinder 16. And, while conveying the coal B to the tip side inside the inner cylinder 15, the coal B is heated by the steam. Thereby, the amount of water contained in coal B is adjusted.
In addition, the method of drying coal in a drying part will not be specifically limited if the amount of moisture in coal can be adjusted. For example, as in the present embodiment, a method of heating coal with steam may be used, or a method of heating using a heater or the like may be used. By using the drying unit 13 of the present embodiment shown in FIG. 3, it is possible to simultaneously carry out the grinding and drying of coal with one device, and it is possible to make the equipment compact and reduce the cost.
 図4に、石炭乾燥及び粉砕設備2により石炭Bを乾燥させた結果の一例を示す。なお、図4においては、石炭Bを一次乾燥して石炭B中の水分量を25%まで乾燥させた状態で乾燥部13に供給している。図4の横軸に温度センサで測定された粉砕部14の出口温度、縦軸に粉砕部14を出た後の水分量調節石炭中の水分量を示す。この試験結果では、粉砕部14の出口温度が75℃のとき水分量調節石炭の水分量は5%であり、粉砕部14の出口温度が50℃のとき水分量調節石炭中の水分量は18%であった。
 内筒15と外筒16の間を流れる水蒸気の流量が増加するほど、粉砕部14の出口温度が高くなる。そして、粉砕部14の出口温度が高くなると、石炭Bが内筒15内でより高い温度まで加熱され、粉砕部14の出口から排出された水分量調節石炭中の水分量が減少することが分かる。
FIG. 4 shows an example of the result of drying the coal B by the coal drying and crushing facility 2. In addition, in FIG. 4, coal B is primarily dried and the water content in coal B is supplied to the drying unit 13 in a state of being dried to 25%. The horizontal axis in FIG. 4 indicates the outlet temperature of the grinding unit 14 measured by the temperature sensor, and the vertical axis indicates the water content in the moisture-adjusting coal after leaving the grinding unit 14. According to this test result, when the outlet temperature of the crushing unit 14 is 75 ° C., the moisture content of the moisture adjustment coal is 5%, and when the outlet temperature of the crushing unit 14 is 50 ° C., the moisture content in the moisture adjustment coal is 18 %Met.
As the flow rate of the water vapor flowing between the inner cylinder 15 and the outer cylinder 16 increases, the outlet temperature of the crushing unit 14 becomes higher. Then, when the outlet temperature of the crushing part 14 becomes high, it is understood that the coal B is heated to a higher temperature in the inner cylinder 15, and the water content in the water amount adjusting coal discharged from the outlet of the crushing part 14 decreases. .
 図2に示すように、粉砕部14で粉砕された水分量調節石炭は、石炭ガス化反応炉4内に供給可能な状態にするために石炭供給設備3内で搬送ガスと混合される。この水分量調節石炭を含む搬送ガスは、所定の圧力まで昇圧されて石炭ガス化反応炉4に供給される。なお、乾燥部13を出て内部の一定量の水分を蒸発させた水分量調節石炭は、水分量が変化しないように乾燥した窒素が充填されて密閉された空間内を移動する。
 図1に示す空気分離設備10は、空気を圧縮して液化し、液体となった空気から沸点の違いにより乾燥した酸素ガスや窒素ガス等を分離する。空気分離設備10で分離された酸素ガスは、石炭ガス化反応炉4に供給される。
As shown in FIG. 2, the water amount adjusting coal pulverized in the pulverizing unit 14 is mixed with the carrier gas in the coal supply facility 3 in order to be able to be supplied into the coal gasification reactor 4. The carrier gas containing the moisture content adjusting coal is pressurized to a predetermined pressure and supplied to the coal gasification reaction furnace 4. In addition, the moisture content adjustment coal which evaporated the fixed amount of water | moisture content of the inside after leaving the drying part 13 is filled with the dry nitrogen so that a moisture content may not change, and moves in the sealed space.
The air separation equipment 10 shown in FIG. 1 compresses and liquefies air, and separates oxygen gas, nitrogen gas, and the like which are dried from the air that has become a liquid due to the difference in boiling point. The oxygen gas separated by the air separation facility 10 is supplied to the coal gasification reactor 4.
 図2に示すように、石炭ガス化反応炉4は、水分量調節石炭を内部で燃焼させることで少なくとも水素ガスおよび一酸化炭素ガスを製造する装置である。石炭ガス化反応炉4は、部分酸化部(下部反応容器)26と、部分酸化部26の鉛直方向における上方D1に設けられた熱分解部(上部反応容器)28とを備えている。部分酸化部26は、内部に収容空間26aが形成されている。熱分解部28は、縮径部28aを介して、部分酸化部26の収容空間26aと連通して上下方向Dに延びる貫通孔(管状部)27を有している。石炭ガス化反応炉4は、耐熱性のレンガ等によって形成されている。
 貫通孔27と収容空間26aとの間に縮径部28aを設けることで、部分酸化部26と熱分解部28とを、それぞれ独立した反応条件で運転することが可能となる。
 部分酸化部26の下方D2には、スラグ冷却水槽29が設けられている。部分酸化部26とスラグ冷却水槽29は上下方向(鉛直方向)Dに連通している。部分酸化部26とスラグ冷却水槽29との接続部分には径が縮小された小径部が形成されている。
As shown in FIG. 2, the coal gasification reaction furnace 4 is an apparatus for producing at least hydrogen gas and carbon monoxide gas by burning moisture control coal inside. The coal gasification reaction furnace 4 includes a partial oxidation unit (lower reaction vessel) 26 and a thermal decomposition unit (upper reaction vessel) 28 provided on the upper side D 1 in the vertical direction of the partial oxidation unit 26. The partial oxidation portion 26 has a storage space 26 a formed therein. The thermal decomposition section 28 has a through hole (tubular section) 27 extending in the up-and-down direction D in communication with the accommodation space 26 a of the partial oxidation section 26 via the reduced diameter section 28 a. The coal gasification reaction furnace 4 is formed of a heat-resistant brick or the like.
By providing the diameter-reduced portion 28a between the through hole 27 and the housing space 26a, it is possible to operate the partial oxidation portion 26 and the thermal decomposition portion 28 under independent reaction conditions.
A slag cooling water tank 29 is provided below the partial oxidation unit 26 at D2. The partial oxidation portion 26 and the slag cooling water tank 29 communicate with each other in the vertical direction (vertical direction) D. A small diameter portion whose diameter is reduced is formed at a connection portion between the partial oxidation portion 26 and the slag cooling water tank 29.
 部分酸化部26は、上下方向Dに延びる略円筒状に形成されている。部分酸化部26の内周面上には、軸線C1に沿って延びる円筒状に形成されたガス化バーナー(バーナー部)30が複数設けられている。ガス化バーナー30は、石炭供給設備3および空気分離設備10に接続されていて、部分酸化部26に水分量調節石炭および酸素含有ガス、および(以下、「水分量調節石炭等」と称する。)を所定の割合で供給することができる。ガス化バーナー30は、水平面に対して先端側が斜め下方を向くとともに、その軸線C1が部分酸化部26の中心軸線C2に対してねじれの位置となるように配置されている。これにより、ガス化バーナー30は、噴出するガスの流れが、部分酸化部26の中心軸線C2を中心として旋回する旋回流となるように配置されている。
 また、部分酸化部26の外周面には不図示の冷却手段が設けられていて、水分量調節石炭の燃焼により加熱される部分酸化部26を冷却することができる。
The partial oxidation portion 26 is formed in a substantially cylindrical shape extending in the vertical direction D. A plurality of gasification burners (burner units) 30 formed in a cylindrical shape extending along the axis C1 are provided on the inner peripheral surface of the partial oxidation unit 26. The gasification burner 30 is connected to the coal supply facility 3 and the air separation facility 10, and the partial oxidation unit 26 is a moisture control coal and an oxygen-containing gas, and (hereinafter referred to as "moisture control coal etc." Can be supplied at a predetermined rate. The gasification burner 30 is disposed such that its tip end side is directed obliquely downward with respect to the horizontal plane, and its axis C 1 is at a position of twist with respect to the central axis C 2 of the partial oxidation portion 26. Thereby, the gasification burner 30 is arranged such that the flow of the gas to be jetted becomes a swirling flow that swirls about the central axis C2 of the partial oxidation unit 26.
Further, a cooling means (not shown) is provided on the outer peripheral surface of the partial oxidation portion 26, and the partial oxidation portion 26 heated by the combustion of the moisture content adjusting coal can be cooled.
 熱分解部28は、上下方向Dに延びる管状又は筒状に形成されている。貫通孔27の内径は、部分酸化部26の収容空間26aの内径よりも小さい。
 熱分解部28の上下方向Dの中間部には、熱分解部28に水分量調節石炭のみを供給する複数のノズル部31が設けられている。ノズル部31は石炭供給設備3に接続されている。
 なお、熱分解部28には、従来の熱分解部のように熱分解部に水蒸気を供給する水蒸気ノズルは設けられていない。また、ガス化バーナー30およびノズル部31の数に制限はなく、幾つでもよい。
