WO2003068894A1 - Method and device for gasification - Google Patents

Method and device for gasification Download PDF

Info

Publication number
WO2003068894A1
WO2003068894A1 PCT/JP2003/001282 JP0301282W WO03068894A1 WO 2003068894 A1 WO2003068894 A1 WO 2003068894A1 JP 0301282 W JP0301282 W JP 0301282W WO 03068894 A1 WO03068894 A1 WO 03068894A1
Authority
WO
WIPO (PCT)
Prior art keywords
gasifier
slurry
gasification furnace
gas
gasification
Prior art date
Application number
PCT/JP2003/001282
Other languages
French (fr)
Japanese (ja)
Inventor
Toru Akiyama
Shinji Tanaka
Fumihiko Kiso
Fumihiko Hanayama
Original Assignee
Hitachi, Ltd.
Babcock-Hitachi K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd., Babcock-Hitachi K.K. filed Critical Hitachi, Ltd.
Priority to AU2003207084A priority Critical patent/AU2003207084A1/en
Publication of WO2003068894A1 publication Critical patent/WO2003068894A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/466Entrained flow processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/54Gasification of granular or pulverulent fuels by the Winkler technique, i.e. by fluidisation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/54Gasification of granular or pulverulent fuels by the Winkler technique, i.e. by fluidisation
    • C10J3/56Apparatus; Plants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/723Controlling or regulating the gasification process
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/15Details of feeding means
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/095Exhaust gas from an external process for purification
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/169Integration of gasification processes with another plant or parts within the plant with water treatments
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1807Recycle loops, e.g. gas, solids, heating medium, water

Definitions

  • the present invention relates to a solid fuel gasification technique, and more particularly, to a solid fuel gasification method and apparatus using a gas-bed gasification furnace.
  • Gasifiers that pulverize solid fuels, such as solid hydrocarbons such as coal, and partially burn them with oxygen to produce gas are called fixed beds, fluidized beds, and gas or spouted beds.
  • Various methods have been proposed. Among these, the method called the gas layer or spouted bed enables the operation of the gasifier at a relatively high temperature, for example, 150 ° C, and converts the fuel into gas. Efficiency is higher than other methods.
  • the gasification furnace can be operated at a relatively high temperature, the ash in solid fuel such as charcoal hydrogen can be melted, so the ash must be collected and reused as slag. Can also.
  • a gasification furnace formed in a cylindrical shape is provided with an outlet for product gas at one end, and the other end is provided with a gasification furnace.
  • a configuration with a fuel, oxygen, or air It has a gasifier.
  • soot dust containing unreacted flammable components entrained in the product gas discharged from the outlet of the gasifier is recovered from the product gas, and the collected dust and solid fuel such as finely pulverized coal are collected.
  • these slurry is supplied to the gasifier as fuel by pressurizing it to a pressure higher than the operating pressure of the gasifier using a pump or the like.
  • slag may be generated due to melting of ash accompanying the product gas discharged from the gasification furnace.
  • a cooler with a structure in which a plurality of conduits through which the fluid that exchanges heat with the generated gas flows flows is used as the cooler, the gap between the conduits through which the fluid flows In some cases, slag adheres to the gas and blocks the flow path of the generated gas. Therefore, in a gasifier where the temperature of the generated gas discharged from the gasification furnace may reach a temperature at which slag is generated, the flow path of the generated gas is used to prevent the flow path from being blocked by the slag.
  • a structure in which a flow path through which fluid for heat exchange with generated gas flows such as a water-cooled wall structure or a jacket structure, is connected to the outlet of the gasification furnace.
  • Coolers with such a water-cooled wall structure / jacket structure have a heat exchange efficiency, that is, a cooling efficiency that is lower than that of a cooler with a structure in which multiple pipes are arranged in the flow path of the generated gas. Since the temperature is lower than that, the size of the cooler increases. For example, a gasifier with a height of several meters may need to be equipped with a cooler with a height of several tens of meters.
  • a cooler such as a water-cooled wall structure or a jacket structure provided in such a gasifier causes an increase in the size of the gasifier and an increase in cost. Therefore, it is desired to reduce the temperature of the generated gas discharged from the gasifier to reduce the size of a cooler such as a water-cooled wall structure or a jacket structure.
  • the inventors of the present application supplied a slurry generated by dust collected from the generated gas discharged from the gasification furnace to an outlet side of the generated gas of the gasification furnace, and provided the generated gas of the gasification furnace. Is considering reducing the temperature of the product gas discharged from the gasifier by evaporating the moisture of the slurry supplied to the outlet side of the gasifier. However, if the slurry is supplied to the outlet of the gasification furnace, the supplied slurry will be discharged from the gasification furnace with the generated gas.
  • An object of the present invention is to provide a gasification method and a gasification apparatus for lowering the temperature of product gas discharged from a gasification furnace while improving the conversion efficiency of fuel to gas.
  • an unreacted combustible component entrained in the product gas discharged from the outlet is included in an outlet portion of a product gas of a gasifier that partially burns a solid fuel to generate a gas.
  • Slurry generated by collecting soot and dust is supplied, It is characterized in that the supplied slurry flows in a direction opposite to the flow of the generated gas toward the outlet in the gasification furnace.
  • a gasification furnace is provided at a lower burner for supplying solid fuel into the gasification furnace, and at a portion closer to an outlet than the gasification furnace lower combustion furnace.
  • the slurry supplied to the portion is entrained by the descending flow formed by the upper stepper, so that the slurry can easily flow in the direction opposite to the flow of the generated gas toward the outlet in the gasification furnace.
  • the flow will be like the descending flow formed by the upper stepper. Even if the flow in the direction opposite to the flow of the generated gas in the gasification furnace is not formed, the slurry can flow in the direction opposite to the flow of the generated gas toward the outlet.
  • the gasification apparatus of the present invention includes: a gasification furnace for partially burning solid fuel to generate a gas; a product gas flow path through which a product gas generated by the gasification furnace flows; A slurry generating means for recovering soot and dust containing unreacted combustible components entrained in the generated gas provided on the road and generating a slurry from the collected dust; and a slurry generated by the slurry generating means. Pressurize and transport And a nozzle for supplying the slurry conveyed from the slurry generation means into the gasification furnace by the pump, and the nozzle is provided at an outlet side of the generation gas of the gasification furnace.
  • the slurry supplied to the gasifier from the furnace is characterized in that the slurry flows in a direction opposite to the flow of product gas in the gasifier toward the outlet.
  • the slurry is supplied to the outlet side of the product gas in the gasification furnace, and the temperature of the product gas discharged from the gasification furnace can be reduced by the moisture in the slurry. Furthermore, the slurry supplied from the nozzle into the gasification furnace flows in the direction opposite to the flow of product gas in the gasification furnace toward the outlet, so that unreacted combustible components contained in the slurry are converted into gasification furnace. The amount of unreacted combustible components contained in the slurry can be increased by increasing the time spent in the slurry. Therefore, the temperature of the product gas discharged from the gasifier can be reduced while improving the efficiency of converting fuel into gas.
  • the slurry supplied from the nozzle into the gasification furnace becomes: Since the slurry flows along with the downward flow formed by the upper parner, the slurry can be easily flowed in the direction opposite to the flow of the generated gas in the gasifier toward the outlet.
  • the slurry generating means includes a cleaning device that cleans the generated gas flowing through the generated gas flow path with water or an alkaline solution and removes and collects soot and dust accompanying the generated gas from the generated gas, A dehydrator that adjusts the amount of water in the slurry by removing a part of the water from the cleaning wastewater containing soot and dust collected by the washer (in such a configuration, Water to the dust when producing a slurry containing This is preferable because there is no need to provide equipment for addition.
  • a temperature detector for measuring the temperature of the product gas discharged from the gasification furnace is provided, and the slurry generation means adjusts the amount of water contained in the slurry according to the temperature of the product gas detected by the temperature detector.
  • Configuration Such a configuration is preferable because the temperature of the product gas discharged from the gasifier can be controlled by the amount of water in the slurry.
  • a hydrogen production apparatus including any one of the above gasifiers, wherein the solid fuel is a solid hydrocarbon. Further, any one of the above gasifiers, and a catalytic reactor containing a catalyst for a reaction for producing hydrogen from carbon monoxide and water contained in the product gas discharged from the gasifier,
  • the hydrogen production system is configured so that the fuel is solid hydrocarbon.
  • FIG. 1 is a block diagram showing a schematic configuration and operation of a gasifier of Embodiment 1 to which the present invention is applied
  • FIG. 2 is a schematic configuration and operation of a gasifier provided in the gasifier of Embodiment 1.
  • FIG. 3 is a cross-sectional view of a stepped portion provided with a lower stepper showing a schematic configuration and operation of a gasification furnace provided in the gasifier of Example 1
  • FIG. Fig. 5 is a cross-sectional view of a step portion provided with an upper-side parner, showing a schematic configuration and operation of a gasification furnace provided in the gasification device of Fig. 5;
  • FIG. 3 is a cross-sectional view of a stepped portion provided with a lower stepper showing a schematic configuration and operation of a gasification furnace provided in the gasifier of Example 1
  • FIG. Fig. 5 is a cross-sectional view of a step portion provided with an upper-side parner, showing a schematic configuration and operation of a gasification furnace provided
  • FIG. 1 is a block diagram showing a schematic configuration and operation of a gasifier to which the present invention is applied.
  • FIG. 2 is a longitudinal sectional view showing a schematic configuration and operation of a gasification furnace provided in a gasification apparatus to which the present invention is applied.
  • FIG. 3 is a cross-sectional view of a stepped portion provided with a lower stepper showing a schematic configuration and operation of a gasification furnace provided in a gasifier to which the present invention is applied.
  • FIG. 1 is a block diagram showing a schematic configuration and operation of a gasifier to which the present invention is applied.
  • FIG. 2 is a longitudinal sectional view showing a schematic configuration and operation of a gasification furnace provided in a gasification apparatus to which the present invention is applied.
  • FIG. 3 is a cross-sectional view of a stepped portion provided with a lower stepper showing a schematic configuration and operation of a gasification furnace provided in a gasifier to which the present invention is applied.
  • FIG. 1 is a block diagram
  • FIG. 4 is a cross-sectional view of a stepped portion provided with an upper-side parner, showing a schematic configuration and operation of a gasification furnace provided in a gasifier to which the present invention is applied.
  • a swirling flow type gasifier having two stages of panners, an upper burner forming an ascending swirling flow and an upper burner forming a descending swirling flow, is used in the gasification furnace. It illustrates a gasifier with a furnace.
  • the gasification furnace 1 is a vertical furnace as shown in FIGS. 1 and 2, and has a gasification chamber 13, a slag recovery chamber 15 provided below the gasification chamber 13, and the like. are doing. Above the gasification chamber 13 of the gasifier 1, a cooler 17 for cooling the gas generated in the gasifier 1 is connected. The gasification chamber 13 is formed in a cylindrical shape, and a refractory material 19 is lined on the inner surface. Moth In the lower part of the gasification chamber 13 of the gasification furnace 1, a lower parner 21 is provided above the lower parner 21 and at a part on the outlet 23 side of the generated gas from the gasification chamber 13. In the gasification furnace 1, a nozzle 11 is provided in a step portion of the gasification chamber 13 where the upper parner 25 is provided.
  • the lower parner 21 directs the direction of injection of fuel and the like from the lower parner 21 into a tangent to a concentric circle 27 with the outer wall of the gasifier 1 which is assumed to be at a position where a swirl flow is formed. It is installed in a state along the direction.
  • a swirling flow along the concentric circle 27 is formed in the gasification chamber 13 of the gasification furnace 1.
  • four lower burners 21 are installed at equal intervals. As shown in FIG.
  • the upper burner 25 sets the direction in which fuel or the like is ejected from the upper parner 25 into a concentric circle 2 with the outer wall of the gasification furnace 1 that is assumed to be at a position where a swirling flow is formed. 9 is installed along the tangential direction. By providing the upper burner 25 in this manner, a swirling flow along a concentric circle 29 is formed in the gasification chamber 13 of the gasification furnace 1. In this embodiment, two upper burners 25 are installed at equal intervals.
  • the nozzle .11 is also located at a position where a swirling flow is formed, along a tangential direction of a concentric circle 29 with the outer wall of the gasification furnace 1. It is installed in.
  • two nozzles 11 are installed at equal intervals alternately with the upper parner 25 in the step where the upper parner 25 of the gasification furnace 1 is installed.
  • the nozzle 11 may be provided with the slurry supplied from the nozzle 11 into the gasifier 1 along with the swirl flow formed by the upper parner 25. If the stepped portion is provided, it need not be provided at the same height as the position of the upper parner 25, and may be provided at a position higher or lower than the position of the upper parner 25.
  • the slurry supplied into the gasification furnace 1 from the nozzle 11 is the upper stage The downward swirling flow formed by the Then, the gas flows in the direction opposite to the upward flow, which is the flow of the generated gas in the gasification furnace 1 toward the outlet 23. Therefore, the nozzles 11 are concentric circles as in this embodiment.
  • the finely ground coal is connected to a lower burner 21 as shown in FIGS. 1 and 2, and a lower fuel line 31 serving as a flow path for solid fuel and an upper burner 2 are provided. 5 and is divided into an upper fuel line 33 that serves as a flow path for solid fuel, and is passed through a lower burner 21 and an upper burner 25 using incombustible gas such as nitrogen or carbon dioxide. It is supplied into the gasifier 1.
  • the lower-stage parner 21 and the upper-stage parner 25 are provided with a lower-stage oxygen pipe that serves as a flow path for oxygen or air for guiding oxygen serving as a gasifying agent to the lower-stage parner 21 and the upper-stage burner 25.
  • 35 and the upper oxygen line 37 are connected to each other, and oxygen or air flows into the gasifier 1 together with the finely pulverized coal through the lower burner 21 and the upper parner 25. Supplied.
  • the slag recovery chamber 15 is provided with an ignition parner 41 and a slag tap burner 43.
  • the ignition parner 41 has an auxiliary fuel pipe 45 serving as a flow path for guiding auxiliary fuel to the ignition parner 41, and an ignition burner serving as a flow path for leading oxygen or air to the ignition parner 41.
  • Oxygen line 47 is connected.
  • the slag reservoir 43 has an auxiliary fuel line 49 serving as a flow path for guiding auxiliary fuel to the slag reservoir 43, and oxygen or air.
  • a slag tap burner oxygen pipeline 51 serving as a flow path leading to the slag tap parner 43 is connected to the slag tap burner.
  • the slag tap wrench 43 is not necessarily required.
  • a cooler 17 which has a cooling chamber 53 which communicates with the outlet 23 and which is formed of a product gas flow path extending vertically.
  • the side walls that define the cooling chamber 53 have a water-cooled wall type formed by a conduit through which a cooling medium such as water or a cooling medium such as cooling steam flows, or a flow path 54 through which the cooling medium flows.
  • the cooling medium introduction pipe 55 for introducing the cooling medium to the cooling device 17 is located at the lower part of the cooling device 17, and the upper part of the cooling device 17 is located at the lower part of the cooling device 17.
  • a cooling medium outlet pipe 57 for connecting the cooling medium heated by heat exchange to the cooling medium 17 is connected to the cooling medium outlet pipe 57.
  • the generated gas generated in the gasification chamber 13 of the gasifier 1 is cooled to the outlet 23 of the gasification chamber 13 of the gasifier 1 if the cooler 17 is not provided.
  • the cooler 17 is connected to the upper end of the cooler 17 and flows into the generated gas pipe 59 serving as a flow path of the generated gas.