 熱分解部28の貫通孔27の上方D1の端部27aは、熱回収設備5に接続されている。
The thermal decomposition section 28 is formed in a tubular or cylindrical shape extending in the up-down direction D. The inner diameter of the through hole 27 is smaller than the inner diameter of the accommodation space 26 a of the partial oxidation portion 26.
A plurality of nozzle portions 31 for supplying only the moisture content adjusting coal to the thermal decomposition portion 28 is provided in the middle portion of the thermal decomposition portion 28 in the vertical direction D. The nozzle portion 31 is connected to the coal supply facility 3.
The thermal decomposition unit 28 is not provided with a steam nozzle for supplying water vapor to the thermal decomposition unit as in the conventional thermal decomposition unit. Further, the number of the gasification burner 30 and the number of the nozzle portion 31 is not limited, and may be any number.
The end portion 27 a of the upper portion D 1 of the through hole 27 of the thermal decomposition section 28 is connected to the heat recovery facility 5.
 また、本実施形態では、石炭ガス化システム1には、熱分解部28の貫通孔27内の圧力差を測定する圧力測定装置(圧力測定部)33が備えられている。圧力測定装置33は、第一の配管34と、第二の配管35と、本体部36とを有している。第一の配管34は部分酸化部26の収容空間26aに接続され、第二の配管35は貫通孔27の端部27aに接続されている。本体部36は、第一の配管34の内圧と第二の配管35の配管の内部の内圧との圧力差を測定する。
 スラグ冷却水槽29には所定の量の水Wが収容されていて、後述するように、部分酸化部26から流れ落ちるスラグを冷却する。
Further, in the present embodiment, the coal gasification system 1 is provided with a pressure measurement device (pressure measurement unit) 33 that measures the pressure difference in the through holes 27 of the thermal decomposition unit 28. The pressure measuring device 33 has a first pipe 34, a second pipe 35, and a main body 36. The first pipe 34 is connected to the accommodation space 26 a of the partial oxidation portion 26, and the second pipe 35 is connected to the end 27 a of the through hole 27. The main body 36 measures a pressure difference between the internal pressure of the first pipe 34 and the internal pressure of the pipe of the second pipe 35.
A predetermined amount of water W is accommodated in the slag cooling water tank 29, and as described later, the slag flowing from the partial oxidation unit 26 is cooled.
 このように構成された石炭ガス化反応炉4が運転されると、以下に説明する化学反応工程が実施される。
 まず、水分量調節石炭等は、所定の流速でガス化バーナー30から部分酸化部26内に供給される。それぞれのガス化バーナー30は、上記のように、噴出するガスの流れが旋回流となるように配置されている。そのため、ガス化バーナー30から噴出される水分量調節石炭等は、下方D2に進みながら部分酸化部26の中心軸線C2の回りを回る旋回流となる。このとき、部分酸化部26内は、高温かつ高圧(たとえば、温度が1300℃以上1700℃以下であって、圧力が2MPa以上3MPa以下。)になっている。この環境下で水分量調節石炭が高温になり、熱分解される。この過程において、チャーと、タールおよび水蒸気等を含む揮発性ガスと、が分離して発生する。また、水分量調節石炭が燃焼することにより、下記の化学反応式(3)~(5)による高温の一酸化炭素ガス、二酸化炭素ガス、および水素ガスと、スラグ(灰分)とが発生する。
When the coal gasification reaction furnace 4 configured as described above is operated, the chemical reaction process described below is performed.
First, the moisture control coal and the like are supplied from the gasification burner 30 into the partial oxidation unit 26 at a predetermined flow rate. Each gasification burner 30 is arrange | positioned so that the flow of the gas to blow off may turn into a swirling flow as mentioned above. Therefore, the water content adjusting coal or the like jetted from the gasification burner 30 becomes a swirling flow rotating around the central axis C2 of the partial oxidation unit 26 while advancing downward D2. At this time, the inside of the partial oxidation portion 26 is high temperature and high pressure (for example, the temperature is 1300 ° C. or more and 1700 ° C. or less, and the pressure is 2 MPa or more and 3 MPa or less). Under this environment, moisture control coal becomes high temperature and is pyrolyzed. In this process, char and volatile gases including tar and water vapor are generated separately. In addition, the combustion of the water content adjusting coal generates high temperature carbon monoxide gas, carbon dioxide gas, hydrogen gas and slag (ash) according to the following chemical reaction formulas (3) to (5).
 2C+O2→2CO  ・・・(3)
 C+O2→CO2    ・・・(4)
 C+H2O→CO+H2 ・・・(5)
2C + O 2 → 2CO (3)
C + O 2 → CO 2 (4)
C + H 2 O → CO + H 2 (5)
 部分酸化部26内で発生したガスやスラグ等は、高温になって膨張することで浮力により上方D1向きの力を受けて、旋回しながら部分酸化部26内を上昇する。
 部分酸化部26内で発生したスラグは溶融した状態となっている。このスラグの一部が部分酸化部26の内周面で前述の冷却手段により冷やされてこの内周面に付着し、その他の部分が部分酸化部26の下方に設けられたスラグ冷却水槽29内の水W内に落ちて冷やされ、回収される。
The gas, slag and the like generated in the partial oxidation portion 26 expand at high temperature and expand by receiving a force in the upward direction D1 by buoyancy, and ascends in the partial oxidation portion 26 while turning.
The slag generated in the partial oxidation portion 26 is in a molten state. A part of the slag is cooled by the above-mentioned cooling means on the inner peripheral surface of the partial oxidation portion 26 and adheres to the inner peripheral surface, and the other portion is provided inside the slag cooling water tank 29 provided below the partial oxidation portion 26. It is dropped into water W, cooled, and recovered.
 部分酸化部26内で発生した水蒸気などのガス、タール、チャー等は、部分酸化部26から送り出されて熱分解部28の貫通孔27内を上昇する。部分酸化部26内は、温度が1000℃以上であって、圧力が1MPa以上に調節されている。
 ノズル部31は、この貫通孔27の内部へ水分量調節炭を供給する。水分量調節炭は、石炭乾燥及び粉砕設備2で乾燥され上記の所定の水分量を有するように調整されている。
 ノズル部31から供給された水分量調節石炭は熱分解によりタールを発生させる。また、水分量調節石炭に含まれている所定量の水分は加熱されて水蒸気となる。ノズル部31から供給された水分量調節石炭から生成したタールおよび水蒸気は、部分酸化部26内から上昇してきたタールおよび水蒸気と混合状態となり、下記の化学反応式(6)により一酸化炭素ガスおよび水素ガスに分解される。
 なお、熱分解部28に供給された水分量調節石炭中の炭素の一部は、熱分解部28内の二酸化炭素ガスと反応して下記の化学反応式(7)により一酸化炭素ガスになる。
Gas such as water vapor generated in the partial oxidation unit 26, tar, char and the like are sent out from the partial oxidation unit 26 and rise in the through holes 27 of the thermal decomposition unit 28. The temperature in the partial oxidation portion 26 is adjusted to 1000 ° C. or more, and the pressure is adjusted to 1 MPa or more.
The nozzle portion 31 supplies the moisture control coal to the inside of the through hole 27. The moisture control coal is dried by the coal drying and grinding facility 2 and adjusted to have the above-mentioned predetermined moisture amount.
The water amount adjustment coal supplied from the nozzle unit 31 generates tar by thermal decomposition. In addition, a predetermined amount of water contained in the water amount adjusting coal is heated to become water vapor. The tar and water vapor generated from the water amount adjusting coal supplied from the nozzle 31 are mixed with the tar and water vapor rising from the inside of the partial oxidation portion 26, and carbon monoxide gas and carbon monoxide gas are obtained according to the following chemical reaction formula (6). It is decomposed into hydrogen gas.
In addition, a part of carbon in the water amount adjustment coal supplied to the thermal decomposition unit 28 reacts with carbon dioxide gas in the thermal decomposition unit 28 and becomes carbon monoxide gas by the following chemical reaction formula (7) .
 C(タール)+H2O→CO+H2 ・・・(6)
 C+CO2→2CO  ・・・(7)
C (tar) + H 2 O → CO + H 2 (6)
C + CO 2 → 2 CO (7)
 ここで、図5に、水分量調節石炭中の水分量に対する貫通孔27におけるタールの付着量の増加速度の関係を示す。図5の横軸に水分量調節石炭中の水分量、縦軸にタールの付着量の増加速度を示す。
 水分量調節石炭中の水分量が多いほどタールと水蒸気との反応が促進され、タールの付着量の増加速度が小さくなる。具体的には、水分量調節石炭中の水分量が15%より小さいと、タールの付着量が増加して貫通孔27内にタールが付着するようになる。一方で、水分量調節石炭中の水分量が15%より大きいと、貫通孔27内にタールが付着しなくなり、何らかの要因で貫通孔27内にタールが付着した場合であってもそのタールが時間とともにガスに分解されて無くなる。
 なお、水分量が60%程度の石炭を乾燥部13で加熱すること無くそのまま粉砕部14で粉砕しても、粉砕された石炭から水分が蒸発するので、水分量調節石炭中の水分量が40%を超えることはない。このように、水分量調節石炭における水分の含有量が質量比で40%以下になることで、水分量調節石炭から発生した水蒸気によって上記の化学反応が遅くなることを防止できる。
 以上の手順により、化学反応工程が終了する。