  • the generated gas flowing into the generated gas pipe 59 flows through the generated gas pipe 59 and is guided to the gas scrubber 3 to which the generated gas pipe 59 is connected. .
  • the purified gas which is the product gas washed by the gas scrubber 3, is connected to the gas scrubber 3 and is disposed downstream of the gasifier through a purified gas pipe 61 serving as a flow path of the purified gas. Guided to facilities and equipment. On the other hand, the washing wastewater from the gas washer 3 containing dust and soot that was entrained in the generated gas was sent to the dehydrator 5 through the washing drainage pipe 63, which is the flow path of the washing wastewater. Be guided.
  • the purified gas pipe 61 has a temperature of the purified gas flowing through the purified gas pipe 61 and a temperature of the purified gas required by the equipment and devices disposed downstream of the gasifier.
  • a cooler for cooling the purified gas may be provided separately from the cooler 17.
  • a cooler provided in the purified gas pipe 61 generally, a plurality of pipes through which a cooling medium flows are provided in a flow path through which the purified gas flows.
  • the one having the structure described above is used.
  • the dehydrator 5 separates excess water from the cleaning wastewater guided from the gas cleaning device 3 through the cleaning drainage pipe 63 to generate a slurry including a char.
  • various types of dehydrators such as a strainer, a filter, a sedimentation layer, and a centrifuge can be used as long as excess water can be separated from the washing wastewater.
  • the gas scrubber 3 and the dewatering device 5 constitute a slurry generating means.
  • the water separated by the dehydrator 5 is re-supplied to the gas scrubber 3 through a scrubbing water pipe 65 provided with a scrubbing water pump 9 and used as scrubbing water.
  • the slurry generated by the dehydrator 5 is transferred to a nozzle 11 provided in the gasification furnace 1 via a slurry supply pipe 67 provided with a slurry pump 7.
  • the slurry pump 7 pressurizes the slurry to a pressure higher than the operating pressure of the gasification furnace 1 and transports the slurry to the nozzle 11.
  • a part of the combustible component in the solid fuel is gas. It is oxidized by the agent, that is, the combustible components in the solid fuel are partially burned, generating high heat of, for example, about 150 ° C. The ash in the solid fuel is melted by the high heat in the gasification chamber 13 and collected in the slag recovery chamber 15 through the slag type 39.
  • the remaining combustible components in the solid fuel are converted into combustible gases such as hydrogen and carbon monoxide in the gasification chamber 13.
  • the generated gas which is a flammable gas generated in the gasification chamber 13, is discharged from the outlet 23 of the gasification furnace 1 to the generated gas pipe 59.
  • the soot dust containing carbon which is an unreacted combustible component, entrained in the product gas from the gasification furnace 1 flowing through the product gas pipeline 59 is collected by the gas cleaning device 3 with cleaning water.
  • the cleaning wastewater containing the soot and dust collected from the gas cleaning device 3 is slurried at a desired concentration by separating a predetermined amount of water in the dehydrator 5.
  • the obtained slurry is pressurized to a pressure higher than the operating pressure of gasifier 1 with a slurry pump.
  • the gas is supplied from the nozzle 11 into the gasification furnace 1.
  • the slurry supplied into the gasifier 1 is directed to the outlet 23 of the gasifier 1, which is formed by the upper burner 25, in the direction opposite to the flow of the product gas in the gasifier 1.
  • the gas flows into the gasification furnace 1 at the step where the lower parner 21 is provided, accompanied by the downward flow. Unreacted combustible components re-supplied into the gasifier 1 as slurry descend from the nozzle 11 to the step provided with the lower parner 21, and then from the step provided with the lower parner 21.
  • Table 1 shows the results of a comparison between the temperature of the gas produced at the gasifier and the outlet temperature of the gasifier from the gasifier and the conversion efficiency of fuel to gas.
  • the conversion efficiency indicates the ratio of the calorific value of the raw material shown below converted to the calorific value of the generated gas.
  • the temperature in the gasifier becomes about 1300 ° C due to the effect of moisture in the slurry. Therefore, the ash in the raw material cannot be melted. Also, since the temperature inside the gasification furnace is as low as about 1.300 ° C, the conversion efficiency is as low as 55%. Therefore, if the supply amount of oxygen as a gasifying agent is increased and the oxygen / coal weight ratio is set to 1.0, the temperature in the gasifier becomes about 150 ° C., and the ash can be melted. The conversion efficiency also increased to 60%. However, the outlet temperature of the generated gas from the gasifier was about 1200 ° C, and the ash entrained in the generated gas was in a semi-molten state and attached to the outlet of the gasifier.
  • the oxygen / coal weight ratio was 1.0
  • the gasification furnace temperature could be set at about 1500 ° C, and the ash could be melted.
  • the outlet temperature of the generated gas from the gasification furnace could be cooled down to about 900 ° C, and ash deposition at the gasification furnace outlet could be suppressed.
  • the conversion efficiency was 60%, and there was no decrease in the conversion efficiency.
  • the slurry is supplied to the step portion provided with the upper burner 25 of the gasifier 1, that is, to the outlet 23 side of the generated gas of the gasifier 1.
  • the heat exchanger paper at the step provided with the upper parner 25 of the gasifier 1 (Rule 26): As the water in the slurry evaporates, the step provided with the upper parner 25 of the gasification furnace 1 is cooled, and the temperature of the product gas discharged from the gasification furnace 1 can be lowered.
  • the slurry supplied from the nozzle 11 into the gasification furnace 1 flows in the direction opposite to the flow of the generated gas in the gasification furnace 1 toward the outlet 23, so that unreacted flammable substances contained in the slurry are
  • the time during which the components remain in the gasifier 1 can be prolonged, and the amount of unreacted combustible components contained in the slurry can be increased. Therefore, the temperature of the product gas discharged from the gasifier can be reduced while improving the efficiency of converting fuel to gas.
  • the required cooling capacity can be reduced by lowering the temperature of the generated gas discharged from the gasifier, so that the gasifier such as the cooler 17 shown in FIG. A cooler provided continuously at the outlet of the gasifier can be downsized. If the temperature of the product gas discharged from the gasification furnace is lower than the temperature at which slag may be generated, the cooler 17 shown in Fig.
  • the size of the cooler can be further reduced by replacing the cooler with a structure in which a plurality of pipes through which a cooling medium flows in a flow path through which a gas having a high cooling efficiency flows.
  • the cooler 17 shown in FIG. 2 which is continuously provided at the outlet of the gasification furnace.
  • the cooler provided continuously at the outlet of the gasifier can be reduced in size or eliminated, the size and cost of the gasifier can be reduced.
  • the swirling-flow gasifier with a two-stage panner as in this example can achieve gasification with higher efficiency than other gas-bed gasifiers, and has the same throughput.
  • the feature is that the furnace volume can be made smaller, the heat load increases, and the temperature of the product gas discharged from the gasifier is higher than that of other gas-bed gasifiers.
  • the gasifier such as the cooler 17 is located at the outlet of the gasifier such as the cooler 17 in comparison with other gas-bed type gasifiers.
  • the size of the continuous cooler has increased. In many cases, the size and cost of the gasifier increase.
  • the present invention to a gasifier equipped with a swirling flow gasifier having a two-stage panner as in the present embodiment requires a reduction in the size and cost of the gasifier.
  • the effect of reduction is greater than gasifiers equipped with other gas bed type gasifiers.
  • the present invention is not limited to a gasifier having a swirling flow type gasifier, but also a gasifier having two other stages and a gasifier having only one stage burner.
  • the present invention can be applied to gasifiers equipped with various gas-bed gasifiers, such as a gasifier equipped with a gasifier.
  • the gas scrubber 3 and the dehydrator 5 that collect dust and soot in the generated gas with the washing water are used as the slurry generating means, when the slurry containing soot and dust is generated, the slurry is dried. There is no need to provide equipment for adding water to the dust collected in the above. However, it is also possible to use a cyclone or the like to collect soot and dust in a dry state from the generated gas and add water to this to generate a slurry.
  • the soot dust is re-supplied to the gasification furnace by using a suction hopper to pressurize the soot dust as a slurry with a pump and resupply the gasification furnace.
  • a suction hopper to pressurize the soot dust as a slurry with a pump and resupply the gasification furnace.
  • the concentration in gas can be increased. For example, when it is desired to obtain hydrogen gas using a hydrocarbon as a solid fuel, the concentration of hydrogen gas in the generated gas can be increased. Further, since the lock hopper is not used, the cost related to the lock hopper can be reduced.
  • the conversion efficiency of solid fuel to product gas can be improved.
  • four lower parners 21, two upper parners 25, and two nozzles 11 are provided, but the lower parner 21 and the upper parner 25 rotate.
  • the number of the lower and upper parners can be selected as appropriate.
  • the number of tubes can be selected as appropriate according to the flow rate of the nozzles and the like, since the purpose is to supply them to the inside.
  • FIG. 5 is a block diagram showing a schematic configuration and operation of a gasifier to which the present invention is applied.
  • the same components and operations as those of the first embodiment are denoted by the same reference numerals, and the description thereof will be omitted.
  • the configuration and features different from the first embodiment will be described.
  • the difference between the gasifier of the present embodiment and the first embodiment is that the temperature of the product gas discharged from the gasification furnace is detected and the amount of water in the slurry is adjusted according to the detected temperature. That is, as shown in FIG. 5, the gasification apparatus of the present embodiment flows through the generated gas pipeline 59 to the portion of the generated gas pipeline 59 connected to the outlet of the gasification furnace 1. It has a thermometer 69 for detecting the temperature of the generated gas, a control unit 71 for controlling the operation of the dehydrator 5, and the like. The thermometer 69 and the control unit 71, and the control unit 71 and the dehydrator 5 are electrically connected to each other via a wiring 73.
  • the temperature of the generated gas cooled by the supply of the slurry and discharged from the gasifier is determined by the ratio of dust and water in the slurry. Therefore, in the gasifier of the present embodiment, the thermometer 69 measures the temperature of the generated gas discharged from the gasifier 1, and transmits a temperature signal corresponding to the measured value to the controller 71. You.
  • the control unit 71 which has received the temperature signal from the thermometer 69, determines the temperature of the product gas discharged from the gasification furnace 1 measured by the thermometer 69, and the temperature or temperature range set in advance.
  • the water concentration in the slurry supplied from the nozzle 11 into the gasifier 1 is calculated, the operation of the dehydrator 5 is controlled, and the amount of water separated by the dehydrator 5 is adjusted. Then, the slurry whose water content has been adjusted is supplied from the nozzle 11 into the gasification furnace 1, thereby cooling the step corresponding to the upper parner 25 in the gasification furnace 1. Control the temperature of the product gas discharged from the It is kept constant
  • the slurry in which the amount of moisture is adjusted according to the temperature of the generated gas discharged from the gasifier 1 is supplied to the outlet side of the gasifier 1 so that the gasifier Temperature of the product gas discharged from the fuel cell can be controlled.
  • the temperature of the product gas cooled by the slurry supply and discharged from the gasification furnace is determined by the ratio of dust and water in the slurry, and therefore the amount of dust accompanying the product gas If the temperature fluctuates, the temperature of the product gas discharged from the gasifier fluctuates.
  • Embodiment 1 when the variation in the amount of soot and dust generated in the generated gas is within an allowable range, a configuration in which a constant amount of water is always separated from the cleaning water containing soot and dust may be used as in Embodiment 1.
  • the variation in the amount of dust entrained in the produced gas exceeds an allowable range, it is desirable to use the gasifier having the configuration of the present embodiment.
  • FIG. 6 is a block diagram showing a schematic configuration and operation of a gasifier to which the present invention is applied.
  • the same components and operations as those in Embodiments 1 and 2 are denoted by the same reference numerals, and the description thereof will be omitted.
  • the configuration and features different from those in Embodiments 1 and 2 will be described. Will be described.
  • the difference between the gasifier of the present embodiment and Embodiments 1 and 2 is that the gasifier is provided with a solid fuel and a gasifying agent at the top of the gasifier, and is produced in the gasifier.
  • the product gas flows downward from above in the gasifier, and the outlet for the product gas is provided with a downflow gasifier provided at the lower part of the gasifier.
  • the gasifier of the present embodiment is provided with a downflow type gasifier 75, and the generated gas pipeline 59 is connected to the outlet located at the lower part of the gasifier 75,
  • a panner 79 is provided at the furnace top of the furnace 75, and a nozzle 11 is provided at a lower side of the gasification furnace 75, that is, at a portion on the outlet side.
  • Solid fuel such as finely pulverized coal
  • a gasification furnace 75 is connected to a burner 79, and is supplied to a gasification furnace 75 through a fuel supply pipe 81 and a panner 79 serving as a fuel flow path.
  • oxygen serving as a gasifying agent is connected to the parner 79 and supplied to the gasification furnace 75 via the oxygen supply pipe 83 serving as a flow path for oxygen or air and the parner 79.
  • the gasification furnace 75 a part of the combustible components in the solid fuel is oxidized by the gasifying agent to generate high heat, for example, about 150 ° C., and the remainder of the combustible components is hydrogen. It is converted into flammable gas such as carbon monoxide.
  • the generated gas generated is taken out to a generated gas pipe 59 connected to an outlet located at a lower part of the gasification furnace 75.
  • Slurry formed of dust containing combustible components generated by treating the washing wastewater from the gas scrubber 3 with the dehydrator 5 is applied to the gasification furnace 75 using a slurry pump 7 at a pressure higher than the operating pressure.
  • the nozzle 11 of the present embodiment is installed in a state of squirting slurry upward in the gasification furnace 75, and the slurry ejected from the nozzle 11 is installed in the gasification furnace 75. It is jetted upward of the generated gas. Therefore, the slurry supplied from the nozzle 11 into the gasification furnace 75 flows in the direction opposite to the flow of the generated gas toward the outlet in the gasification furnace 75.
  • the slurry supplied from the nozzle 11 into the gasification furnace 75 is exposed to the high temperature in the gasification furnace 75 for a longer time, and unreacted combustible components in the slurry react. Generates flammable gases such as carbon monoxide. Further, the moisture of the slurry supplied from the nozzle 11 into the gasification furnace 75 evaporates immediately after being supplied to the gasification furnace 75, and cools the lower part of the gasification furnace 75 to cool the gasification furnace. 75 Reduce the temperature of the product gas exhausted from 5.
  • the present embodiment is similar to the first and second embodiments except that a swirling flow type gasifier having a two-stage wrench and a gasifier including a gasifier in which generated gas flows upward from below.
  • a swirling flow type gasifier having a two-stage wrench and a gasifier including a gasifier in which generated gas flows upward from below.
  • a swirling flow gasifier with a two-stage burner--a gas with various gas-bed gasifiers other than a gasifier with a gasifier through which product gas flows upward from below The present invention can be applied to a gasifier.
  • FIG. 7 is a block diagram showing a schematic configuration and operation of a hydrogen production apparatus provided with a gasifier to which the present invention is applied.
  • the same components and operations as those in the first, second and third embodiments are denoted by the same reference numerals, and the description thereof will be omitted.
  • the first, second and third embodiments will be omitted. Configurations and features different from those described above will be described.
  • a hydrogen production apparatus is formed using the gasification apparatus of the first embodiment.
  • the hydrogen production apparatus according to the present embodiment is for producing hydrogen gas from a raw material composed of granular or powdery solid hydrocarbons, for example, pulverized coal, as shown in FIG. Gasifier 1, gas scrubber 3, deicing machine 5, slurry pump 7, washing water pump 9, and nozzle 11 installed in gasifier 1
  • the lower raw material hopper 85 connected to the upper fuel line 31 via the lower fuel line 31 and the upper raw material hopper 87 connected to the upper burner 25 via the upper fuel line 33.
  • a shift reactor 89 provided in the purified gas pipeline 61 and containing a catalyst.
  • the finely pulverized coal which is a raw material for hydrogen production, is divided into a lower raw material hopper 85 and an upper raw material hopper 87, and is stored in the lower raw material hopper 85 and the upper raw material hopper 87.
  • the raw material stored in the lower raw material hopper 85 and the raw material stored in the upper raw material hopper 87 are discharged quantitatively from the lower raw material hopper 85 and the upper raw material hopper 87 respectively, and the lower raw material hopper 85 and the upper raw material
  • the mixture is mixed with carrier nitrogen supplied from a lower-stage raw material transfer nitrogen pipeline 91 and an upper-stage raw material transfer nitrogen pipeline 93 connected to the raw material discharge section of the hopper 87, respectively, and air-fed.
  • the raw material and nitrogen for transport are supplied to the lower burner 21 via the lower fuel line 31 and to the upper parner 25 via the upper fuel line 33, respectively.
  • the gas is supplied into the gasification furnace 1 from the lower burner 21 and the upper parner 25.
  • oxygen or air is supplied to the lower and upper parners 21 and 25 by the lower and upper oxygen pipes 35 and 37, respectively, so that the lower and upper burners 21 and 25 are supplied with oxygen.
  • the upper parner 25 supplies oxygen or air as a gasifying agent together with the raw material into the gasification furnace 1.
  • the raw material and oxygen are mixed, and some of the combustible components in the raw material are oxidized to generate high heat. Further, the remaining combustible components are converted into a gas containing hydrogen or carbon monoxide as a main component, and are taken out of the gasification furnace 1 into a product gas pipe 59 as a product gas.
  • the generated gas flowing through the generated gas pipeline 59 is removed by the cleaning water in the gas scrubber 3 to remove soot and dust. At this time, the generated gas is 100 ° C or more. However, part of the washing water is evaporated by this heat and is mixed into the purified gas.
  • the purified gas containing steam obtained in the gas washer 3 flows into the purified gas pipe 61 and is introduced into the shift reactor 89 provided in the purified gas pipe 61.
  • the shift reactor 89 contains a well-known catalyst such as a copper-zinc-based catalyst or an iron-chromium-based catalyst having a catalytic action to promote the shift reaction of the formula (1). ing.
  • the dust collected from the generated gas in the gas washer 3 is mixed with the washing water. Then, it is taken out to the washing drain pipe 63 as washing waste water.
  • the washing wastewater taken out from the washing drainage pipe 63 is introduced into the dehydrator 5, where a part of the water is separated and slurried.
  • the slurry purified by the dehydrator 5 is pressurized by a slurry pump 7 to a pressure higher than the operating pressure of the gasification furnace 1, conveyed to a nozzle 11 via a slurry supply pipe 67, and is supplied with gas from the nozzle 11. Furnace 1 is supplied.
  • the unreacted carbon in the slurry supplied into the gasifier 1 is further reacted in the gasifier 1 and is converted into a gas such as carbon monoxide.
  • the moisture in the slurry supplied to the gasifier 1 cools the step provided with the upper burner 25 in the gasifier 1 and also performs the shift reaction of the equation (1). It is used and converted to hydrogen gas.
  • the soot and dust accompanying the purified gas is re-supplied as a slurry to the outlet side in the gasifier, so that an appropriate amount of the slurry supplied to the gasifier is Moisture converts carbon monoxide to hydrogen and increases the hydrogen concentration in the product gas.
  • the size of the cooling device provided continuously at the outlet of the gasification furnace can be reduced or eliminated, so that the hydrogen production apparatus can be reduced in size.
  • a part of the cleaning water is evaporated by cleaning the generated gas with the cleaning water in the gas cleaning device 3, and the evaporated cleaning water is purified gas from the gas cleaning device 3.
  • the purified gas accompanied by the vapor into the shift reactor 89 containing the shift reaction catalyst, carbon monoxide remaining in the purified gas can be converted to hydrogen. Therefore, the hydrogen concentration in the product gas can be further increased. Further, the steam required for these shift reactions can be covered by re-supply of the washing water and evaporation of the washing water, so that it is not necessary to provide a separate boiler or the like to supplement the water.
  • the generated gas is cooled by the gas washer 3, and at this time, the heat of the generated gas is generated by the steam used for the reaction in the shift reactor 89, that is, by direct contact with the cleaning water. Used for washing water evaporation. Therefore, a separate boiler is required. As compared with the case where steam generated by this boiler is generated by the heat of the generated gas, the decrease in thermal efficiency is small or not.
  • the present embodiment is not limited to the gasifiers of Embodiments 1 to 3 and the hydrogen production apparatus of Embodiment 4, but includes gasifiers of various configurations including a gas-bed gasification furnace. And hydrogen production equipment. Industrial applicability
  • the present invention it is possible to provide a gasification method and a gasification apparatus capable of lowering the temperature of a product gas discharged from a gasification furnace while improving the conversion efficiency of fuel to gas.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Industrial Gases (AREA)

Abstract

A gasification device and a gasification method for solid fuel capable of lowering the temperature of generated gas discharged from a gasification furnace while increasing a fuel-to-gas conversion efficiency, the gasification device comprising a washer (3) washing with water and collecting soot and dust including unreacted inflammable components accompanying the generated gas flowing through a regenerated gas flow passage (59), a dehydrator (5) generating slurry by regulating the water amount of washing waste including soot and dust collected by the washer (3), and a nozzle (11) installed at a step part where an upper stage burner (25) is installed and feeding the slurry to the gasification furnace (1); the gasification method comprising the steps of allowing the slurry fed from the nozzle (11) into the gasification furnace (1) to be accompanied by a downward flow formed by the upper stage burner (25) and flowing the slurry in a direction opposed to the flow of the regenerated gas in the gasification furnace (1) led to an outlet.

Description

明 細 書  Specification
ガス化方法及びガス化装置 技術分野 Gasification method and gasification equipment
本発明は、 固体燃料のガス化技術に係り、 特に、 気流層方式のガス化炉 を用いた固体燃料のガス化方法及びその装置に関する。 背景技術  The present invention relates to a solid fuel gasification technique, and more particularly, to a solid fuel gasification method and apparatus using a gas-bed gasification furnace. Background art
固体燃料、 例えば石炭などの固体の炭化水素などを微粉砕し、 酸素によ り部分燃焼させてガスを生成するガス化装置としては、 固定層、 流動層、 そして気流層又は噴流層と称されるものなど様々な方式のものが提案され ている。 これらのなかで、 気流層又は噴流層と称されている方式は、 例え ば 1 5 0 0 °Cといったような比較的高温でのガス化炉の運転が可能であり、 燃料のガスへの変換効率が他の方式に比べて高い。 また、 比較的高温での ガス化炉の運転が可能であることにより、 炭ィ匕水素などの固体燃料中の灰 分を溶融することができるため、 灰分をスラグとして回収して再利用する こともできる。  Gasifiers that pulverize solid fuels, such as solid hydrocarbons such as coal, and partially burn them with oxygen to produce gas are called fixed beds, fluidized beds, and gas or spouted beds. Various methods have been proposed. Among these, the method called the gas layer or spouted bed enables the operation of the gasifier at a relatively high temperature, for example, 150 ° C, and converts the fuel into gas. Efficiency is higher than other methods. In addition, since the gasification furnace can be operated at a relatively high temperature, the ash in solid fuel such as charcoal hydrogen can be melted, so the ash must be collected and reused as slag. Can also.
ここで、 このような気流層方式のガス化炉を備えたガス化装置では、 ガ ス化炉内で生成されガス化炉から排出された生成ガスは、 未反応の可燃成 分、 例えば未反応のチヤ一やタールなどの炭素分などを含む煤麈を同伴し ている。 このため、 この生成ガスに同伴される未反応の可燃成分をガス化 炉に再供給して、 可燃成分をできるだけ利用し、 燃料のガスへの変換効率 を向上する構成のガス化装置が提案されている。 例えば、 特開平 7— 2 7 8 5 7 5号公報参照。  Here, in a gasifier equipped with such a gas bed type gasifier, the generated gas generated in the gasifier and discharged from the gasifier is an unreacted combustible component, for example, an unreacted component. It is accompanied by dust containing carbon components such as char and tar. For this reason, a gasifier has been proposed that re-supplies the unreacted combustible components entrained in the generated gas to the gasifier, uses the combustible components as much as possible, and improves the conversion efficiency of fuel to gas. ing. See, for example, Japanese Patent Application Laid-Open No. Hei 7-279585
特開平 7— 2 7 8 5 7 5号公報に示されているようなガス化装置では、 筒状に形成されたガス化炉の一方の端部側に生成ガスの出口が設けられ、 他方の端部側に燃料や酸素又は空気を供給するパーナが設けられた構成の ガス化炉を有している。 そして、 ガス化炉の出口から排出された生成ガス に同伴された未反応の可燃成分を含む煤麈を生成ガスから回収し、 この回 収した煤塵と、 微粉砕された石炭などの固形燃料などとを混合してスラリ としている。 そして、 このスラリを、 燃料としてポンプなどでガス化炉の 運転圧力以上に加圧してガス化炉に供給している。 In a gasification apparatus as disclosed in Japanese Patent Application Laid-Open No. 7-278755, a gasification furnace formed in a cylindrical shape is provided with an outlet for product gas at one end, and the other end is provided with a gasification furnace. A configuration with a fuel, oxygen, or air It has a gasifier. Then, soot dust containing unreacted flammable components entrained in the product gas discharged from the outlet of the gasifier is recovered from the product gas, and the collected dust and solid fuel such as finely pulverized coal are collected. Are mixed to form a slurry. Then, this slurry is supplied to the gasifier as fuel by pressurizing it to a pressure higher than the operating pressure of the gasifier using a pump or the like.
従来のガス化装置では、 ガス化炉で生成された生成ガスの温度をこの生 成ガスが送られる設備や機器類が要求する温度に冷却するため、 ガス化炉 の出口に連続する生成ガスの流路を有する冷却器を設け、 ガス化炉から排 出された生成ガスを冷却している。 例えば、 生成ガスを脱硫装置などで処 理する場合、 一般に脱硫処理は常温で行われるため、 生成ガスを脱硫装置 で常温にできるように冷却する必要がある。 このような生成ガスを冷却す る冷却器としては、 流路を通流する水や蒸気などの流体と生成ガスとの間 で熱交換を行うことで生成ガスを冷却するボイラ式の冷却器が用いられて いる。  In conventional gasifiers, the temperature of the product gas generated in the gasifier is cooled to the temperature required by the facilities and equipment to which the product gas is sent. A cooler with a flow path is provided to cool the product gas discharged from the gasification furnace. For example, when the generated gas is processed by a desulfurization device or the like, the desulfurization process is generally performed at room temperature, so it is necessary to cool the generated gas to a room temperature by the desulfurization device. As a cooler for cooling such a generated gas, a boiler-type cooler for cooling the generated gas by performing heat exchange between a generated gas and a fluid such as water or steam flowing through a flow path. It is used.
このとき、 ガス化炉内から排出される生成ガスの温度によっては、 ガス 化炉内から排出される生成ガスに同伴された灰分の融解によってスラグが 生成される場合がある。 このため、 冷却器として、 生成ガスの流路内に生 成ガスと熱交換を行う流体が通流する管路を複数配置した構造の冷却器を 用いると、 流体が通流する管路の隙間などにスラグが付着し、 生成ガスの 流路を閉塞してしまう場合がある。 そこで、 ガス化炉から排出される生成 ガスの温度が、 スラグが生成されるような温度になる可能性のあるガス化 装置では、 スラグによる流路の閉塞を防止するため、 生成ガスの流路を画 成する壁面に生成ガスと熱交換を行う流体が通流する流路を設けた構造、 例えば水冷壁構造やジャケッ ト構造の冷却器をガス化炉の出口に連結して いる。  At this time, depending on the temperature of the product gas discharged from the gasification furnace, slag may be generated due to melting of ash accompanying the product gas discharged from the gasification furnace. For this reason, if a cooler with a structure in which a plurality of conduits through which the fluid that exchanges heat with the generated gas flows flows is used as the cooler, the gap between the conduits through which the fluid flows In some cases, slag adheres to the gas and blocks the flow path of the generated gas. Therefore, in a gasifier where the temperature of the generated gas discharged from the gasification furnace may reach a temperature at which slag is generated, the flow path of the generated gas is used to prevent the flow path from being blocked by the slag. A structure in which a flow path through which fluid for heat exchange with generated gas flows, such as a water-cooled wall structure or a jacket structure, is connected to the outlet of the gasification furnace.
このような水冷壁構造ゃジャケッ ト構造などの冷却器は、 熱交換効率つ まり冷却効率が生成ガスの流路内に複数の管路を配置した構造の冷却器に 比べて低いため、 冷却器が大型化してしまう。 例えば、 数メートル程度の 高さのガス化炉に対して数十メ一トルの高さの冷却器を設置しなければな らない場合がある。 このようなガス化装置に設けられた水冷壁構造ゃジャ ケット構造などの冷却器が、 ガス化装置の大型化ゃコストの増大などを招 いている。 このため、 ガス化炉から排出される生成ガスの温度を低下させ ることにより、 水冷壁構造ゃジャケツト構造などの冷却器を小型化するこ とが望まれている。 Coolers with such a water-cooled wall structure / jacket structure have a heat exchange efficiency, that is, a cooling efficiency that is lower than that of a cooler with a structure in which multiple pipes are arranged in the flow path of the generated gas. Since the temperature is lower than that, the size of the cooler increases. For example, a gasifier with a height of several meters may need to be equipped with a cooler with a height of several tens of meters. A cooler such as a water-cooled wall structure or a jacket structure provided in such a gasifier causes an increase in the size of the gasifier and an increase in cost. Therefore, it is desired to reduce the temperature of the generated gas discharged from the gasifier to reduce the size of a cooler such as a water-cooled wall structure or a jacket structure.
これに対して本願発明者らは、 ガス化炉から排出された生成ガスから回 収した煤塵で生成したスラリをガス化炉の生成ガスの出口側に供給し、 こ のガス化炉の生成ガスの出口側に供給されたスラリの水分の蒸発により、 ガス化炉から排出される生成ガスの温度を低下させることを考えている。 しかし、 スラリをガス化炉の生成ガスの出口側に供給すると、 供給された スラリは生成ガスに同伴されてガス化炉から排出されてしまうことになる < このため、 従来の煤麈を含むスラリをガス化炉に再供給するガス化装置に 比ぺ、 スラリに含まれる未反応の可燃成分のガス化炉内での滞留時間が短 く、 この未反応の可燃成分がガス化炉内で反応し難くなり、 燃料のガスへ の変換効率を向上できなくなる。 したがって、 燃料のガスへの変換効率を 向上しながらガス化炉から排出される生成ガスの温度を低下させる必要が ある。 発明の開示  On the other hand, the inventors of the present application supplied a slurry generated by dust collected from the generated gas discharged from the gasification furnace to an outlet side of the generated gas of the gasification furnace, and provided the generated gas of the gasification furnace. Is considering reducing the temperature of the product gas discharged from the gasifier by evaporating the moisture of the slurry supplied to the outlet side of the gasifier. However, if the slurry is supplied to the outlet of the gasification furnace, the supplied slurry will be discharged from the gasification furnace with the generated gas. The unreacted combustible component contained in the slurry has a shorter residence time in the gasifier compared to the gasifier that re-supplies the gas to the gasifier, and this unreacted combustible component reacts in the gasifier. And the efficiency of converting fuel to gas cannot be improved. Therefore, it is necessary to lower the temperature of the product gas discharged from the gasifier while improving the efficiency of converting fuel to gas. Disclosure of the invention
本発明の目的は、 燃料のガスへの変換効率を向上しながらガス化炉から 排出される生成ガスの温度を低下させるガス化方法及びガス化装置を提供 することにある。  An object of the present invention is to provide a gasification method and a gasification apparatus for lowering the temperature of product gas discharged from a gasification furnace while improving the conversion efficiency of fuel to gas.