Here, FIG. 5 shows the relationship between the rate of increase of the amount of deposition of tar in the through holes 27 and the amount of water in the moisture control coal. The horizontal axis in FIG. 5 represents the amount of water in the moisture-regulating coal, and the vertical axis represents the rate of increase in the amount of attached tar.
Water content control As the water content in the coal increases, the reaction between tar and water vapor is promoted, and the rate of increase in the amount of tar attached decreases. Specifically, if the amount of water in the water amount adjusting coal is smaller than 15%, the amount of adhesion of tar increases and tar adheres in the through holes 27. On the other hand, if the water content in the moisture control coal is greater than 15%, tar will not adhere in the through hole 27 and even if tar adheres in the through hole 27 for some reason, the tar will It is decomposed into gas and disappears.
Incidentally, even if the coal having a water content of about 60% is crushed in the crushing part 14 without heating in the drying part 13, the water is evaporated from the crushed coal, so the water content in the water amount adjustment coal is 40 It does not exceed%. Thus, when the water content in the water amount adjusting coal is 40% or less by mass ratio, it is possible to prevent the above-mentioned chemical reaction from being delayed by the water vapor generated from the water amount adjusting coal.
By the above procedure, the chemical reaction process is completed.
 そして、図1に示すように、熱分解部28から、水素ガスおよび一酸化炭素ガスを主成分とする高温の合成ガスがチャーとともに搬送され、熱回収設備5に供給される。
 熱回収設備5では、熱分解部28から搬送された合成ガスと、外部の水蒸気との熱交換により、この水蒸気の温度が上昇する。この水蒸気は前述の乾燥部13等に石炭の乾燥等の目的のために供給される。
 熱回収設備5で冷却された合成ガスは、熱回収設備5からチャー回収設備6に供給され、チャー回収設備6で合成ガスに含まれるチャーが回収される。
 チャー回収設備6を通過した合成ガスは、シフト反応設備7に供給される。そして、合成ガス中の一酸化炭素ガスに対する水素ガスの比率を一定の値まで高めるために、シフト反応設備7中に水蒸気が供給される。シフト反応設備7においては、下記の化学反応式(8)で示されるシフト反応により、合成ガス中の一酸化炭素ガスと水蒸気から炭酸ガスと水素ガスが生成する。
Then, as shown in FIG. 1, a high temperature synthesis gas containing hydrogen gas and carbon monoxide gas as main components is transported from the thermal decomposition unit 28 together with char and is supplied to the heat recovery facility 5.
In the heat recovery facility 5, the temperature of the steam rises due to the heat exchange between the synthesis gas transported from the thermal decomposition unit 28 and the steam outside. This water vapor is supplied to the aforementioned drying unit 13 and the like for the purpose of drying coal etc.
The synthesis gas cooled by the heat recovery facility 5 is supplied from the heat recovery facility 5 to the char recovery facility 6, and the char recovery facility 6 recovers the char contained in the synthesis gas.
The synthesis gas that has passed through the char recovery facility 6 is supplied to the shift reaction facility 7. Then, in order to increase the ratio of hydrogen gas to carbon monoxide gas in the synthesis gas to a certain value, steam is supplied into the shift reaction facility 7. In the shift reaction equipment 7, carbon dioxide gas and hydrogen gas are generated from carbon monoxide gas and water vapor in synthesis gas by the shift reaction represented by the following chemical reaction formula (8).
 CO+H2O→CO2+H2 ・・・(8) CO + H 2 O → CO 2 + H 2 (8)
 シフト反応設備7において成分を調整された合成ガスは、ガス精製設備8に供給され、合成ガスに含まれる二酸化炭素ガスや、硫黄を成分として含むガス等が回収される。
 ガス精製設備8で精製された合成ガスは、化学合成設備9に供給され、メタンやメタノール等の製品が製造される。
The synthesis gas whose components have been adjusted in the shift reaction equipment 7 is supplied to the gas purification equipment 8, and carbon dioxide gas contained in the synthesis gas, a gas containing sulfur as a component, and the like are recovered.
The synthesis gas purified by the gas purification facility 8 is supplied to the chemical synthesis facility 9 to produce products such as methane and methanol.
 次に、以上のように構成された石炭ガス化システム1において、何らかの要因で貫通孔27にタールが付着した場合の運転方法を、乾燥部13および石炭ガス化反応炉4に重点をおいて説明する。
 図4に示すように、粉砕部14の温度センサの温度がT0のときに、得られる水分量調節石炭の水分量がX0であるとする。この水分量調節石炭を石炭ガス化反応炉4のノズル部31から供給することで、貫通孔27にタールが付着することなく石炭ガス化反応炉4が運転されている場合について説明する。
 貫通孔27内にタールが付着し、圧力測定装置33で測定される圧力差が設定値よりも大きくなったとする。このとき、運転者は、乾燥部13の流量調整バルブ19により乾燥部13を流れる水蒸気の流量を所定の量だけ低下させる。これにより、温度センサの温度を下げてT1とし、乾燥部13により得られる水分量調節石炭の水分量をX0から増加させてX1とする。
 水分量がX1に増加した水分量調節石炭をノズル部31から貫通孔27内へ供給することで、水分量調節石炭からより多くの水蒸気が発生する。そして、貫通孔27に付着したタールと水蒸気との化学反応式(6)による反応が促進され、付着したタールがガス化して消滅する。
Next, in the coal gasification system 1 configured as described above, the operation method in the case where tar adheres to the through holes 27 due to some factor is described with emphasis on the drying unit 13 and the coal gasification reactor 4 Do.
As shown in FIG. 4, when the temperature of the temperature sensor of the crushing part 14 is T0, it is assumed that the water content of the water content adjustment coal obtained is X0. The case where the coal gasification reaction furnace 4 is operated without the tar adhering to the through holes 27 by supplying the moisture control coal from the nozzle part 31 of the coal gasification reaction furnace 4 will be described.
It is assumed that tar adheres in the through hole 27 and the pressure difference measured by the pressure measuring device 33 becomes larger than the set value. At this time, the driver reduces the flow rate of the water vapor flowing through the drying unit 13 by a predetermined amount using the flow rate adjustment valve 19 of the drying unit 13. As a result, the temperature of the temperature sensor is lowered to T1 and the water content of the moisture control coal obtained by the drying unit 13 is increased from X0 to X1.
By supplying the water amount adjusting coal having the water amount increased to X1 from the nozzle portion 31 into the through hole 27, more water vapor is generated from the water amount adjusting coal. Then, the reaction between the tar attached to the through hole 27 and the water vapor is promoted by the chemical reaction formula (6), and the attached tar gasifies and disappears.
 なお、圧力差が通常の運転時の圧力差程度に小さくなったときには、熱分解部28内での反応速度を所定値以上に維持するために、流量調整バルブ19により乾燥部13を流れる水蒸気の流量を増加させてもよい。これにより温度センサの温度を例えばT0またはT2に上昇させ、水分量調節石炭の水分量をX0またはX2に減少させてもよい。 When the pressure difference is reduced to about the pressure difference during normal operation, the flow control valve 19 is used to control the flow rate of the steam flowing through the drying unit 13 in order to maintain the reaction speed in the thermal decomposition unit 28 at a predetermined value or more. The flow rate may be increased. Thereby, the temperature of the temperature sensor may be raised to, for example, T0 or T2, and the water content of the water content adjusting coal may be reduced to X0 or X2.
 以上説明したように、本実施形態の石炭ガス化システム1によれば、まず、石炭乾燥及び粉砕設備2により、水分を重量比で20%以上含有する亜瀝青炭または褐炭を乾燥させる。そして、従来の石炭ガス化システムにおける残留水分量より多い所定の水分量を有する水分量調節石炭を製造する。具体的には、熱分解部28において、水分量調節石炭中に含まれる所定量の水分と、水分量調節石炭から発生したタールとが化学反応することで、貫通孔27内にタールが付着しないように、石炭中の水分量を調整しておく。
 そして、部分酸化部26内の収容空間26aにガス化バーナー30から水蒸気を供給することなく水分量調節石炭、および酸素含有ガスを所定の割合で供給して水分量調節石炭を燃焼させる。同時に、熱分解部28内の貫通孔27に、ガス化バーナー30から水蒸気を供給することなく、水分量調節石炭のみを供給する。ここで、酸素含有ガスとは酸素を含むガスを指し、酸素ガスに限らず、空気や酸素富化空気を含む。但し、熱分解部28で生成した合成ガスの発熱量を低下させないためには、酸素含有ガスとしては、酸素含有量が85%以上の高濃度の酸素ガスを使用することが好ましい。
As described above, according to the coal gasification system 1 of the present embodiment, first, the sub-bituminous coal or the lignite containing 20% or more of moisture by weight ratio is dried by the coal drying and grinding facility 2. Then, a moisture control coal having a predetermined moisture amount larger than the residual moisture amount in the conventional coal gasification system is manufactured. Specifically, in the thermal decomposition portion 28, the predetermined amount of water contained in the water amount adjusting coal chemically reacts with the tar generated from the water amount adjusting coal so that the tar does not adhere to the through holes 27 As such, adjust the amount of water in the coal.
Then, the moisture control coal and the oxygen-containing gas are supplied at a predetermined ratio without supplying steam from the gasification burner 30 to the storage space 26 a in the partial oxidation unit 26 to burn the moisture control coal. At the same time, only moisture content adjustment coal is supplied to the through holes 27 in the thermal decomposition section 28 without supplying water vapor from the gasification burner 30. Here, the oxygen-containing gas refers to a gas containing oxygen, and includes not only oxygen gas but also air and oxygen-enriched air. However, in order not to reduce the calorific value of the synthesis gas generated in the thermal decomposition section 28, it is preferable to use a high concentration oxygen gas having an oxygen content of 85% or more as the oxygen-containing gas.
 熱分解部28内に供給される炭素と水分はともに水分量調節石炭中に含まれていて、水分量調節石炭からは加熱分解により炭素を主成分とするタールやチャーが生成する。また、水分量調節石炭中の水分は熱分解部28内で加熱されて水蒸気となる。水分量調節石炭から生成した直後のタール、チャーおよび水蒸気は混合状態となる。そのため、これらが別々のノズルから供給された場合のように、水蒸気がタールおよびチャーから離れた位置に供給され、これらが反応できなくなることが防止される。
 このとき、熱分解部28内に供給される水分量調節石炭中の水分量は、石炭乾燥及び粉砕設備2によって、タールと水蒸気が化学反応して貫通孔27内にタールが付着しない量に調節されている。そのため、貫通孔27内に付着するタールの量が増加して貫通孔27が詰まることはない。そして、熱分解部28内で混合状態となっている水蒸気、タールおよびチャーをより確実に反応させることで、タールを付着させないようにするために外部から熱分解部28内に供給する水蒸気を従来よりも低減させるか又は不要にして、熱分解部28内での化学反応を促進させることができる。
Both carbon and water supplied into the thermal decomposition section 28 are contained in the moisture control coal, and from the moisture control coal, tar and char mainly composed of carbon are generated by thermal decomposition. Further, the moisture in the moisture control coal is heated in the thermal decomposition section 28 to become steam. The tar, char and water vapor immediately after being produced from the moisture control coal are mixed. Therefore, as in the case where they are supplied from separate nozzles, water vapor is supplied to a position away from tar and char, which prevents them from becoming unresponsive.
At this time, the amount of water in the water amount adjusting coal supplied to the inside of the thermal decomposition portion 28 is adjusted to such an amount that the tar and the steam chemically react with each other by the coal drying and grinding facility 2 and tar does not adhere in the through holes 27 It is done. Therefore, the amount of tar adhering to the through hole 27 does not increase and the through hole 27 is not clogged. Then, the steam supplied from the outside into the thermal decomposition unit 28 from the outside is prevented in the prior art in order to prevent the tar from adhering by reacting the steam, tar and char in the mixed state in the thermal decomposition unit 28 more reliably. The chemical reaction in the thermal decomposition section 28 can be promoted by reducing or eliminating the need.
 また、水分は水分量調節石炭中に含有された状態で熱分解部28へ供給される。そのため、水蒸気ノズル等の水蒸気を熱分解部28に供給する装置が不要になり、石炭ガス化システム1の製造コストを低下させることができる。
 石炭乾燥及び粉砕設備2で石炭を乾燥するためには、石炭を加熱するための一定のエネルギーが必要になる。本実施形態では、水分の含有量が多い石炭を、従来の石炭ガス化システムにおける石炭の残留水分量まで乾燥させることなく熱分解部28に供給する。そして、水分量調節石炭中の水分を熱分解部28で効果的に反応させることにより、従来石炭を乾燥させるのに要していたエネルギーの一部を削減することができる。
Further, the moisture is supplied to the thermal decomposition section 28 in a state of being contained in the moisture control coal. Therefore, a device for supplying steam to the thermal decomposition unit 28 such as a steam nozzle is not necessary, and the manufacturing cost of the coal gasification system 1 can be reduced.
In order to dry the coal in the coal drying and grinding facility 2, a certain amount of energy is required to heat the coal. In the present embodiment, coal having a high water content is supplied to the thermal decomposition unit 28 without being dried to the residual water content of coal in a conventional coal gasification system. And, by causing the water in the moisture control coal to react effectively in the thermal decomposition section 28, it is possible to reduce part of the energy that was conventionally required to dry the coal.
 さらに、水分量調節石炭中の水分量を15%以上とすることで、熱分解部28におけるタールと水蒸気との反応をより促進させ、貫通孔27内にタールが付着しないようにすることができる。 Furthermore, by setting the amount of water in the water amount adjusting coal to 15% or more, the reaction between tar and water vapor in the thermal decomposition portion 28 can be further promoted, and tar can be prevented from adhering to the through holes 27. .
 また、条件によっては水分量調節石炭が熱分解することにより発生するタールが付着する場合がある。このような場合に、試験の結果から、発明者らは、熱分解部28の貫通孔27におけるノズル部31より上方D1の所定の位置(たとえば、ノズル部31より上方D1に数百mm程度の位置)にタールが集中的に付着することを見出した。すなわち、圧力測定装置33の第一の配管34を部分酸化部26の収容空間26aに接続するとともに、第二の配管35を貫通孔27の上方D1の端部27aに接続する。圧力測定装置33をこのように構成することで、各配管34、35がタールにより詰まることを防止し、圧力差を確実に測定することができる。
 なお、熱分解部28の貫通孔27におけるノズル部31より下方D2の部分もタールが付着し難いことが分かっているので、この部分に第一の配管34を接続してもよい。
In addition, depending on the conditions, tar generated by thermal decomposition of the moisture control coal may be attached. In such a case, based on the test results, the inventors have determined that the predetermined position D1 above the nozzle portion 31 in the through hole 27 of the thermal decomposition portion 28 (for example, several hundred mm in the upper portion D1 above the nozzle portion 31) It was found that tar was attached intensively at the position). That is, the first pipe 34 of the pressure measuring device 33 is connected to the accommodation space 26 a of the partial oxidation unit 26, and the second pipe 35 is connected to the end 27 a of the upper D 1 of the through hole 27. By configuring the pressure measuring device 33 in this manner, it is possible to prevent the pipes 34 and 35 from being clogged by tar and to reliably measure the pressure difference.
Since it is known that tar does not easily adhere to the portion D2 lower than the nozzle portion 31 in the through hole 27 of the thermal decomposition portion 28, the first pipe 34 may be connected to this portion.
 また、本実施形態では、石炭ガス化反応炉4の貫通孔27内でのタールの付着量が工業用内視鏡等の別の手段で測定できるときは、圧力測定装置33は備えられなくてもよい。
 部分酸化部26へ供給される水分量調節石炭と熱分解部28へ供給される水分量調節石炭に含まれる水分は同じである必要はない。例えば、石炭の乾燥及び粉砕、供給系統設備を2系列準備することで、部分酸化部26と熱分解部28とへ、異なる水分量を有する水分量調節石炭を供給することが可能である。部分酸化部26へ供給する水分量調節石炭中の水分は多すぎると効率低下につながるため少なくし、熱分解部28へ供給される水分量調節石炭に含まれる水分は付着物防止につながるため多い方が好ましい。
Further, in the present embodiment, when the adhesion amount of tar in the through hole 27 of the coal gasification reaction furnace 4 can be measured by another means such as an industrial endoscope, the pressure measurement device 33 is not provided. It is also good.
It is not necessary for the water contained in the moisture control coal supplied to the partial oxidation unit 26 and the water contained in the moisture control coal supplied to the thermal decomposition unit 28 to be the same. For example, by preparing two lines of coal drying and crushing and supply system equipment, it is possible to supply moisture-regulating coal having different moisture amounts to the partial oxidation unit 26 and the thermal decomposition unit 28. Water content adjustment coal supplied to the partial oxidation unit 26 will be reduced if the amount of water in the coal is too high, leading to a decrease in efficiency, and water contained in the water amount adjustment coal supplied to the thermal decomposition unit 28 will be large because it leads to adhesion prevention Is preferred.