本発明のガス化方法は、 固体燃料を部分燃焼させてガスを生成するガス 化炉の生成ガスの出口側部分に、 この出口から排出された生成ガスに同伴 された未反応の可燃成分を含む煤麈を回収して生成したスラリを供給し、 この供給されたスラリを、 ガス化炉内の出口に向かう生成ガスの流れに対 向する方向に流すことを特徴とする。 According to the gasification method of the present invention, an unreacted combustible component entrained in the product gas discharged from the outlet is included in an outlet portion of a product gas of a gasifier that partially burns a solid fuel to generate a gas. Slurry generated by collecting soot and dust is supplied, It is characterized in that the supplied slurry flows in a direction opposite to the flow of the generated gas toward the outlet in the gasification furnace.
このような構成とすることにより、 スラリがガス化炉の生成ガスの出口 側部分に供給されることにより、 スラリ中の水分によってガス化炉から排 出される生成ガスの温度を低下できる。 さらに、 ガス化炉内に供給された スラリを、 出口に向かうガス化炉内の生成ガスの流れに対向する方向に流 すことにより、 スラリに含まれる未反応の可燃成分がガス化炉内に留まる 時間を長くでき、 スラリに含まれる未反応の可燃成分の反応量を増加でき る。 したがって、 燃料のガスへの変換効率を向上しながらガス化炉から排 出される生成ガスの温度を低下できる。  With such a configuration, the temperature of the product gas discharged from the gasification furnace can be reduced by the water in the slurry by supplying the slurry to the outlet side of the product gas of the gasification furnace. Furthermore, the unreacted combustible components contained in the slurry are introduced into the gasifier by flowing the slurry supplied into the gasifier in a direction opposite to the flow of product gas in the gasifier toward the outlet. The staying time can be extended, and the amount of unreacted combustible components contained in the slurry can be increased. Therefore, the temperature of the product gas discharged from the gasifier can be reduced while improving the efficiency of converting fuel to gas.
さらに、 ガス化炉が、 このガス化炉内に固体燃料を供給する下段バ一ナ と、 ガス化炉の下段バ^ "ナよりも出口側の部分に設けられ、 ガス化炉内に 固体燃料を供給すると共にガス化炉内に下降流を形成する上段パーナとを 有し、 スラリを、 ガス化炉の上段パーナが設けられた段部に供給する。 こ れにより、 ガス化炉の出口側の部分に供給されたスラリが、 上段パーナに よって形成された下降流に同伴されるため、 スラリをガス化炉内の出口に 向かう生成ガスの流れに対向する方向に容易に流すことができる。  Further, a gasification furnace is provided at a lower burner for supplying solid fuel into the gasification furnace, and at a portion closer to an outlet than the gasification furnace lower combustion furnace. And a slurry for supplying a slurry to a step provided with an upper parner of the gasification furnace, whereby an outlet side of the gasification furnace is provided. The slurry supplied to the portion is entrained by the descending flow formed by the upper stepper, so that the slurry can easily flow in the direction opposite to the flow of the generated gas toward the outlet in the gasification furnace.
また、 スラリをガス化炉内に噴出し、 ガス化炉内に出口に向かう生成ガ スの流れに対向する方向への流れを形成すれば、 上段パーナによって形成 された下降流のような出口に向かうガス化炉内の生成ガスの流れに対向す る方向の流れが形成されていなくても、 スラリを出口に向かう生成ガスの 流れに対向する方向に流すことができる。  In addition, if the slurry is injected into the gasification furnace and a flow is formed in the gasification furnace in the direction opposite to the flow of the generated gas toward the outlet, the flow will be like the descending flow formed by the upper stepper. Even if the flow in the direction opposite to the flow of the generated gas in the gasification furnace is not formed, the slurry can flow in the direction opposite to the flow of the generated gas toward the outlet.
さらに、 本発明のガス化装置は、 固体燃料を部分燃焼させてガスを生成 するガス化炉と、 このガス化炉で生成された生成ガスが通流する生成ガス 流路と、 この生成ガス流路に設けられて生成ガスに同伴された未反応の可 燃成分を含む煤麈を回収し、 この回収された煤塵からスラリを生成するス ラリ生成手段と、 このスラリ生成手段で生成したスラリを加圧して搬送す るポンプと、 このポンプによってスラリ生成手段から搬送されたスラリを ガス化炉内に供給するノズルとを備え、 このノズルは、 ガス化炉の生成ガ スの出口側部分に設けられており、 ノズルからガス化炉内に供給されたス ラリは、 出口に向かうガス化炉内の生成ガスの流れに対向する方向に流れ る構成とすることを特徴とする。 Further, the gasification apparatus of the present invention includes: a gasification furnace for partially burning solid fuel to generate a gas; a product gas flow path through which a product gas generated by the gasification furnace flows; A slurry generating means for recovering soot and dust containing unreacted combustible components entrained in the generated gas provided on the road and generating a slurry from the collected dust; and a slurry generated by the slurry generating means. Pressurize and transport And a nozzle for supplying the slurry conveyed from the slurry generation means into the gasification furnace by the pump, and the nozzle is provided at an outlet side of the generation gas of the gasification furnace. The slurry supplied to the gasifier from the furnace is characterized in that the slurry flows in a direction opposite to the flow of product gas in the gasifier toward the outlet.
このような構成とすることにより、 スラリがガス化炉の生成ガスの出口 側部分に供給されることにより、 スラリ中の水分でガス化炉から排出され る生成ガスの温度を低下できる。 さらに、 ノズルからガス化炉内に供給さ れたスラリが、 出口に向かうガス化炉内の生成ガスの流れに対向する方向 に流れることにより、 スラリに含まれる未反応の可燃成分がガス化炉内に 留まる時間を長くでき、 スラリに含まれる未反応の可燃成分の反応量を増 加できる。 したがって、 燃料のガスへの変換効率を向上しながらガス化炉 から排出される生成ガスの温度を低下できる。  With this configuration, the slurry is supplied to the outlet side of the product gas in the gasification furnace, and the temperature of the product gas discharged from the gasification furnace can be reduced by the moisture in the slurry. Furthermore, the slurry supplied from the nozzle into the gasification furnace flows in the direction opposite to the flow of product gas in the gasification furnace toward the outlet, so that unreacted combustible components contained in the slurry are converted into gasification furnace. The amount of unreacted combustible components contained in the slurry can be increased by increasing the time spent in the slurry. Therefore, the temperature of the product gas discharged from the gasifier can be reduced while improving the efficiency of converting fuel into gas.
さらに、 ガス化炉は、 このガス化炉内に固体燃料を供給する下段パーナ と、 ガス化炉の下段バ一ナよりも出口側の部分に設けられ、 ガス化炉内に 固体燃料を供給すると共にガス化炉内に下降流を形成する上段パーナとを 有し、 ノズルは、 ガス化炉の上段パーナが設けられた段部に設けられた構 成とする。 このように、 上段パーナと下段パーナを有する 2段バ一ナ式の ガス化炉の上段パーナが設けられた段部にノズルを設ければ、 ノズルから ガス化炉内に供給されたスラリは、 上段パーナによって形成された下降流 に同伴されて流れるため、 スラリを出口に向かうガス化炉内の生成ガスの 流れに対向する方向に容易に流すことができる。  Further, the gasification furnace is provided at a lower-stage parner for supplying solid fuel into the gasification furnace, and at a portion closer to the outlet side than the lower burner of the gasification furnace, and supplies the solid fuel into the gasification furnace. And a top partner that forms a downward flow in the gasification furnace, and the nozzle is provided in a step part provided with the top partner of the gasification furnace. As described above, if the nozzle is provided in the step portion provided with the upper parner of the two-stage burner type gasifier having the upper parner and the lower parner, the slurry supplied from the nozzle into the gasification furnace becomes: Since the slurry flows along with the downward flow formed by the upper parner, the slurry can be easily flowed in the direction opposite to the flow of the generated gas in the gasifier toward the outlet.
また、 スラリ生成手段は、 生成ガス流路を通流する生成ガスを水又はァ ル力リ溶液で洗浄して生成ガスに同伴された煤麈を生成ガスから除去して 回収する洗浄器と、 この洗浄器で回収された煤麈を含む洗浄排水から水の 一部を除去してスラリ中の水の量を調整する脱水機とを有する構成とする ( このような構成とすれば、 煤麈を含むスラリを生成する際に、 煤塵に水を 添加するための機器類を設ける必要がないので好ましい。 Also, the slurry generating means includes a cleaning device that cleans the generated gas flowing through the generated gas flow path with water or an alkaline solution and removes and collects soot and dust accompanying the generated gas from the generated gas, A dehydrator that adjusts the amount of water in the slurry by removing a part of the water from the cleaning wastewater containing soot and dust collected by the washer (in such a configuration, Water to the dust when producing a slurry containing This is preferable because there is no need to provide equipment for addition.
さらに、 ガス化炉から排出される生成ガスの温度を測定する温度検出器 を備え、 スラリ生成手段は、 温度検出器で検出した生成ガスの温度に応じ てスラリに含まれる水の量を調整する構成とする。 このような構成とすれ ば、 スラリ中の水の量によって、 ガス化炉から排出される生成ガスの温度 を制御できるので好ましい。  Furthermore, a temperature detector for measuring the temperature of the product gas discharged from the gasification furnace is provided, and the slurry generation means adjusts the amount of water contained in the slurry according to the temperature of the product gas detected by the temperature detector. Configuration. Such a configuration is preferable because the temperature of the product gas discharged from the gasifier can be controlled by the amount of water in the slurry.
また、 上記いずれかのガス化装置を備え、 固体燃料が固体炭化水素であ る構成の水素製造装置とする。 さらに、 上記のいずれかのガス化装置と、 このガス化装置から排出される生成ガスに含まれる一酸化炭素と水から水 素を生成する反応に対する触媒を収容する触媒反応器とを備え、 固体燃料 が固体炭化水素である構成の水素製造装置とする。 このような構成の水素 製造装置とすれば、 生成ガス中の水素濃度を増大できると共に、 水素製造 装置を小型化できる。 図面の簡単な説明  In addition, a hydrogen production apparatus including any one of the above gasifiers, wherein the solid fuel is a solid hydrocarbon. Further, any one of the above gasifiers, and a catalytic reactor containing a catalyst for a reaction for producing hydrogen from carbon monoxide and water contained in the product gas discharged from the gasifier, The hydrogen production system is configured so that the fuel is solid hydrocarbon. With the hydrogen production apparatus having such a configuration, the hydrogen concentration in the generated gas can be increased, and the hydrogen production apparatus can be downsized. BRIEF DESCRIPTION OF THE FIGURES
第 1図は本発明を適用してなる実施例 1のガス化装置の概略構成と動作 を示すプロック図、 第 2図は実施例 1のガス化装置が備えるガス化炉の概 略構成と動作を示す縦断面図、 第 3図は実施例 1のガス化装置が備えるガ ス化炉の概略構成と動作を示す下段パーナが設けられた段部の横断面図、 第 4図は実施例 1のガス化装置が備えるガス化炉の概略構成と動作を示す 上段パーナが設けられた段部の横断面図、 第 5図は本発明を適用してなる 実施例 2のガス化装置の概略構成と動作を示すプロック図、 第 6図は本発 明を適用してなる実施例 3のガス化装置の概略構成と動作を示すプロック 図、 第 7図は本発明を適用してなるガス化装置を備えた水素製造装置の一 実施例の概略構成と動作を示すブロック図である。 発明を実施するための最良の形態 (実施例 1 ) FIG. 1 is a block diagram showing a schematic configuration and operation of a gasifier of Embodiment 1 to which the present invention is applied, and FIG. 2 is a schematic configuration and operation of a gasifier provided in the gasifier of Embodiment 1. FIG. 3 is a cross-sectional view of a stepped portion provided with a lower stepper showing a schematic configuration and operation of a gasification furnace provided in the gasifier of Example 1, and FIG. Fig. 5 is a cross-sectional view of a step portion provided with an upper-side parner, showing a schematic configuration and operation of a gasification furnace provided in the gasification device of Fig. 5; FIG. 6 is a block diagram showing a schematic configuration and operation of a gasifier according to Embodiment 3 to which the present invention is applied, and FIG. 7 is a block diagram showing a gasifier to which the present invention is applied. FIG. 1 is a block diagram showing a schematic configuration and operation of an embodiment of a hydrogen production apparatus provided with a hydrogen generator. BEST MODE FOR CARRYING OUT THE INVENTION (Example 1)
以下、 本発明を適用したガス化装置について第 1図〜第 4図を参照して 説明する。 第 1図は、 本発明を適用してなるガス化装置の概略構成と動作 を示すブロック図である。 第 2図は、 本発明を適用してなるガス化装置が 備えるガス化炉の概略構成と動作を示す縦断面図である。 第 3図は、 本発 明を適用してなるガス化装置が備えるガス化炉の概略構成と動作を示す下 段パーナが設けられた段部の横断面図である。 第 4図は、 本発明を適用し てなるガス化装置が備えるガス化炉の概略構成と動作を示す上段パーナが 設けられた段部の横断面図である。 なお、 本実施例では、 ガス化炉内に上 昇する旋回流を形成する上段パーナと下降する旋回流を形成する上段バー ナとの 2段に配置されたパーナを有する旋回流式のガス化炉を備えたガス 化装置を例示している。  Hereinafter, a gasifier to which the present invention is applied will be described with reference to FIGS. FIG. 1 is a block diagram showing a schematic configuration and operation of a gasifier to which the present invention is applied. FIG. 2 is a longitudinal sectional view showing a schematic configuration and operation of a gasification furnace provided in a gasification apparatus to which the present invention is applied. FIG. 3 is a cross-sectional view of a stepped portion provided with a lower stepper showing a schematic configuration and operation of a gasification furnace provided in a gasifier to which the present invention is applied. FIG. 4 is a cross-sectional view of a stepped portion provided with an upper-side parner, showing a schematic configuration and operation of a gasification furnace provided in a gasifier to which the present invention is applied. In the present embodiment, a swirling flow type gasifier having two stages of panners, an upper burner forming an ascending swirling flow and an upper burner forming a descending swirling flow, is used in the gasification furnace. It illustrates a gasifier with a furnace.