(第2実施形態)
 次に、本発明の第2実施形態について説明する。上述の第1実施形態と同一の部位には同一の符号を付してその説明は省略し、第1実施形態と異なる点についてのみ説明する。
 図6に示すように、本実施形態の石炭ガス化システム41は、第1実施形態の石炭ガス化システム1の各構成に加えて、圧力測定装置33が測定した圧力差に基づいて、水分量調節石炭中の水分量を調節する制御部42を備えている。
Second Embodiment
Next, a second embodiment of the present invention will be described. The same parts as those in the first embodiment described above are denoted by the same reference numerals, and descriptions thereof will be omitted. Only differences from the first embodiment will be described.
As shown in FIG. 6, the coal gasification system 41 of the present embodiment has the water content based on the pressure difference measured by the pressure measurement device 33 in addition to the components of the coal gasification system 1 of the first embodiment. The control unit 42 is provided to adjust the amount of water in the adjustment coal.
 制御部42は、不図示のメモリおよび演算ユニットを備えている。制御部42は、圧力測定装置33、乾燥部13および粉砕部14の温度センサと電気的に接続されている。メモリには、図4に示すような粉砕部14の温度センサの温度と石炭乾燥及び粉砕設備2を出た後の水分量調節石炭中の水分量との関係式、および、図7に示すような圧力測定装置33で測定される圧力差と、その圧力差を通常の値に戻すのに必要な水分量調節石炭中の水分量との関係式が記憶されている。
 また、演算ユニットは、圧力測定装置33からの信号を受信するとともに、メモリに記憶された上記の関係式に基づいて、乾燥部13を制御することができる。
The control unit 42 includes a memory and an arithmetic unit (not shown). The control unit 42 is electrically connected to the pressure measuring device 33, the drying unit 13, and the temperature sensors of the crushing unit 14. In the memory, as shown in FIG. 7, the relationship between the temperature of the temperature sensor of the crushing unit 14 as shown in FIG. 4 and the amount of water in the moisture control coal after leaving the coal drying and crushing facility 2; A relational expression between the pressure difference measured by the pressure measuring device 33 and the water amount in the water amount adjusting coal necessary to return the pressure difference to a normal value is stored.
Further, the arithmetic unit can receive the signal from the pressure measurement device 33 and can control the drying unit 13 based on the above-described relational expression stored in the memory.
 次に、以上のように構成された石炭ガス化システム41において、何らかの要因で貫通孔27にタールが付着した場合の運転方法を、乾燥部13、石炭ガス化反応炉4および制御部42に重点をおいて説明する。
 なお、上記の第1実施形態における運転方法と同様に、粉砕部14の温度センサの温度がT0のときに、得られる水分量調節石炭の水分量がX0であるとする。この水分量調節石炭をノズル部31から供給することで、圧力測定装置33で測定される圧力差がP0(図7参照)となり貫通孔にタールが付着することなく石炭ガス化反応炉4が運転されている場合について説明する。
 貫通孔27内にタールが付着し、圧力測定装置33で測定される圧力差が図7に示すP0からP1に大きくなったとする。このとき、制御部42の演算ユニットは、圧力測定装置33からの信号を受信することで圧力差が大きくなったことを検出する。そして、演算ユニットは、メモリに記憶された図7に示す圧力測定装置33の圧力差と水分量調節石炭中の水分量との関係式から圧力差のP1に対応する水分量のX1を算出する。さらに、演算ユニットは、メモリに記憶された図4に示す温度センサの温度と水分量調節石炭中の水分量との関係式から水分量のX1に対応する温度センサの温度のT1を算出する。
 続いて、演算ユニットは、乾燥部13を制御して温度センサの温度がT1となるように調整する。このように制御することで、石炭ガス化反応炉4のノズル部31から水分量がX1に増加した水分量調節石炭が熱分解部28内に供給される。これにより、貫通孔27に付着したタールと水蒸気との反応が促進され、付着したタールがガス化して消滅する。
 圧力測定装置33で測定される圧力差が大きくなりすぎると、付着したタールをガス化して消滅させるための時間が長くなる。そのため、制御部42が上記の制御を行うのは、圧力測定装置33で測定される圧力差が通常運転時よりも10~30%上昇した時に開始することが好ましい。
Next, in the coal gasification system 41 configured as described above, the operation method in the case where tar adheres to the through holes 27 due to some factor is focused on the drying unit 13, the coal gasification reactor 4 and the control unit 42. I will explain.
In addition, when the temperature of the temperature sensor of the crushing part 14 is T0 similarly to the driving | running method in said 1st Embodiment, it is assumed that the water content of the water content adjustment coal obtained is X0. By supplying the moisture control coal from the nozzle portion 31, the pressure difference measured by the pressure measuring device 33 becomes P0 (see FIG. 7), and the coal gasification reaction furnace 4 is operated without tar adhering to the through holes. The case where it is done is explained.
It is assumed that tar adheres in the through hole 27 and the pressure difference measured by the pressure measuring device 33 increases from P0 to P1 shown in FIG. At this time, the arithmetic unit of the control unit 42 detects that the pressure difference has become large by receiving the signal from the pressure measuring device 33. Then, the arithmetic unit calculates X1 of the water content corresponding to P1 of the pressure difference from the relational expression between the pressure difference of the pressure measuring device 33 and the water content adjustment coal shown in FIG. 7 stored in the memory. . Furthermore, the arithmetic unit calculates T1 of the temperature of the temperature sensor corresponding to X1 of the water content from the relational expression between the temperature of the temperature sensor and the water content adjustment in the moisture adjustment coal shown in FIG.
Subsequently, the arithmetic unit controls the drying unit 13 to adjust the temperature of the temperature sensor to T1. By controlling in this manner, the water amount adjusting coal whose water amount has increased to X1 is supplied from the nozzle portion 31 of the coal gasification reaction furnace 4 into the thermal decomposition portion 28. As a result, the reaction between the tar attached to the through hole 27 and the steam is promoted, and the attached tar is gasified and disappears.
If the pressure difference measured by the pressure measuring device 33 becomes too large, the time for gasifying and extinguishing the attached tar becomes long. Therefore, it is preferable that the control unit 42 start the above control when the pressure difference measured by the pressure measuring device 33 rises by 10 to 30% compared to that in the normal operation.
 なお、圧力測定装置33で測定される圧力差が通常の運転時の圧力差程度に小さくなりP0またはP2(図7参照)となったとする。このときには、反応速度を所定値以上に維持するために、演算ユニットにより、両関係式から圧力差のP0、P2に対応する温度のT0、T2を算出し、温度センサの温度をT0またはT2に調整し、水分量調節石炭の水分量をX0またはX2に減少させててもよい。 Here, it is assumed that the pressure difference measured by the pressure measuring device 33 is reduced to about the pressure difference during normal operation and becomes P0 or P2 (see FIG. 7). At this time, in order to maintain the reaction speed at a predetermined value or more, the arithmetic unit calculates T0 and T2 of the temperature corresponding to P0 and P2 of the pressure difference from both relational expressions, and sets the temperature of the temperature sensor to T0 or T2. The water content of the water control coal may be reduced to X0 or X2 by adjustment.
 以上説明したように、本実施形態の石炭ガス化システム41によれば、熱分解部28に水蒸気を供給する装置を必要とせず、熱分解部28に供給する水分量を調整することができる。
 さらに、貫通孔27内にタールが付着した場合には、圧力測定装置33で測定される圧力差が大きくなる。このときに演算ユニットが石炭乾燥及び粉砕設備2により水分量調節石炭の水分量を増加させることでタールと水蒸気との化学反応がより促進され、熱分解部28の貫通孔27内に付着したタールをガス化させることができる。
As described above, according to the coal gasification system 41 of the present embodiment, the amount of water supplied to the thermal decomposition unit 28 can be adjusted without requiring an apparatus for supplying water vapor to the thermal decomposition unit 28.
Furthermore, when tar adheres to the inside of the through hole 27, the pressure difference measured by the pressure measuring device 33 becomes large. At this time, the chemical reaction between tar and water vapor is further promoted by the arithmetic unit increasing the moisture content of the coal by adjusting the amount of moisture by the coal drying and grinding facility 2, and the tar adhering to the through holes 27 of the thermal decomposition section 28 Can be gasified.
 以上、本発明の実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の構成の変更等も含まれる。
 たとえば、上記第1実施形態および第2実施形態では、石炭ガス化反応炉4の運転条件によっては、部分酸化部26に必要な水蒸気の量より、部分酸化部26に供給される水分量調節石炭中の水分量の方が多い場合が考えられる。この場合には、石炭乾燥及び粉砕設備2において、熱分解部28に供給するのに適した水分量を含有する石炭と、その石炭より水分量が少ない部分酸化部26用の石炭の2種類を製造する。そして、それら2種類の石炭を部分酸化部26および熱分解部28のそれぞれに供給するように構成してもよい。
The embodiment of the present invention has been described in detail with reference to the drawings, but the specific configuration is not limited to this embodiment, and changes in the configuration without departing from the scope of the present invention are also included.
For example, in the first embodiment and the second embodiment, depending on the operating conditions of the coal gasification reaction furnace 4, the water amount adjusting coal to be supplied to the partial oxidation unit 26 from the amount of steam required for the partial oxidation unit 26 It is conceivable that the amount of water contained in the medium is higher. In this case, in the coal drying and crushing facility 2, two types of coal, one containing a water content suitable for supplying to the thermal decomposition part 28, and the coal for the partial oxidation part 26 having a water content smaller than that of coal. Manufacture. Then, the two types of coal may be supplied to each of the partial oxidation unit 26 and the thermal decomposition unit 28.
 上記の石炭ガス化システム1を用いて、部分酸化部26内の温度を1300℃、ガス化バーナー30から部分酸化部26内に供給される水分量が18%の水分量調節石炭、酸素含有ガス(本実施例では酸素ガス)の流量をそれぞれ650(kg/h)、345(Nm3/h)とした。部分酸化部26に水蒸気は供給していない。
 なお、乾燥装置は図3に示す粉砕機を兼ねる装置を使用し、石炭を10μm以上100μm以下の粒状となるように乾燥及び粉砕した。
 この条件で、ノズル部31から熱分解部28に、水分量が18%の水分量調節石炭を150(kg/h)供給し、かつ水蒸気を供給しない場合に、貫通孔27にタールが付着しないことが分かった。
 このように、本発明の実施例に係る石炭ガス化システム1においては、水蒸気ノズルや水蒸気供給ポンプ等の装置を設置しなくても、タールの付着を防止して安定的に運転することができ、装置全体としてコンパクトな設備構成とすることができた。
 なお、比較例として、部分酸化部26内に石炭(水分量5%)を561(kg/h)、酸素含有ガス(本比較例では酸素ガス)を345(Nm3/h)、水蒸気を89(kg/h)供給する。また、ノズル部31から熱分解部28に、水分量が5%の石炭を130(kg/h)と水蒸気を22(kg/h)供給する。この場合に、貫通孔27にタールが付着しないことが分かった。しかし、水蒸気ノズルや水蒸気供給ポンプ等の装置が必要となり、実施例1と比較して装置全体として大型化し、設備コストも増大した。
With the above coal gasification system 1, the temperature in the partial oxidation unit 26 is 1300 ° C., the water content adjustment coal supplied from the gasification burner 30 into the partial oxidation unit 26 is 18% water content adjustment coal, oxygen-containing gas The flow rates of oxygen gas (in the present embodiment) were 650 (kg / h) and 345 (Nm 3 / h), respectively. Water vapor is not supplied to the partial oxidation unit 26.
In addition, the drying apparatus used the apparatus which doubles as a grinder shown in FIG. 3, and dried and grind | pulverized coal so that it might become a granule of 10 micrometers or more and 100 micrometers or less.
Under this condition, tar is not attached to the through-hole 27 when 150 kg / h of water-regulating coal with a water content of 18% is supplied from the nozzle portion 31 to the thermal decomposition portion 28 and steam is not supplied. I found that.
Thus, in the coal gasification system 1 according to the embodiment of the present invention, tar can be prevented from adhering and stable operation can be performed without installing devices such as a steam nozzle and a steam supply pump. The equipment as a whole could be made into a compact equipment configuration.
As a comparative example, 561 (kg / h) of coal (water content 5%), 345 (Nm 3 / h) of oxygen-containing gas (oxygen gas in this comparative example), 89 of water vapor in the partial oxidation portion 26 (Kg / h) supply. Further, 130 (kg / h) of coal having a water content of 5% and 22 (kg / h) of steam are supplied from the nozzle unit 31 to the thermal decomposition unit 28. In this case, it was found that no tar adheres to the through holes 27. However, devices such as a steam nozzle and a steam supply pump are required, and the size of the entire device is increased as compared with Example 1, and the facility cost is also increased.
 上記の石炭ガス化システム1を用いて、部分酸化部26内と熱分解部28の圧力差を第一の配管34および第二の配管35で測定した。そして、部分酸化部26内に水分量10%の石炭606(kg/h)、酸素含有ガス(本実施例では酸素ガス)330(Nm3/h)を供給した。また、ノズル部31から熱分解部28内に水分量が12%の水分量調節石炭を136(kg/h)供給して運転した。なお、乾燥装置は図3に記載の粉砕機を兼ねる装置を使用し、石炭を10μm以上100μm以下の粒状となるように乾燥及び粉砕した。
 その結果、操業開始から約20時間後に部分酸化部26内と熱分解部28の圧力差が上昇し始めた。圧力差が上昇前の約20%の上昇となった時点で粉砕部14の出口ガス温度を65℃から45℃に低下させた。その結果、水分量調節石炭に含まれるの水分量が質量比で18%となった。そして、この水分量調節石炭が反応器に投入され始めると部分酸化部26内と熱分解部28の圧力差が低下し、ほぼ圧力差上昇前の水準に戻ることが確認できた。
The pressure difference between the inside of the partial oxidation unit 26 and the thermal decomposition unit 28 was measured by the first pipe 34 and the second pipe 35 using the above-described coal gasification system 1. Then, coal 606 (kg / h) having a water content of 10% and oxygen-containing gas (oxygen gas in the present embodiment) 330 (Nm 3 / h) were supplied into the partial oxidation section 26. In addition, 136 (kg / h) of water content adjusting coal having a water content of 12% was supplied from the nozzle portion 31 into the thermal decomposition portion 28 and operated. In addition, the drying apparatus used the apparatus which served as the crusher of FIG. 3, and dried and grind | pulverized coal so that it might become a granular form of 10 micrometers or more and 100 micrometers or less.
As a result, the pressure difference between the inside of the partial oxidation unit 26 and the thermal decomposition unit 28 began to rise about 20 hours after the start of operation. The outlet gas temperature of the grinding unit 14 was lowered from 65 ° C. to 45 ° C. when the pressure difference rose about 20% before rising. As a result, the water content contained in the water content adjustment coal became 18% in mass ratio. And when this water content adjustment coal began to be introduced into the reactor, it was confirmed that the pressure difference between the inside of the partial oxidation unit 26 and the thermal decomposition unit 28 decreased, and the pressure almost returned to the level before the pressure difference rise.
 以上、本発明の好ましい実施形態を説明したが、本発明は上記の実施形態に限定されることはない。本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。本発明は前述した説明によって限定されることはなく、添付のクレームの範囲によってのみ限定される。 As mentioned above, although the preferable embodiment of this invention was described, this invention is not limited to said embodiment. Additions, omissions, substitutions, and other modifications of the configuration are possible without departing from the spirit of the present invention. The invention is not limited by the foregoing description, but is only limited by the scope of the appended claims.
 この石炭ガス化システムおよび石炭ガス化方法によれば、上部反応容器に水蒸気を供給する装置を必要とせず、上部反応容器内における水蒸気量を調整することができる。 According to the coal gasification system and the coal gasification method, the amount of water vapor in the upper reaction container can be adjusted without requiring an apparatus for supplying water vapor to the upper reaction container.
 1、41 石炭ガス化システム 2石炭乾燥及び粉砕設備(乾燥装置) 4石炭ガス化反応炉 26 部分酸化部(下部反応容器) 26a 収容空間 27 貫通孔 28 熱分解部(上部反応容器) 28a 縮径部 30 ガス化バーナー(バーナー部) 33 圧力測定装置(圧力測定部) 42 制御部 D 上下方向 1, 41 coal gasification system 2 coal drying and pulverizing equipment (drying device) 4 coal gasification reactor 26 partial oxidation part (lower reaction vessel) 26a accommodation space 27 through hole 28 thermal decomposition part (upper reaction vessel) 28a diameter reduction Unit 30 Gasification burner (burner unit) 33 Pressure measuring device (pressure measurement unit) 42 Control unit D Vertical direction