本実施例のガス化装置は、 第 1図に示すように、 固体燃料として粒体状 又は粉体状の固体炭化水素、 例えば微粉砕した石炭を燃料としてガス化を 行うガス化炉 1、 ガス化炉 1で生成された生成ガス中の未反応の可燃成分 である炭素分を含む煤麈つまりチヤ一などを水又はアル力リ溶液などによ つて洗浄し生成ガス中から除去するガス洗浄器 3、 ガス洗浄器 3からのチ ャ一を含む洗浄排水中の水の一部を分離するための脱水機 5、 脱水機 5で 水の量が調整されることで生成されたスラリを加圧して搬送するためのス ラリポンプ 7、 脱水機 5で分離された水をガス洗浄器 3に戻すための洗浄 水ポンプ 9、 そして、 スラリポンプ 7で搬送されたスラリをガス化炉 1内 に供給するためのノズル 1 1などで構成されている。  As shown in FIG. 1, the gasifier of the present embodiment includes a gasifier 1 for gasification using solid or granular solid hydrocarbon as solid fuel, for example, finely pulverized coal as fuel. Gas scrubber that removes soot dust containing carbon, which is unreacted combustible component, in the product gas generated in the gasification furnace 1, such as char, with water or an alkaline solution and removes it from the product gas. 3.A dehydrator 5 for separating a part of the water in the washing wastewater including the channel from the gas scrubber 3.A slurry generated by adjusting the amount of water in the dehydrator 5 is pressurized. Slurry pump 7 for transporting and transferring the water, washing water pump 9 for returning the water separated by the dehydrator 5 to the gas scrubber 3, and supplying the slurry transported by the slurry pump 7 into the gasification furnace 1. And the like.
ガス化炉 1は、 第 1図及び第 2図に示すように、 縦型の炉であり、 ガス 化室 1 3、 ガス化室 1 3の下方に設けられたスラグ回収室 1 5などを有し ている。 また、 ガス化炉 1のガス化室 1 3の上方には、 ガス化炉 1で生成 された生成ガスを冷却するための冷却器 1 7が連結されている。 ガス化室 1 3は、 円筒形に形成されており、 内面に耐火材 1 9が内張りされる。 ガ ス化炉 1のガス化室 1 3の下側部分には、 下段パーナ 2 1が、 下段パーナ 2 1よりも上側で、 かつガス化室 1 3からの生成ガスの出口 2 3側の部分 には上段パーナ 2 5が、 そして、 ガス化炉 1のガス化室 1 3の上段パーナ 2 5が設けられた段部にノズル 1 1が設けられている。 The gasification furnace 1 is a vertical furnace as shown in FIGS. 1 and 2, and has a gasification chamber 13, a slag recovery chamber 15 provided below the gasification chamber 13, and the like. are doing. Above the gasification chamber 13 of the gasifier 1, a cooler 17 for cooling the gas generated in the gasifier 1 is connected. The gasification chamber 13 is formed in a cylindrical shape, and a refractory material 19 is lined on the inner surface. Moth In the lower part of the gasification chamber 13 of the gasification furnace 1, a lower parner 21 is provided above the lower parner 21 and at a part on the outlet 23 side of the generated gas from the gasification chamber 13. In the gasification furnace 1, a nozzle 11 is provided in a step portion of the gasification chamber 13 where the upper parner 25 is provided.
下段パーナ 2 1は、 第 3図に示すように、 下段パーナ 2 1からの燃料な どの噴出方向を、 旋回流を形成する位置に仮定されるガス化炉 1の外壁と の同心円 2 7の接線方向に沿わせた状態で設置される。 このように下段バ —ナ 2 1が設けられることにより、 ガス化炉 1のガス化室 1 3内に同心円 2 7に沿う旋回流が形成される。 なお、 本実施例では、 4本の下段バ一ナ 2 1が等間隔で設置されている。上段バ一ナ 2 5は、第 4図に示すように、 上段パーナ 2 5からの燃料などの噴出方向を、 旋回流を形成する位置に仮 定されるガス化炉 1の外壁との同心円 2 9の接線方向に沿わせた状態で設 置される。 このように上段バ一ナ 2 5が設けられることにより、 ガス化炉 1のガス化室 1 3内に同心円 2 9に沿う旋回流が形成される。 なお、 本実 施例では、 2本の上段バ一ナ 2 5が等間隔に設置されている。  As shown in Fig. 3, the lower parner 21 directs the direction of injection of fuel and the like from the lower parner 21 into a tangent to a concentric circle 27 with the outer wall of the gasifier 1 which is assumed to be at a position where a swirl flow is formed. It is installed in a state along the direction. By providing the lower burner 21 in this manner, a swirling flow along the concentric circle 27 is formed in the gasification chamber 13 of the gasification furnace 1. In this embodiment, four lower burners 21 are installed at equal intervals. As shown in FIG. 4, the upper burner 25 sets the direction in which fuel or the like is ejected from the upper parner 25 into a concentric circle 2 with the outer wall of the gasification furnace 1 that is assumed to be at a position where a swirling flow is formed. 9 is installed along the tangential direction. By providing the upper burner 25 in this manner, a swirling flow along a concentric circle 29 is formed in the gasification chamber 13 of the gasification furnace 1. In this embodiment, two upper burners 25 are installed at equal intervals.
本実施例では、 ノズル.1 1も、 上段バ一ナ 2 5と同様に、 旋回流を形成 する位置に仮定されるガス化炉 1の外壁との同心円 2 9の接線方向に沿わ せた状態で設置されている。 本実施例では、 2本のノズル 1 1がガス化炉 1の上段パーナ 2 5が設置された段部に上段パーナ 2 5と交互に等間隔で 設置されている。 なお、 ノズル 1 1は、 ノズル 1 1からガス化炉 1内に供 給されたスラリが上段パーナ 2 5によって形成された旋回流に同伴されれ ばよいため、 ガス化炉 1の上段パーナ 2 5が設置された段部であれば、 上 段パーナ 2 5の設置位置と同じ高さに設ける必要はなく、 上段パーナ 2 5 の設置位置よりも高い位置や低い位置にも設けることができる。  In the present embodiment, similarly to the upper burner 25, the nozzle .11 is also located at a position where a swirling flow is formed, along a tangential direction of a concentric circle 29 with the outer wall of the gasification furnace 1. It is installed in. In the present embodiment, two nozzles 11 are installed at equal intervals alternately with the upper parner 25 in the step where the upper parner 25 of the gasification furnace 1 is installed. Note that the nozzle 11 may be provided with the slurry supplied from the nozzle 11 into the gasifier 1 along with the swirl flow formed by the upper parner 25. If the stepped portion is provided, it need not be provided at the same height as the position of the upper parner 25, and may be provided at a position higher or lower than the position of the upper parner 25.
さらに、 ガス化炉 1の上段パーナ 2 5が本実施例のような 2段のパーナ を有するガス化炉 1では、 ノズル 1 1からガス化炉 1内に供給されたスラ リは、 上段バ一ナ 2 5が形成する下降する旋回流つまり下降流に同伴され て、 出口 2 3に向かうガス化炉 1内の生成ガスの流れである上昇流に対向 する方向に流れる。 したがって、 ノズル 1 1は、 本実施例のように同心円Further, in the gasification furnace 1 in which the upper-stage panner 25 of the gasification furnace 1 has the two-stage panner as in this embodiment, the slurry supplied into the gasification furnace 1 from the nozzle 11 is the upper stage The downward swirling flow formed by the Then, the gas flows in the direction opposite to the upward flow, which is the flow of the generated gas in the gasification furnace 1 toward the outlet 23. Therefore, the nozzles 11 are concentric circles as in this embodiment.
2 9に沿う旋回流を形成する状態で設置する必要はない。 ただし、 本実施 例のように同心円 2 9に沿う旋回流を形成する状態でソズル 1 1を設置す れば、上段パーナ 2 5が形成する下降する旋回流を乱し難いので好ましい。 予め微粉碎された石炭は、 第 1図及び第 2図に示すように、 下段バ一ナ 2 1に連結され、 固体燃料の流路となる下段側燃料管路 3 1と、 上段バー ナ 2 5に連結され、 固体燃料の流路となる上段側燃料管路 3 3とに分割さ れ、 窒素や二酸化炭素などの不燃性ガスにより下段バ一ナ 2 1と上段バー ナ 2 5を介してガス化炉 1内に供給される。 さらに、 下段パーナ 2 1と上 段パーナ 2 5には、 ガス化剤となる酸素を下段パーナ 2 1と上段バ一ナ 2 5に導くための酸素又は空気の流路となる下段側酸素管路 3 5と上段側酸 素管路 3 7とが各々連結されており、 酸素又は空気は、 下段バ一ナ 2 1 と 上段パーナ 2 5を介して微粉砕された石炭と共にガス化炉 1内に供給され る。 It is not necessary to install in a state where a swirling flow along 29 is formed. However, it is preferable to install the sozzle 11 in a state in which the swirl flow is formed along the concentric circle 29 as in the present embodiment, because the descending swirl flow formed by the upper-stage parner 25 is hard to be disturbed. The finely ground coal is connected to a lower burner 21 as shown in FIGS. 1 and 2, and a lower fuel line 31 serving as a flow path for solid fuel and an upper burner 2 are provided. 5 and is divided into an upper fuel line 33 that serves as a flow path for solid fuel, and is passed through a lower burner 21 and an upper burner 25 using incombustible gas such as nitrogen or carbon dioxide. It is supplied into the gasifier 1. Further, the lower-stage parner 21 and the upper-stage parner 25 are provided with a lower-stage oxygen pipe that serves as a flow path for oxygen or air for guiding oxygen serving as a gasifying agent to the lower-stage parner 21 and the upper-stage burner 25. 35 and the upper oxygen line 37 are connected to each other, and oxygen or air flows into the gasifier 1 together with the finely pulverized coal through the lower burner 21 and the upper parner 25. Supplied.
ガス化室 1 3とスラグ回収室 1 5とは、 第 2図に示すように、 ガス化室 1 3及びスラグ回収室 1 5の内径よりも径が細く形成されたスラグタップ As shown in FIG. 2, the gasification chamber 13 and the slag recovery chamber 15 are slag taps having a diameter smaller than the inner diameter of the gasification chamber 13 and the slag recovery chamber 15.
3 9を介して接続される。 スラグ回収室 1 5には、 点火パーナ 4 1及びス ラグタップバ一ナ 4 3が設置されている。 点火パーナ 4 1には、 補助燃料 を点火パーナ 4 1に導くための流路となる補助燃料管路 4 5と、 酸素又は 空気を点火パーナ 4 1に導くための流路となる点火バ一ナ用酸素管路 4 7 とが連結されている。 スラグ夕ヅプバ一ナ 4 3にも、 点火パーナ 4 1と同 様に、 補助燃料をスラグ夕ップバ一ナ 4 3に導くための流路となる補助燃 料管路 4 9と、 酸素又は空気をスラグタップパーナ 4 3に導くための流路 となるスラグ夕ヅプバ一ナ用酸素管路 5 1とが連結されている。 なお、 ス ラグタップパーナ 4 3は、 必ず設ける必要はない。 Connected via 3-9. The slag recovery chamber 15 is provided with an ignition parner 41 and a slag tap burner 43. The ignition parner 41 has an auxiliary fuel pipe 45 serving as a flow path for guiding auxiliary fuel to the ignition parner 41, and an ignition burner serving as a flow path for leading oxygen or air to the ignition parner 41. Oxygen line 47 is connected. As with the ignition parner 41, the slag reservoir 43 has an auxiliary fuel line 49 serving as a flow path for guiding auxiliary fuel to the slag reservoir 43, and oxygen or air. A slag tap burner oxygen pipeline 51 serving as a flow path leading to the slag tap parner 43 is connected to the slag tap burner. The slag tap wrench 43 is not necessarily required.
ガス化炉 1の上方には、 第 2図に示すように、 ガス化炉 1の生成ガスの 出口 2 3に連通し、 上下方向に延在する生成ガスの流路からなる冷却室 5 3を有する冷却器 1 7が設けられている。 冷却室 5 3を画成する側壁は、 水などの冷却液や冷却用蒸気などの冷却媒体が通流する管路で形成された 水冷壁式又は冷却媒体が通流する流路 5 4が内部に形成されたジャケッ ト 式の熱交換器となっており、 冷却器 1 7の下部には、 冷却媒体を冷却器 1 7に導入する冷却媒体導入管路 5 5が、 冷却器 1 7の上部には、 熱交換し て加熱された冷却媒体を冷却器 1 7から導出する冷却媒体導出管路 5 7が 連結されている。 なお、 第 1図では冷却器 1 7の図示を省略しているが、 冷却器 1 7は、 ガス化炉 1から排出される生成ガスの温度に応じて設置す べきか否かが決定されるものであり、 本発明のガス化装置においては、 必 ず必要なものではない。 Above the gasifier 1, as shown in Fig. 2, the gas generated from the gasifier 1 A cooler 17 is provided which has a cooling chamber 53 which communicates with the outlet 23 and which is formed of a product gas flow path extending vertically. The side walls that define the cooling chamber 53 have a water-cooled wall type formed by a conduit through which a cooling medium such as water or a cooling medium such as cooling steam flows, or a flow path 54 through which the cooling medium flows. The cooling medium introduction pipe 55 for introducing the cooling medium to the cooling device 17 is located at the lower part of the cooling device 17, and the upper part of the cooling device 17 is located at the lower part of the cooling device 17. A cooling medium outlet pipe 57 for connecting the cooling medium heated by heat exchange to the cooling medium 17 is connected to the cooling medium outlet pipe 57. Although illustration of the cooler 17 is omitted in FIG. 1, it is determined whether the cooler 17 should be installed according to the temperature of the product gas discharged from the gasifier 1. In the gasifier of the present invention, it is not always necessary.
+ ガス化炉 1のガス化室 1 3で生成された生成ガスは、 '冷却器 1 7が設け られていない場合には、 ガス化炉 1のガス化室 1 3の出口 2 3に、 冷却器 1 7が設けられていない場合には、 冷却器 1 7の上端部に連結され、 生成 ガスの流路となる生成ガス管路 5 9に流入する。 生成ガス管路 5 9に流入 した生成ガスは、 第 1図に示すように、 生成ガス管路 5 9内を通流し、 生 成ガス管路 5 9が連結されたガス洗浄器 3に導かれる。  + The generated gas generated in the gasification chamber 13 of the gasifier 1 is cooled to the outlet 23 of the gasification chamber 13 of the gasifier 1 if the cooler 17 is not provided. When the cooler 17 is not provided, it is connected to the upper end of the cooler 17 and flows into the generated gas pipe 59 serving as a flow path of the generated gas. As shown in FIG. 1, the generated gas flowing into the generated gas pipe 59 flows through the generated gas pipe 59 and is guided to the gas scrubber 3 to which the generated gas pipe 59 is connected. .
ガス洗浄器 3で洗浄された生成ガスである精製ガスは、 ガス洗浄器 3に 連結され、 精製ガスの流路となる精製ガス管路 6 1を介して、 ガス化装置 の後段に配された設備や機器類などに導かれる。 一方、 生成ガスに同伴さ れていたチヤ一などの煤麈を含むガス洗浄器 3からの洗浄排水は、 洗浄排 水の流路となる洗浄排水管路 6 3を介して、 脱水機 5に導かれる。 なお、 精製ガス管路 6 1には、 精製ガス管路 6 1内を通流する精製ガスの温度や ガス化装置の後段に配された設備や機器類などが要求する精製ガスの温度 などに応じて、 冷却器 1 7とは別に、 精製ガスを冷却する冷却器が設けら れる場合がある。 この精製ガス管路 6 1に設けられる冷却器としては、 一 般に、 精製ガスが通流する流路内に冷却媒体が通流する複数の管路が設置 された構造のものが用いられる。 脱水機 5は、 洗浄排水管路 6 3を介して ガス洗浄器 3から導かれてきた洗浄排水から余分な水を分離することによ り、 チヤ一を含むスラリを生成する。 脱水機 5としては、 洗浄排水から余 分な水を分離することができれば、 ストレーナ、 フィル夕、 沈降層、 遠心 分離など様々な方式の脱水機が使用できる。 このようにガス洗浄器 3と脱 水機 5はスラリ生成手段を構成している。 The purified gas, which is the product gas washed by the gas scrubber 3, is connected to the gas scrubber 3 and is disposed downstream of the gasifier through a purified gas pipe 61 serving as a flow path of the purified gas. Guided to facilities and equipment. On the other hand, the washing wastewater from the gas washer 3 containing dust and soot that was entrained in the generated gas was sent to the dehydrator 5 through the washing drainage pipe 63, which is the flow path of the washing wastewater. Be guided. In addition, the purified gas pipe 61 has a temperature of the purified gas flowing through the purified gas pipe 61 and a temperature of the purified gas required by the equipment and devices disposed downstream of the gasifier. Accordingly, a cooler for cooling the purified gas may be provided separately from the cooler 17. As a cooler provided in the purified gas pipe 61, generally, a plurality of pipes through which a cooling medium flows are provided in a flow path through which the purified gas flows. The one having the structure described above is used. The dehydrator 5 separates excess water from the cleaning wastewater guided from the gas cleaning device 3 through the cleaning drainage pipe 63 to generate a slurry including a char. As the dehydrator 5, various types of dehydrators such as a strainer, a filter, a sedimentation layer, and a centrifuge can be used as long as excess water can be separated from the washing wastewater. Thus, the gas scrubber 3 and the dewatering device 5 constitute a slurry generating means.