Claims (9)

  1.  石炭を乾燥させて所定の水分量を有する水分量調節石炭とする乾燥装置と;
     前記水分量調節石炭を燃焼させて水素ガスおよび一酸化炭素ガスを生成する石炭ガス化反応炉と;を備え、
     前記石炭ガス化反応炉は、
     下部反応容器と;
     前記下部反応容器の上方に設けられ、前記下部反応容器と連通する上部反応容器と;
     前記下部反応容器に前記水分量調節石炭および酸素含有ガスを供給し、前記水分量調節石炭を燃焼させるバーナ部と;
     前記上部反応容器に前記水分調節石炭を供給するノズル部と;
     を有する石炭ガス化システム。
    A drying device for drying coal to obtain a moisture control coal having a predetermined moisture content;
    A coal gasification reactor which burns the moisture-regulating coal to produce hydrogen gas and carbon monoxide gas;
    The coal gasification reactor is
    Lower reaction vessel;
    An upper reaction vessel provided above the lower reaction vessel and in communication with the lower reaction vessel;
    A burner unit for supplying the moisture control coal and the oxygen-containing gas to the lower reaction vessel and burning the moisture control coal;
    A nozzle unit for supplying the moisture control coal to the upper reaction vessel;
    With coal gasification system.
  2.  前記ノズル部よりも下方の炉内圧力と、前記上部反応容器上部の炉内圧力との差を測定する圧力測定部と;
     前記圧力測定部によって測定された圧力差に基づいて前記乾燥装置を制御し、前記石炭に含有される水分量を調節する制御部と;
     をさらに備える請求項1に記載の石炭ガス化システム。
    A pressure measurement unit that measures a difference between the pressure in the furnace below the nozzle unit and the pressure in the furnace above the upper reaction vessel;
    A control unit that controls the drying device based on the pressure difference measured by the pressure measurement unit, and adjusts the amount of water contained in the coal;
    The coal gasification system according to claim 1, further comprising
  3.  水分を質量比で20%以上含有する亜瀝青炭または褐炭を、これらが所定の水分量を有するように乾燥させて水分量調節石炭とする乾燥装置と;
     前記水分量調節石炭を燃焼させることで少なくとも水素ガスおよび一酸化炭素ガスを製造する石炭ガス化反応炉と;
     を備え、
     前記石炭ガス化反応炉は、
      内部に収容空間が形成された下部反応容器と;
      前記下部反応容器の上方に設けられた上部反応容器と;
     を有し、
     前記下部反応容器は、
      前記下部反応容器に水蒸気を供給することなく前記水分量調節石炭および酸素含有ガスを所定の割合で供給し、前記水分量調節石炭を燃焼させるバーナー部を有し、
     前記上部反応容器は、
      縮径部を介して前記下部反応容器の前記収容空間と連通し、上下方向に延びる貫通孔と;
      前記上部反応容器に水蒸気を供給することなく前記水分量調節石炭のみを供給するノズル部と;
     を有し、
     前記所定の水分量は、前記水分量調節石炭から発生する水蒸気とタールとが化学反応して前記貫通孔内にタールが付着しない量に設定されている石炭ガス化システム。
    A drying apparatus for drying subbituminous coal or lignite containing 20% or more of moisture by weight so that they have a predetermined moisture content to obtain moisture-adjusted coal;
    A coal gasification reactor that produces at least hydrogen gas and carbon monoxide gas by burning the moisture-regulating coal;
    Equipped with
    The coal gasification reactor is
    A lower reaction vessel in which a storage space is formed therein;
    An upper reaction vessel provided above the lower reaction vessel;
    Have
    The lower reaction vessel is
    It has a burner unit which supplies the moisture control coal and the oxygen-containing gas at a predetermined ratio without supplying steam to the lower reaction vessel, and burns the moisture control coal.
    The upper reaction vessel is
    A through hole which communicates with the storage space of the lower reaction vessel via a reduced diameter portion and extends in the vertical direction;
    A nozzle unit for supplying only the moisture control coal without supplying water vapor to the upper reaction vessel;
    Have
    The coal gasification system set to the quantity by which the steam and tar which generate | occur | produce from the said moisture content adjustment coal chemically react, and the said moisture content does not adhere in the said through-hole.
  4.  前記所定の水分量は、前記水分量調節石炭に対する質量比で15%以上40%以下である請求項3に記載の石炭ガス化システム。 The coal gasification system according to claim 3, wherein the predetermined water content is 15% or more and 40% or less in mass ratio to the water content adjustment coal.
  5.  前記石炭ガス化反応炉は、
     前記上部反応容器の貫通孔における前記ノズル部より下方の部分の内圧または前記下部反応容器の収容空間における内圧と、前記貫通孔の上方の端部の内圧との間の圧力差を測定する圧力測定部を有し、
     前記圧力測定部が測定した前記圧力差に基づいて、前記乾燥装置を制御して前記石炭が有する水分量を調節する制御部を備える請求項3または請求項4に記載の石炭ガス化システム。
    The coal gasification reactor is
    Pressure measurement for measuring the pressure difference between the internal pressure in the lower part of the through hole of the upper reaction vessel or the internal pressure in the accommodation space of the lower reaction vessel and the internal pressure of the upper end of the through hole Have a department,
    The coal gasification system according to claim 3 or 4 provided with a control part which controls said drying device and adjusts the amount of moisture which said coal has based on said pressure difference which said pressure measurement part measured.
  6.  請求項3から請求項5のいずれかに記載の石炭ガス化システムを用いる石炭ガス化方法であって、
     前記亜瀝青炭または褐炭を所定の水分量を有するように乾燥させて前記水分量調節石炭とする乾燥工程と、
     前記下部反応容器に、前記バーナー部から水蒸気を供給することなく前記水分量調節石炭、および酸素含有ガスを供給し前記水分量調節石炭を燃焼させるとともに、前記上部反応容器に前記ノズル部から前記水分量調節石炭のみを供給して前記水分量調節石炭を化学反応させる化学反応工程と、
     を備える石炭ガス化方法。
    A coal gasification method using the coal gasification system according to any one of claims 3 to 5,
    Drying the sub bituminous coal or lignite so as to have a predetermined water content to obtain the water content adjusting coal;
    The water content adjusting coal and the oxygen-containing gas are supplied to the lower reaction container without supplying water vapor from the burner part to burn the water content adjusting coal, and the water content from the nozzle part is supplied to the upper reaction container A chemical reaction process in which only the controlled amount of coal is supplied to chemically react the controlled amount of coal;
    Coal gasification method comprising.
  7.  前記化学反応工程は、前記水分量調節石炭から発生するタールと、前記水分量調節石炭に含まれる水分が加熱されて発生する水蒸気と、を化学反応させて、すくなくとも一酸化炭素ガスおよび水素ガスを製造する請求項6に記載の石炭ガス化方法。 In the chemical reaction process, at least carbon monoxide gas and hydrogen gas are produced by causing a chemical reaction between tar generated from the moisture control coal and steam generated by heating the moisture contained in the moisture control coal. The coal gasification method of Claim 6 which manufactures.
  8.  石炭を所定量の水分を含有するように乾燥させて所定量の水分を含む水分量調節石炭とする工程と;
     石炭ガス化反応炉の下部反応容器に、前記水分量調節石炭および酸素含有ガスを供給する工程と;
     前記下部反応容器内部で前記水分量調節石炭を燃焼させて高温ガスを発生させる工程と;
     前記石炭ガス化反応炉の前記下部反応容器に連通する上部反応容器に前記水分調節石炭を供給する工程と;
     前記上部反応容器に供給された前記水分調節石炭を、前記下部反応容器から前記上部反応器に流入した前記高温ガスにより加熱する工程と;
     を備える石炭ガス化方法。
    Drying the coal so as to contain a predetermined amount of water to obtain a moisture-regulating coal containing the predetermined amount of water;
    Supplying the moisture control coal and the oxygen-containing gas to the lower reaction vessel of the coal gasification reactor;
    Burning the moisture control coal inside the lower reaction vessel to generate a high temperature gas;
    Supplying the moisture controlled coal to an upper reaction vessel communicating with the lower reaction vessel of the coal gasification reactor;
    Heating the moisture regulating coal supplied to the upper reaction vessel with the high temperature gas flowing from the lower reaction vessel to the upper reactor;
    Coal gasification method comprising.
  9.  前記石炭として、亜瀝青炭、褐炭の少なくともいずれかひとつを使用する請求項8に記載の石炭ガス化方法。 The coal gasification method according to claim 8, wherein at least one of sub bituminous coal and lignite is used as the coal.
PCT/JP2011/057482 2010-04-16 2011-03-25 Coal gasification system and coal gasification method WO2011129192A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2011241630A AU2011241630B2 (en) 2010-04-16 2011-03-25 Coal gasification system and coal gasification method
CN201180018831.6A CN102892869B (en) 2010-04-16 2011-03-25 Coal gasification system and coal gasification method
JP2012510610A JP5450799B2 (en) 2010-04-16 2011-03-25 Coal gasification system and coal gasification method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010095497 2010-04-16
JP2010-095497 2010-04-16