脱水機 5で分離された水は、 洗浄水ポンプ 9が設けられた洗浄水管路 6 5を介してガス洗浄器 3に再供給され、 洗浄水として使用される。 一方、 脱水機 5で生成されたスラリは、 スラリポンプ 7を設けたスラリ供給管路 6 7を介してガス化炉 1に設けられたノズル 1 1に搬送される。 スラリポ ンプ 7は、 スラリをガス化炉 1の運転圧力以上に加圧してノズル 1 1に搬 送する。 '  The water separated by the dehydrator 5 is re-supplied to the gas scrubber 3 through a scrubbing water pipe 65 provided with a scrubbing water pump 9 and used as scrubbing water. On the other hand, the slurry generated by the dehydrator 5 is transferred to a nozzle 11 provided in the gasification furnace 1 via a slurry supply pipe 67 provided with a slurry pump 7. The slurry pump 7 pressurizes the slurry to a pressure higher than the operating pressure of the gasification furnace 1 and transports the slurry to the nozzle 11. '
このような構成のガス化装置の動作と本発明の特徴部について説明する ガス化炉 1内の下段バ一ナ 2 1が設けられた段部では、 固体燃料中の可燃 成分の一部がガス化剤により酸化されること、 つまり固体燃料中の可燃成 分が部分燃焼することによ.り、 例えば 1 5 0 0 °C程度の高熱を発する。 こ のガス化室 1 3内の高熱により、 固体燃料中の灰分は溶融し、 スラグタヅ プ 3 9を通じてスラグ回収室 1 5に回収される。  The operation of the gasifier having such a configuration and the features of the present invention will be described. In the step section provided with the lower burner 21 in the gasifier 1, a part of the combustible component in the solid fuel is gas. It is oxidized by the agent, that is, the combustible components in the solid fuel are partially burned, generating high heat of, for example, about 150 ° C. The ash in the solid fuel is melted by the high heat in the gasification chamber 13 and collected in the slag recovery chamber 15 through the slag type 39.
一方、 固体燃料中の可燃成分の残りは、 ガス化室 1 3内で水素や一酸化 炭素といった可燃性のガスに変換される。 ガス化室 1 3内で生成された可 燃性のガスである生成ガスは、 ガス化炉 1の出口 2 3から生成ガス管路 5 9に排出される。 生成ガス管路 5 9を通流するガス化炉 1からの生成ガス に同伴されている未反応の可燃成分である炭素分を含む煤麈は、 ガス洗浄 器 3で洗浄水によって回収される。 ガス洗浄器 3からの回収された煤麈を 含む洗浄排水は、 脱水機 5で、 予め設定された量の水が分離されることで 所望の濃度でスラリ化される。  On the other hand, the remaining combustible components in the solid fuel are converted into combustible gases such as hydrogen and carbon monoxide in the gasification chamber 13. The generated gas, which is a flammable gas generated in the gasification chamber 13, is discharged from the outlet 23 of the gasification furnace 1 to the generated gas pipe 59. The soot dust containing carbon, which is an unreacted combustible component, entrained in the product gas from the gasification furnace 1 flowing through the product gas pipeline 59 is collected by the gas cleaning device 3 with cleaning water. The cleaning wastewater containing the soot and dust collected from the gas cleaning device 3 is slurried at a desired concentration by separating a predetermined amount of water in the dehydrator 5.
得られたスラリは、 スラリポンプアでガス化炉 1の運転圧力以上に加圧 されてノズル 1 1からガス化炉 1内に供給される。 ガス化炉 1内に供給さ れたスラリは、 上段バ一ナ 2 5で形成された、 ガス化炉 1の出口 2 3に向 かうガス化炉 1内の生成ガスの流れに対向する方向の流れである下降流に 同伴されてガス化炉 1内の下段パーナ 2 1が設けられた段部に流れる。 ス ラリとしてガス化炉 1内に再供給された未反応の可燃成分は、 ノズル 1 1 から下段パーナ 2 1が設けられた段部に下降し、 さらに下段パーナ 2 1が 設けられた段部から上段パーナ 2 5が設けられた段部に上昇する間、 再度 反応の機会に曝されガス化される。 さらに、 水を含むスラリがノズル 1 1 によって上段バ一ナ 2 5が設けられた段部に供給されるため、 ガス化炉 1 内の熱でスラリ中の水分が蒸発することによってガス化炉 1の上段バ一ナ 2 5が設けられた段部が冷却され、 ガス化炉 1から排出される生成ガスの 温度が低下する。 The obtained slurry is pressurized to a pressure higher than the operating pressure of gasifier 1 with a slurry pump. The gas is supplied from the nozzle 11 into the gasification furnace 1. The slurry supplied into the gasifier 1 is directed to the outlet 23 of the gasifier 1, which is formed by the upper burner 25, in the direction opposite to the flow of the product gas in the gasifier 1. The gas flows into the gasification furnace 1 at the step where the lower parner 21 is provided, accompanied by the downward flow. Unreacted combustible components re-supplied into the gasifier 1 as slurry descend from the nozzle 11 to the step provided with the lower parner 21, and then from the step provided with the lower parner 21. While ascending to the step where the upper parner 25 is provided, it is again exposed to the opportunity for reaction and gasified. Furthermore, since the slurry containing water is supplied to the step portion provided with the upper burner 25 by the nozzle 11, the heat in the gasification furnace 1 evaporates the water in the slurry, so that the gasification furnace 1 The step provided with the upper burner 25 is cooled, and the temperature of the generated gas discharged from the gasification furnace 1 decreases.
ここで、 2段のバ一ナを備えた旋回炉式のガス化炉を備えたガス化装置 において、 スラリを下段パーナが設けられた段部に供給する従来のガス化 装置と、 本実施例のガス化装置との生成ガスのガス化炉からの出口温度と 燃料のガスへの変換効率を比較した結果を第 1表に示す。 なお、 変換効率 とは、 以下に示す原料の発熱量が生成ガスの発熱量に変換した割合を示す ものである。  Here, in a gasifier equipped with a swirler type gasifier equipped with a two-stage burner, a conventional gasifier for supplying slurry to a step provided with a lower-stage parner, and the present embodiment Table 1 shows the results of a comparison between the temperature of the gas produced at the gasifier and the outlet temperature of the gasifier from the gasifier and the conversion efficiency of fuel to gas. The conversion efficiency indicates the ratio of the calorific value of the raw material shown below converted to the calorific value of the generated gas.
(変換効率) = (生成ガスの発熱量) / (燃料の発熱量) X 1 0 0 (Conversion efficiency) = (calorific value of generated gas) / (calorific value of fuel) X 100
Figure imgf000015_0001
第 1表に示すように、 従来のガス化装置では、 酸素ノ石炭重量比を 0 . 8とすると、 スラリ中の水分の影響でガス化炉内の温度は 1 3 0 0 °C程度 となるため、 原料中の灰分を溶融することができない。 また、 ガス化炉内 の温度が 1.3 0 0 °C程度と低いため、 変換効率も 5 5 %と低い。 そこで、 ガス化剤である酸素の供給量を増やし、酸素/石炭重量比を 1 . 0とすると、 ガス化炉内温度が 1 5 0 0 °C程度となり、 灰分を溶融させることができ、 また、 変換効率も 6 0 %に上昇した。 しかし、 生成ガスのガス化炉からの 出口温度は、 1 2 0 0 °C程度となり、 生成ガスの同伴された灰分が半溶融 状態となってガス化炉の出口部に付着した。
Figure imgf000015_0001
As shown in Table 1, in a conventional gasifier, if the oxygen-to-coal weight ratio is 0.8, the temperature in the gasifier becomes about 1300 ° C due to the effect of moisture in the slurry. Therefore, the ash in the raw material cannot be melted. Also, since the temperature inside the gasification furnace is as low as about 1.300 ° C, the conversion efficiency is as low as 55%. Therefore, if the supply amount of oxygen as a gasifying agent is increased and the oxygen / coal weight ratio is set to 1.0, the temperature in the gasifier becomes about 150 ° C., and the ash can be melted. The conversion efficiency also increased to 60%. However, the outlet temperature of the generated gas from the gasifier was about 1200 ° C, and the ash entrained in the generated gas was in a semi-molten state and attached to the outlet of the gasifier.
これに対して、本実施例のガス化装置では、酸素/石炭重量比が 1 . 0で、 ガス化炉温度を 1 5 0 0 °C程度とすることができ灰分を溶融することがで きた。 さらに、 生成ガスのガス化炉からの出口温度は 9 0 0 °C程度まで冷 却でき、 ガス化炉の出口部への灰の付着を抑制できた。 また、 変換効率は 6 0 %となり、 変換効率の低下はなかった。  On the other hand, in the gasifier of the present embodiment, the oxygen / coal weight ratio was 1.0, the gasification furnace temperature could be set at about 1500 ° C, and the ash could be melted. . In addition, the outlet temperature of the generated gas from the gasification furnace could be cooled down to about 900 ° C, and ash deposition at the gasification furnace outlet could be suppressed. The conversion efficiency was 60%, and there was no decrease in the conversion efficiency.
このように本実施例のガス化装置では、 スラリがガス化炉 1の上段バ一 ナ 2 5が設けられた段部、 つまりガス化炉 1の生成ガスの出口 2 3側に供 給されることにより、 ガス化炉 1の上段パーナ 2 5が設けられた段部の熱 差替え周紙 (規則 26》: でスラリ中の水分が蒸発することにより、 ガス化炉 1の上段パーナ 2 5が 設けられた段部が冷却され、 ガス化炉 1から排出される生成ガスの温度を 低下できる。さらに、 ノズル 1 1からガス化炉 1内に供給されたスラリが、 出口 2 3に向かうガス化炉 1内の生成ガスの流れに対向する方向に流れる ことにより、 スラリに含まれる未反応の可燃成分がガス化炉 1内に留まる 時間を長くでき、 スラリに含まれる未反応の可燃成分の反応量を増加でき る。 したがって、 燃料のガスへの変換効率を向上しながらガス化炉から排 出される生成ガスの温度を低下できる。 As described above, in the gasifier of the present embodiment, the slurry is supplied to the step portion provided with the upper burner 25 of the gasifier 1, that is, to the outlet 23 side of the generated gas of the gasifier 1. As a result, the heat exchanger paper at the step provided with the upper parner 25 of the gasifier 1 (Rule 26): As the water in the slurry evaporates, the step provided with the upper parner 25 of the gasification furnace 1 is cooled, and the temperature of the product gas discharged from the gasification furnace 1 can be lowered. Further, the slurry supplied from the nozzle 11 into the gasification furnace 1 flows in the direction opposite to the flow of the generated gas in the gasification furnace 1 toward the outlet 23, so that unreacted flammable substances contained in the slurry are The time during which the components remain in the gasifier 1 can be prolonged, and the amount of unreacted combustible components contained in the slurry can be increased. Therefore, the temperature of the product gas discharged from the gasifier can be reduced while improving the efficiency of converting fuel to gas.
さらに、 本実施例のガス化装置では、 ガス化炉から排出される生成ガス の温度を低下できることにより、必要とされる冷却能力を低くできるため、 第 2図に示す冷却器 1 7のようなガス化炉の出口に連続させて設けた冷却 器を小型化できる。 また、 ガス化炉から排出される生成ガスの温度が、 ス ラグが生成される可能性のある温度以下であれば、 第 2図に示すような冷 却器 1 7を、 冷却器 1 7よりも冷却効率の高いガスが通流する流路内に冷 却媒体が通流する複数の管路が設置された構造の冷却器に代えることで、 さらに冷却器を小型化することもできる。 加えて、 スラリの供給によって 冷却された生成ガスの温度にもよるが、 第 2図に示す冷却器 1 7のような ガス化炉の出口に連続させて設けた冷却器を無くすこともできる。 また、 ガス化炉の出口に連続させて設けた冷却器を小型化又は無くすことができ ることにより、 ガス化装置の小型化やコストの低減ができる。  Further, in the gasifier of the present embodiment, the required cooling capacity can be reduced by lowering the temperature of the generated gas discharged from the gasifier, so that the gasifier such as the cooler 17 shown in FIG. A cooler provided continuously at the outlet of the gasifier can be downsized. If the temperature of the product gas discharged from the gasification furnace is lower than the temperature at which slag may be generated, the cooler 17 shown in Fig. In addition, the size of the cooler can be further reduced by replacing the cooler with a structure in which a plurality of pipes through which a cooling medium flows in a flow path through which a gas having a high cooling efficiency flows. In addition, although it depends on the temperature of the product gas cooled by the supply of the slurry, it is also possible to eliminate a cooler such as the cooler 17 shown in FIG. 2 which is continuously provided at the outlet of the gasification furnace. In addition, since the cooler provided continuously at the outlet of the gasifier can be reduced in size or eliminated, the size and cost of the gasifier can be reduced.
特に、 本実施例のような 2段のパーナを有する旋回流式のガス化炉は、 他の気流層方式のガス化炉に比べて高効率でガス化ができ、 また、 同処理 量で比較するとより小さな炉容積にできることが特徴である反面、 熱負荷 が高くなるため、 ガス化炉から排出される生成ガスの温度が他の気流層方 式のガス化炉に比べて高い。 このため、 本実施例のような旋回流式のガス 化炉を備えたガス化装置では、 他の気流層方式のガス化炉に比べて、 冷却 器 1 7のようなガス化炉の出口に連続させて設けた冷却器が大型化してし まい、 ガス化装置の大型化やコストの増大が生じる場合が多い。 したがつ て、 本実施例のような 2段のパーナを有する旋回流式のガス化炉を備えた ガス化装置に本発明を適用することは、 ガス化装置の小型化ゃコス 卜の低 減といった効果が他の気流層方式のガス化炉を備えたガス化装置に比べて 大きい。 ただし、 本発明は、 旋回流式のガス化炉を備えたガス化装置に限 らず、 その他の 2段のパーナを有するガス化炉ゃ 1段のバ一ナのみを有す るガス化炉を備えたガス化装置など、 様々な気流層方式のガス化炉を備え たガス化装置に適用できる。 In particular, the swirling-flow gasifier with a two-stage panner as in this example can achieve gasification with higher efficiency than other gas-bed gasifiers, and has the same throughput. Although the feature is that the furnace volume can be made smaller, the heat load increases, and the temperature of the product gas discharged from the gasifier is higher than that of other gas-bed gasifiers. For this reason, in the gasifier equipped with the swirling flow type gasifier as in this embodiment, the gasifier such as the cooler 17 is located at the outlet of the gasifier such as the cooler 17 in comparison with other gas-bed type gasifiers. The size of the continuous cooler has increased. In many cases, the size and cost of the gasifier increase. Therefore, applying the present invention to a gasifier equipped with a swirling flow gasifier having a two-stage panner as in the present embodiment requires a reduction in the size and cost of the gasifier. The effect of reduction is greater than gasifiers equipped with other gas bed type gasifiers. However, the present invention is not limited to a gasifier having a swirling flow type gasifier, but also a gasifier having two other stages and a gasifier having only one stage burner. The present invention can be applied to gasifiers equipped with various gas-bed gasifiers, such as a gasifier equipped with a gasifier.
さらに、 本実施例では、 スラリ生成手段として洗浄水によって生成ガス 中の煤麈を回収するガス洗浄器 3と脱水機 5を用いるため、 煤麈を含むス ラリを生成する際に、 乾燥した状態で回収した煤塵に水を添加するための 機器類を設ける必要がない。 ただし、 サイクロンなどを用いて生成ガスか ら乾燥状態で煤麈を回収し、 これに水を加えてスラリを生成する構成にす ることもできる。  Further, in the present embodiment, since the gas scrubber 3 and the dehydrator 5 that collect dust and soot in the generated gas with the washing water are used as the slurry generating means, when the slurry containing soot and dust is generated, the slurry is dried. There is no need to provide equipment for adding water to the dust collected in the above. However, it is also possible to use a cyclone or the like to collect soot and dust in a dry state from the generated gas and add water to this to generate a slurry.
また、 本実施例のガス化装置では、 煤麈をスラリとしてポンプで加圧し てガス化炉に再供給するため、 口ックホッパを使用して乾燥状態の煤麈を ガス化炉に再供給するものに比べ、 煤麈搬送用の窒素ガスなどが不要とな り、 窒素ガスなどの生成ガスとして得たい目的とするガス以外のガスの生 成ガス中の濃度を低減し、 目的とするガスの生成ガス中の濃度を高くでき る。 例えば、 固体燃料として炭化水素を用い水素ガスを得たい場合、 水素 ガスの生成ガス中の濃度を高くできる。 また、 ロックホッパを使用しない ため、 ロックホヅパにかかわるコストを削減することができる。 さらに、 第 1表に示すように、 固体燃料の生成ガスへの変換効率を向上できる。 また、 本実施例では、 4本の下段パーナ 2 1、 2本の上段パーナ 2 5、 そして 2本のノズル 1 1を備えた構成としているが、 下段パーナ 2 1と上 段パーナ 2 5は旋回流を形成できればよく、 下段パーナと上段パーナの本 数は適宜選択でき、 また、 本実施例のノズル 1 1は、 スラリをガス化炉 1 内に供給することを目的とするものであるため、 ノズルの流量などに応じ て本数は適宜選択できる。 ただし、 ノズル 1 1は、 上段パーナ 2 5が形成 する下降する旋回流を乱し難い本数及び配置で設置することが望ましい。 Also, in the gasification apparatus of this embodiment, the soot dust is re-supplied to the gasification furnace by using a suction hopper to pressurize the soot dust as a slurry with a pump and resupply the gasification furnace. This eliminates the need for nitrogen gas for dust transfer, and reduces the concentration in the generated gas of gases other than the desired gas, such as nitrogen gas, which is desired to be obtained, thereby producing the desired gas. The concentration in gas can be increased. For example, when it is desired to obtain hydrogen gas using a hydrocarbon as a solid fuel, the concentration of hydrogen gas in the generated gas can be increased. Further, since the lock hopper is not used, the cost related to the lock hopper can be reduced. Furthermore, as shown in Table 1, the conversion efficiency of solid fuel to product gas can be improved. Further, in the present embodiment, four lower parners 21, two upper parners 25, and two nozzles 11 are provided, but the lower parner 21 and the upper parner 25 rotate. As long as the flow can be formed, the number of the lower and upper parners can be selected as appropriate. The number of tubes can be selected as appropriate according to the flow rate of the nozzles and the like, since the purpose is to supply them to the inside. However, it is desirable that the number and arrangement of the nozzles 11 be such that the downward swirling flow formed by the upper parner 25 is not easily disturbed.
(実施例 2 )  (Example 2)
第 5図は、 本発明を適用してなるガス化装置の概略構成と動作を示すブ ロック図である。 なお、 本実施例では、 実施例 1と同一のもの及び動作な どには同じ符号を付して説明を省略し、 実施例 1と相違する構成及び特徴 部などについて説明する。  FIG. 5 is a block diagram showing a schematic configuration and operation of a gasifier to which the present invention is applied. In the present embodiment, the same components and operations as those of the first embodiment are denoted by the same reference numerals, and the description thereof will be omitted. The configuration and features different from the first embodiment will be described.
本実施例のガス化装置が実施例 1と相違する点は、 ガス化炉から排出さ れる生成ガスの温度を検出し、 この温度に応じてスラリ中の水の量を調整 することにある。 すなわち、 本実施例のガス化装置は、 第 5図に示すよう に、 生成ガス管路 5 9のガス化炉 1の出口に連結された部分に、 生成ガス 管路 5 9内を通流する生成ガスの温度を検出する温度計 6 9、 脱水機 5の 動作を制御する制御部 7 1などを有している。 温度計 6 9と制御部 7 1、 そして制御部 7 1と脱水機 5は、 各々配線 7 3を介して電気的に接続され ている。  The difference between the gasifier of the present embodiment and the first embodiment is that the temperature of the product gas discharged from the gasification furnace is detected and the amount of water in the slurry is adjusted according to the detected temperature. That is, as shown in FIG. 5, the gasification apparatus of the present embodiment flows through the generated gas pipeline 59 to the portion of the generated gas pipeline 59 connected to the outlet of the gasification furnace 1. It has a thermometer 69 for detecting the temperature of the generated gas, a control unit 71 for controlling the operation of the dehydrator 5, and the like. The thermometer 69 and the control unit 71, and the control unit 71 and the dehydrator 5 are electrically connected to each other via a wiring 73.
ここで、 スラリの供給により冷却されてガス化炉から排出される生成ガ スの温度は、 スラリ中の煤塵と水との比によって決まる。 そこで、 本実施 例のガス化装置では、 温度計 6 9が、 ガス化炉 1から排出される生成ガス の温度を計測して、 その計測値に対応する温度信号を制御部 7 1に発信す る。 温度計 6 9からの温度信号を受信した制御部 7 1は、 温度計 6 9で計 測したガス化炉 1から排出される生成ガスの温度と、 予め設定した温度又 は温度範囲とから、 ノズル 1 1からガス化炉 1内に供給するスラリ中の水 分濃度を演算し、 脱水機 5の動作を制御して、 脱水機 5で分離する水分量 を調節する。 そして、 水分量が調整されたスラリがノズル 1 1からガス化 炉 1内に供給されることにより、 ガス化炉 1内の上段パーナ 2 5に対応す る段部を冷却し、 ガス化炉 1から排出される生成ガスの温度を制御し、 一 定に保っている。 Here, the temperature of the generated gas cooled by the supply of the slurry and discharged from the gasifier is determined by the ratio of dust and water in the slurry. Therefore, in the gasifier of the present embodiment, the thermometer 69 measures the temperature of the generated gas discharged from the gasifier 1, and transmits a temperature signal corresponding to the measured value to the controller 71. You. The control unit 71, which has received the temperature signal from the thermometer 69, determines the temperature of the product gas discharged from the gasification furnace 1 measured by the thermometer 69, and the temperature or temperature range set in advance. The water concentration in the slurry supplied from the nozzle 11 into the gasifier 1 is calculated, the operation of the dehydrator 5 is controlled, and the amount of water separated by the dehydrator 5 is adjusted. Then, the slurry whose water content has been adjusted is supplied from the nozzle 11 into the gasification furnace 1, thereby cooling the step corresponding to the upper parner 25 in the gasification furnace 1. Control the temperature of the product gas discharged from the It is kept constant.
このように本実施例のガス化装置では、 ガス化炉 1から排出される生成 ガスの温度に応じて水分量を調整したスラリをガス化炉 1の出口側に供給 することにより、 ガス化炉から排出される生成ガスの温度を制御できる。 ところで、 前述のように、 スラリの供給により冷却されてガス化炉から 排出される生成ガスの温度は、 スラリ中の煤麈と水との比によって決まる ため、 生成ガスに同伴される煤塵の量が変動するとガス化炉から排出され る生成ガスの温度が変動することになる。 このため、 生成ガスに同伴され る煤麈の量の変動が許容範囲にある場合には、 実施例 1のように、 煤麈を 含む洗浄水から常に一定量の水を分離する構成でよいが、 生成ガスに同伴 される煤塵の量の変動が許容範囲を越える場合などには、 本実施例の構成 のガス化装置を用いることが望ましい。  As described above, in the gasifier of the present embodiment, the slurry in which the amount of moisture is adjusted according to the temperature of the generated gas discharged from the gasifier 1 is supplied to the outlet side of the gasifier 1 so that the gasifier Temperature of the product gas discharged from the fuel cell can be controlled. By the way, as described above, the temperature of the product gas cooled by the slurry supply and discharged from the gasification furnace is determined by the ratio of dust and water in the slurry, and therefore the amount of dust accompanying the product gas If the temperature fluctuates, the temperature of the product gas discharged from the gasifier fluctuates. For this reason, when the variation in the amount of soot and dust generated in the generated gas is within an allowable range, a configuration in which a constant amount of water is always separated from the cleaning water containing soot and dust may be used as in Embodiment 1. When the variation in the amount of dust entrained in the produced gas exceeds an allowable range, it is desirable to use the gasifier having the configuration of the present embodiment.
(実施例 3 )  (Example 3)
第 6図は、 本発明を適用してなるガス化装置の概略構成と動作を示すブ ロック図である。 なお、 本実施例では、 実施例 1及び実施例 2と同一のも の及び動作などには同じ符号を付して説明を省略し、 実施例 1及び実施例 2と相違する構成及び特徴部などについて説明する。  FIG. 6 is a block diagram showing a schematic configuration and operation of a gasifier to which the present invention is applied. In this embodiment, the same components and operations as those in Embodiments 1 and 2 are denoted by the same reference numerals, and the description thereof will be omitted. The configuration and features different from those in Embodiments 1 and 2 will be described. Will be described.
本実施例のガス化装置が、 実施例 1及び実施例 2と相違する点は、 ガス 化炉の炉頂部に固体燃料とガス化剤を供給するパーナを備え、 ガス化炉内 で生成された生成ガスがガス化炉内を上方から下方に向かって流れ、 生成 ガスの出口がガス化炉の下部に設けられた下降流方式のガス化炉を備えて いることにある.。 すなわち、 本実施例のガス化装置は、 下降流方式のガス 化炉 7 5を備えており、 生成ガス管路 5 9がガス化炉 7 5の下部に位置す る出口に連結され、 ガス化炉 7 5の炉頂部にパーナ 7 9が、 ガス化炉 7 5 の下部側つまり出口側の部分にノズル 1 1が設置されている。  The difference between the gasifier of the present embodiment and Embodiments 1 and 2 is that the gasifier is provided with a solid fuel and a gasifying agent at the top of the gasifier, and is produced in the gasifier. The product gas flows downward from above in the gasifier, and the outlet for the product gas is provided with a downflow gasifier provided at the lower part of the gasifier. That is, the gasifier of the present embodiment is provided with a downflow type gasifier 75, and the generated gas pipeline 59 is connected to the outlet located at the lower part of the gasifier 75, A panner 79 is provided at the furnace top of the furnace 75, and a nozzle 11 is provided at a lower side of the gasification furnace 75, that is, at a portion on the outlet side.
固体燃料である予め微粉砕された石炭などは、 バ一ナ 7 9に連結され、 燃料の流路となる燃料供給管路 8 1及びパーナ 7 9を介してガス化炉 7 5 に供給される。 同時に、 ガス化剤となる酸素が、 パーナ 7 9に連結され、 酸素又は空気の流路となる酸素供給管路 8 3及びパーナ 7 9を介してガス 化炉 7 5に供給される。 ガス化炉 7 5内では、 固体燃料中の可燃成分の一 部がガス化剤により酸化されることにより、 例えば約 1 5 0 0 °Cといった 高熱を発するとともに、 上記可燃成分の残りは、 水素や一酸化炭素といつ た可燃性のガスに変換される。 発生した生成ガスは、 ガス化炉 7 5の下部 に位置する出口に連結された生成ガス管路 5 9に取り出される。 Solid fuel, such as finely pulverized coal, is connected to a burner 79, and is supplied to a gasification furnace 75 through a fuel supply pipe 81 and a panner 79 serving as a fuel flow path. Supplied to At the same time, oxygen serving as a gasifying agent is connected to the parner 79 and supplied to the gasification furnace 75 via the oxygen supply pipe 83 serving as a flow path for oxygen or air and the parner 79. In the gasification furnace 75, a part of the combustible components in the solid fuel is oxidized by the gasifying agent to generate high heat, for example, about 150 ° C., and the remainder of the combustible components is hydrogen. It is converted into flammable gas such as carbon monoxide. The generated gas generated is taken out to a generated gas pipe 59 connected to an outlet located at a lower part of the gasification furnace 75.
ガス洗浄器 3からの洗浄排水を脱水機 5で処理することにより生成され た可燃成分を含む煤塵で形成されたスラリは、 スラリポンプ 7を用いて、 ガス化炉 7 5の運転圧力以上に加圧され、 ノズル 1 1を介してガス化炉 7 5の下部に供給される。 本実施例のノズル 1 1は、 ガス化炉 7 5内の上方 に向けてスラリを噴出する'状態で設置されており、 ノズル 1 1から噴出さ れたスラリは、 ガス化炉 7 5内の生成ガスの上方に向けて噴流される。 し たがって、 ノズル 1 1からガス化炉 7 5内に供給されたスラリは、 ガス化 炉 7 5内の出口に向かう生成ガスの流れに対向する方向に流れる。 これに より、 ノズル 1 1からガス化炉 7 5内に供給されたスラリは、 ガス化炉 7 5内の高温に曝される時間が長くなり、 スラリ中の未反応の可燃成分が反 応し、 一酸化炭素などの可燃性ガスを発生する。 さらに、 ノズル 1 1から ガス化炉 7 5内に供給されたスラリの水分は、 ガス化炉 7 5に供給後、 直 ちに蒸発し、 ガス化炉 7 5の下部を冷却してガス化炉 7 5から排出される 生成ガスの温度を低下させる。  Slurry formed of dust containing combustible components generated by treating the washing wastewater from the gas scrubber 3 with the dehydrator 5 is applied to the gasification furnace 75 using a slurry pump 7 at a pressure higher than the operating pressure. Is supplied to the lower part of the gasification furnace 75 through the nozzle 11. The nozzle 11 of the present embodiment is installed in a state of squirting slurry upward in the gasification furnace 75, and the slurry ejected from the nozzle 11 is installed in the gasification furnace 75. It is jetted upward of the generated gas. Therefore, the slurry supplied from the nozzle 11 into the gasification furnace 75 flows in the direction opposite to the flow of the generated gas toward the outlet in the gasification furnace 75. As a result, the slurry supplied from the nozzle 11 into the gasification furnace 75 is exposed to the high temperature in the gasification furnace 75 for a longer time, and unreacted combustible components in the slurry react. Generates flammable gases such as carbon monoxide. Further, the moisture of the slurry supplied from the nozzle 11 into the gasification furnace 75 evaporates immediately after being supplied to the gasification furnace 75, and cools the lower part of the gasification furnace 75 to cool the gasification furnace. 75 Reduce the temperature of the product gas exhausted from 5.