Publications (1)

Publication Number Publication Date
WO2011129192A1 true WO2011129192A1 (en) 2011-10-20

Family

ID=44798570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/057482 WO2011129192A1 (en) 2010-04-16 2011-03-25 Coal gasification system and coal gasification method

Country Status (4)

Country Link
JP (1) JP5450799B2 (en)
CN (1) CN102892869B (en)
AU (1) AU2011241630B2 (en)
WO (1) WO2011129192A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013174182A (en) * 2012-02-24 2013-09-05 Central Research Institute Of Electric Power Industry Coal-fired power generation system
AU2013251229B2 (en) * 2012-11-08 2016-04-21 Mitsubishi Power, Ltd. Gasification system for solid fuel
JP2018006141A (en) * 2016-06-30 2018-01-11 三菱重工業株式会社 Power generation system
JP2021071241A (en) * 2019-10-31 2021-05-06 株式会社下瀬微生物研究所 Device of drying porous substance, hydrogen production device comprising the same, and method of drying porous substance

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2015201766B1 (en) * 2015-04-08 2016-06-09 Mitsubishi Power, Ltd. Gasifying system including a gasifier
CN112029542B (en) * 2020-08-17 2021-10-26 新奥科技发展有限公司 Hydro-gasification system and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61233081A (en) * 1985-04-09 1986-10-17 Mitsubishi Heavy Ind Ltd Coal gasifying device of pressure jet bed type
JPH07292368A (en) * 1994-04-26 1995-11-07 Mitsubishi Heavy Ind Ltd Entrained-bed coal gasification furnace
JP2003027072A (en) * 2001-07-16 2003-01-29 Nippon Steel Corp Method for generating electric power by pyrolytic gasification reaction product of coal
JP2008150463A (en) * 2006-12-15 2008-07-03 Mitsubishi Heavy Ind Ltd Two-stage entrained bed gasification oven and method for controlling operation of the same
WO2010026932A1 (en) * 2008-09-08 2010-03-11 三菱重工業株式会社 Integrated coal gasification combined cycle power generation apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101200408A (en) * 2006-12-13 2008-06-18 单晓强 Preparation technique of methanol by lignite gasification and special equipment thereof
CN101569828B (en) * 2009-06-10 2012-05-02 河北工业大学 Solid particle used for jetting bed flue gas desulfurization process and preparation method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61233081A (en) * 1985-04-09 1986-10-17 Mitsubishi Heavy Ind Ltd Coal gasifying device of pressure jet bed type
JPH07292368A (en) * 1994-04-26 1995-11-07 Mitsubishi Heavy Ind Ltd Entrained-bed coal gasification furnace
JP2003027072A (en) * 2001-07-16 2003-01-29 Nippon Steel Corp Method for generating electric power by pyrolytic gasification reaction product of coal
JP2008150463A (en) * 2006-12-15 2008-07-03 Mitsubishi Heavy Ind Ltd Two-stage entrained bed gasification oven and method for controlling operation of the same
WO2010026932A1 (en) * 2008-09-08 2010-03-11 三菱重工業株式会社 Integrated coal gasification combined cycle power generation apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013174182A (en) * 2012-02-24 2013-09-05 Central Research Institute Of Electric Power Industry Coal-fired power generation system
AU2013251229B2 (en) * 2012-11-08 2016-04-21 Mitsubishi Power, Ltd. Gasification system for solid fuel
JP2018006141A (en) * 2016-06-30 2018-01-11 三菱重工業株式会社 Power generation system
JP2021071241A (en) * 2019-10-31 2021-05-06 株式会社下瀬微生物研究所 Device of drying porous substance, hydrogen production device comprising the same, and method of drying porous substance
WO2021084942A1 (en) * 2019-10-31 2021-05-06 株式会社下瀬微生物研究所 Drying device for porous substance, hydrogen production device comprising same, and method for drying porous substance
CN114207371A (en) * 2019-10-31 2022-03-18 株式会社下濑微生物研究所 Drying device for porous substance, hydrogen production device provided with same, and drying method for porous substance
JP7146277B2 (en) 2019-10-31 2022-10-04 株式会社下瀬微生物研究所 Hydrogen production device equipped with porous material drying device, and hydrogen production method
CN114207371B (en) * 2019-10-31 2023-06-27 株式会社下濑微生物研究所 Porous material drying device, hydrogen production device provided with same, and porous material drying method
AU2020376194B2 (en) * 2019-10-31 2023-08-17 Shimose Microbes Laboratory Corporation Drying device for porous substance, hydrogen production device comprising same, and method for drying porous substance

Also Published As

Publication number Publication date
CN102892869A (en) 2013-01-23
AU2011241630B2 (en) 2013-10-24
JP5450799B2 (en) 2014-03-26
CN102892869B (en) 2014-08-20
AU2011241630A1 (en) 2012-12-06
JPWO2011129192A1 (en) 2013-07-11

Similar Documents

Publication Publication Date Title
EP2380949B1 (en) High-temperature gasification process using biomass to produce synthetic gas and system therefor
AU2006201142B2 (en) Method and device for high-capacity entrained flow gasifier
KR101643792B1 (en) Two stage dry feed gasification system and process
EP2321387B1 (en) Two stage entrained gasification system and process
WO2011129192A1 (en) Coal gasification system and coal gasification method
ES2804520T3 (en) Two-stage gasification with dual rapid cooling
CA2673340A1 (en) Method for low-severity gasification of heavy petroleum residues
WO2010063206A1 (en) High temperature gasifying process with biomass and system thereof
JPS5936195A (en) Method for gasifying coal in jetted stream bed
WO2010063207A1 (en) High temperature gasifying process with biomass and system thereof
JP5386635B2 (en) Operation method of coal gasification reactor and coal gasification reactor
WO2010063205A1 (en) High temperature gasifying process with biomass and system thereof
JP5827511B2 (en) Coal gas production method and methane production method
JP6637614B2 (en) Two-stage gasifier and gasification process with raw material flexibility
KR102023826B1 (en) Standpipe-fluid bed hybrid system for char collection, transport, and flow control
WO2003068894A1 (en) Method and device for gasification
JPH083361B2 (en) Fine powder raw material gasification burner and fine powder raw material gasifier
CN115803417A (en) Method for gasifying carbonaceous feedstock and device for carrying out said method
JPS6157685A (en) Method and apparatus for producing gas from carbon-containing fuel
AU2006203439B2 (en) Method and device for high-capacity entrained flow gasifier
JPH03134093A (en) Entrained bed gasifier
JPS5824475B2 (en) Coal fluidized gasification equipment
JP2012241106A (en) Coal gasification system

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180018831.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11768713

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2012510610

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2011241630

Country of ref document: AU

Date of ref document: 20110325

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11768713

Country of ref document: EP

Kind code of ref document: A1