このように本実施例でも、 燃料のガスへの変換効率を向上しながらガス 化炉から排出される生成ガスの温度を低下できる。 したがって、 本実施例 は、 実施例 1及び実施例 2のような 2段のパーナを備えた旋回流式のガス 化炉ゃ下方から上方に生成ガスが流れるガス化炉などを備えたガス化装置 に限らず、 ノズルから噴出されるスラリでガス化炉内のガス化炉の出口に 向かう生成ガスの流れに対向する方向へのスラリの流れを形成することで、 2段のバ一ナを備えた旋回流式のガス化炉ゃ下方から上方に生成ガスが流 れるガス化炉を備えたガス化装置以外の様々な気流層方式のガス化炉を備 えたガス化装置に適用することができる。 As described above, also in the present embodiment, the temperature of the generated gas discharged from the gasifier can be reduced while improving the conversion efficiency of the fuel into the gas. Therefore, the present embodiment is similar to the first and second embodiments except that a swirling flow type gasifier having a two-stage wrench and a gasifier including a gasifier in which generated gas flows upward from below. Not limited to this, by forming a slurry flow in the direction opposite to the flow of product gas toward the outlet of the gasifier in the gasifier with the slurry ejected from the nozzle, A swirling flow gasifier with a two-stage burner--a gas with various gas-bed gasifiers other than a gasifier with a gasifier through which product gas flows upward from below The present invention can be applied to a gasifier.
(実施例 4 )  (Example 4)
第 7図は、 本発明を適用してなるガス化装置を備えた水素製造装置の概 略構成と動作を示すプロック図である。 なお、 本実施例では、 実施例 1、 実施例 2及び実施例 3と同一のもの及び動作などには同じ符号を付して説 明を省略し、 実施例 1、 実施例 2及び実施例 3と相違する構成及び特徴部 などについて説明する。  FIG. 7 is a block diagram showing a schematic configuration and operation of a hydrogen production apparatus provided with a gasifier to which the present invention is applied. In this embodiment, the same components and operations as those in the first, second and third embodiments are denoted by the same reference numerals, and the description thereof will be omitted. The first, second and third embodiments will be omitted. Configurations and features different from those described above will be described.
本実施例は、 実施例 1のガス化装置を用いて水素製造装置を形成したも のである。本実施例の水素製造装置は、粒体状又は粉体状の固体炭化水素、 例えば微 砕した石炭よりなる原料から水素ガスを製造するものであり、 第 6図に示すように、 実施例 1のガス化装置と同様の構成のガス化炉 1、 ガス洗浄器 3、 脱冰機 5、 スラリポンプ 7、 洗浄水ポンプ 9、 そしてガス 化炉 1に設けられたノズル 1 1に加え、 下段バ一ナ 2 1に下段側燃料管路 3 1を介して連結された下段原料ホッパ 8 5、 上段バ一ナ 2 5に上段側燃 料管路 3 3を介して連結された上段原料ホッパ 8 7、 精製ガス管路 6 1に 設けられて触媒が収容されたシフト反応器 8 9などで構成されている。 水素製造の原料である予め微粉砕された石炭は、 下段原料ホッパ 8 5用 と上段原料ホッパ 8 7用に分割され、 下段原料ホッパ 8 5と上段原料ホヅ パ 8 7に収容される。 下段原料ホッパ 8 5に収容された原料及び上段原料 ホッパ 8 7に収容された原料は、 それそれ下段原料ホッパ 8 5及び上段原 料ホッパ 8 7から定量排出され、 下段原料ホッパ 8 5及び上段原料ホッパ 8 7の原料の搬出部に各々連結された下段原料搬送用窒素管路 9 1及び上 段原料搬送用窒素管路 9 3から供給される搬送用窒素と混合されて気流搬 送される。 原料及び搬送用窒素は、 下段側燃料管路 3 1を介して下段バー ナ 2 1に、 上段側燃料管路 3 3を介して上段パーナ 2 5に各々供給され、 下段バ一ナ 2 1及び上段パーナ 2 5からガス化炉 1内に供給される。 この とき、 下段パーナ 2 1と上段パーナ 2 5とには、 各々下段側酸素管路 3 5 と上段側酸素管路 3 7とによって酸素又は空気が供給されるため、 下段バ ーナ 2 1及び上段パーナ 2 5は、 各々原料と共にガス化剤である酸素又は 空気をガス化炉 1内に供給する。 In the present embodiment, a hydrogen production apparatus is formed using the gasification apparatus of the first embodiment. The hydrogen production apparatus according to the present embodiment is for producing hydrogen gas from a raw material composed of granular or powdery solid hydrocarbons, for example, pulverized coal, as shown in FIG. Gasifier 1, gas scrubber 3, deicing machine 5, slurry pump 7, washing water pump 9, and nozzle 11 installed in gasifier 1 The lower raw material hopper 85 connected to the upper fuel line 31 via the lower fuel line 31 and the upper raw material hopper 87 connected to the upper burner 25 via the upper fuel line 33. And a shift reactor 89 provided in the purified gas pipeline 61 and containing a catalyst. The finely pulverized coal, which is a raw material for hydrogen production, is divided into a lower raw material hopper 85 and an upper raw material hopper 87, and is stored in the lower raw material hopper 85 and the upper raw material hopper 87. The raw material stored in the lower raw material hopper 85 and the raw material stored in the upper raw material hopper 87 are discharged quantitatively from the lower raw material hopper 85 and the upper raw material hopper 87 respectively, and the lower raw material hopper 85 and the upper raw material The mixture is mixed with carrier nitrogen supplied from a lower-stage raw material transfer nitrogen pipeline 91 and an upper-stage raw material transfer nitrogen pipeline 93 connected to the raw material discharge section of the hopper 87, respectively, and air-fed. The raw material and nitrogen for transport are supplied to the lower burner 21 via the lower fuel line 31 and to the upper parner 25 via the upper fuel line 33, respectively. The gas is supplied into the gasification furnace 1 from the lower burner 21 and the upper parner 25. At this time, oxygen or air is supplied to the lower and upper parners 21 and 25 by the lower and upper oxygen pipes 35 and 37, respectively, so that the lower and upper burners 21 and 25 are supplied with oxygen. The upper parner 25 supplies oxygen or air as a gasifying agent together with the raw material into the gasification furnace 1.
ガス化炉 1内では、 原料と酸素が混合され、 原料中の可燃成分の一部が 酸化されて高熱を発する。 また、 残りの可燃成分は水素や一酸化炭素を主 成分とするガスに変換され、 生成ガスとしてガス化炉 1から生成ガス管路 5 9に取り出される。 生成ガス管路 5 9を通流する生成ガスは、 ガス洗浄 器 3で洗浄水により同伴している煤麈を除去されるが、 このとき、 生成ガ スは、 1 0 0 °C以上であり、 洗浄水の一部はこの熱によって蒸発し、 精製 ガスに混入する。 ガス洗浄器 3で得られた蒸気を含む精製ガスは、 精製ガ ス管路 6 1に流入し、 精製ガス管路 6 1に設けられたシフト反応器 8 9に 導入される。 シフト反応器 8 9内には、 式 ( 1 ) のシフト反応を促進させ る触媒作用をもつシフト反応触媒、 例えば銅—亜鉛系の触媒や鉄—クロム 系の触媒などの公知の触媒が収容されている。  In the gasifier 1, the raw material and oxygen are mixed, and some of the combustible components in the raw material are oxidized to generate high heat. Further, the remaining combustible components are converted into a gas containing hydrogen or carbon monoxide as a main component, and are taken out of the gasification furnace 1 into a product gas pipe 59 as a product gas. The generated gas flowing through the generated gas pipeline 59 is removed by the cleaning water in the gas scrubber 3 to remove soot and dust. At this time, the generated gas is 100 ° C or more. However, part of the washing water is evaporated by this heat and is mixed into the purified gas. The purified gas containing steam obtained in the gas washer 3 flows into the purified gas pipe 61 and is introduced into the shift reactor 89 provided in the purified gas pipe 61. The shift reactor 89 contains a well-known catalyst such as a copper-zinc-based catalyst or an iron-chromium-based catalyst having a catalytic action to promote the shift reaction of the formula (1). ing.
C O + H 2 0→C 0 2 + H 2 …式 ( 1 ) したがって、 蒸気を含む精製ガスがシフト反応器 8 9に流入してシフト反 応触媒と接触することにより、 式 ( 1 ) のシフト反応を生じ、 精製ガス中 の水素濃度を高め、 精製ガスは、 製品ガスとなってシフト反応器 8 9から 取り出され、 精製ガス管路 6 1を介して製品ガスを利用する設備や機器類 などに送られる。 このように、 シフ ト反応器 8 9でのシフ ト反応に必要な 水分は、 ガス洗浄器 3で蒸発して精製ガスに蒸気として混入した洗浄水の 一部が使用される。 CO + H 2 0 → C 0 2 + H 2 ... Equation (1) Thus, by the purified gas containing the vapor is contacted flows into the shift reactor 8 9 shift reaction catalyst, a shift of the formula (1) A reaction occurs, increasing the hydrogen concentration in the purified gas, and the purified gas is taken out of the shift reactor 89 as a product gas, and equipment and devices that use the product gas via the purified gas line 61 Sent to As described above, the water necessary for the shift reaction in the shift reactor 89 is partly used as the washing water evaporated in the gas washer 3 and mixed with the purified gas as steam.
一方、 ガス洗浄器 3で生成ガスから回収された煤麈は、 洗浄水と混合さ れて洗浄排水として洗浄排水管路 6 3に取り出される。 洗浄排水管路 6 3 に取り出された洗浄排水は、 脱水機 5に導入され、 一部の水が分離されて スラリ化される。 脱水機 5によって精製されたスラリは、 スラリポンプ 7 によりガス化炉 1の運転圧力以上に加圧されて、 スラリ供給管路 6 7を介 してノズル 1 1に搬送され、 ノズル 1 1からガス化炉 1内に供給される。 ガス化炉 1内に供給されたスラリ中の未反応の炭素分は、 ガス化炉 1内で 更に反応し、 一酸化炭素などのガスに変換される。 また、 ガス化炉 1内に 供給されたスラリ中の水分は、 ガス化炉 1内の上段バ一ナ 2 5が設けられ ている段部を冷却すると共に、 式 ( 1 ) のシフ ト反応に使用されて水素ガ スに変換される。 On the other hand, the dust collected from the generated gas in the gas washer 3 is mixed with the washing water. Then, it is taken out to the washing drain pipe 63 as washing waste water. The washing wastewater taken out from the washing drainage pipe 63 is introduced into the dehydrator 5, where a part of the water is separated and slurried. The slurry purified by the dehydrator 5 is pressurized by a slurry pump 7 to a pressure higher than the operating pressure of the gasification furnace 1, conveyed to a nozzle 11 via a slurry supply pipe 67, and is supplied with gas from the nozzle 11. Furnace 1 is supplied. The unreacted carbon in the slurry supplied into the gasifier 1 is further reacted in the gasifier 1 and is converted into a gas such as carbon monoxide. In addition, the moisture in the slurry supplied to the gasifier 1 cools the step provided with the upper burner 25 in the gasifier 1 and also performs the shift reaction of the equation (1). It is used and converted to hydrogen gas.
このように本実施例の水素製造装置では、 精製ガスに同伴された煤麈を スラリとしてガス化炉内の出口側に再供給することで、 ガス化炉にスラリ として供給される適度な量の水分により、 一酸化炭素を水素に変換し、 生 成ガス中の水素濃度を増大できる。 さらに、 ガス化炉の出口に連続させて 設けた冷却器を小型化できるか又は無くすことができることにより、 水素 製造装置を小型化できる。  As described above, in the hydrogen production apparatus according to the present embodiment, the soot and dust accompanying the purified gas is re-supplied as a slurry to the outlet side in the gasifier, so that an appropriate amount of the slurry supplied to the gasifier is Moisture converts carbon monoxide to hydrogen and increases the hydrogen concentration in the product gas. Further, the size of the cooling device provided continuously at the outlet of the gasification furnace can be reduced or eliminated, so that the hydrogen production apparatus can be reduced in size.
また、 本実施例の水素製造装置では、 ガス洗浄器 3で洗浄水によって生 成ガスを洗浄することで洗浄水の一部が蒸発し、 蒸発した洗浄水がガス洗 浄器 3からの精製ガスに同伴する。 この蒸気を同伴した精製ガスを、 シフ ト反応触媒を収容したシフ ト反応器 8 9に導入することにより、 精製ガス 中に残った一酸化炭素を水素に変換することができる。 このため、 製品ガ ス中の水素濃度を一層増大することができる。 さらに、 これらのシフト反 応に必要な水蒸気は、 洗浄水の再供給と洗浄水の蒸発により賄うことがで きるため、水分を補うために別途ボイラなどを設ける必要がない。加えて、 ガス洗浄器 3により生成ガスを冷却するが、 このとき、 生成ガスの熱は、 シフ ト反応器 8 9での反応に利用される水蒸気の発生、 つまり洗浄水と直 接接触して洗浄水の蒸発に使用される。 したがって、 別途ボイラなどを設 け、 生成ガスの熱でこのボイラによって水蒸気を発生させる場合と比較し て熱効率の低下が少ないか、 又はない。 Further, in the hydrogen production apparatus of the present embodiment, a part of the cleaning water is evaporated by cleaning the generated gas with the cleaning water in the gas cleaning device 3, and the evaporated cleaning water is purified gas from the gas cleaning device 3. To accompany. By introducing the purified gas accompanied by the vapor into the shift reactor 89 containing the shift reaction catalyst, carbon monoxide remaining in the purified gas can be converted to hydrogen. Therefore, the hydrogen concentration in the product gas can be further increased. Further, the steam required for these shift reactions can be covered by re-supply of the washing water and evaporation of the washing water, so that it is not necessary to provide a separate boiler or the like to supplement the water. In addition, the generated gas is cooled by the gas washer 3, and at this time, the heat of the generated gas is generated by the steam used for the reaction in the shift reactor 89, that is, by direct contact with the cleaning water. Used for washing water evaporation. Therefore, a separate boiler is required. As compared with the case where steam generated by this boiler is generated by the heat of the generated gas, the decrease in thermal efficiency is small or not.
また、 本実施例は、 実施例 1〜実施例 3の構成のガス化装置、 及び実施 例 4の水素製造装置に限らず、 気流層方式のガス化炉を備えた様々な構成 のガス化装置や水素製造装置に適用することができる。 産業上の利用可能性  In addition, the present embodiment is not limited to the gasifiers of Embodiments 1 to 3 and the hydrogen production apparatus of Embodiment 4, but includes gasifiers of various configurations including a gas-bed gasification furnace. And hydrogen production equipment. Industrial applicability
本発明によれば、 燃料のガスへの変換効率を向上しながらガス化炉から 排出される生成ガスの温度を低下できるガス化方法及びガス化装置を提供 することができる。  According to the present invention, it is possible to provide a gasification method and a gasification apparatus capable of lowering the temperature of a product gas discharged from a gasification furnace while improving the conversion efficiency of fuel to gas.

Claims

請 求 の 範 囲 The scope of the claims
1 . 固体燃料を部分燃焼させてガスを生成するガス化炉の生成ガスの出口 側部分に、 該出口から排出された前記生成ガスに同伴された未反応の可燃 成分を含む煤麈を回収して生成したスラリを供給し、 該供給されたスラリ を前記ガス化炉内の前記出口に向かう生成ガスの流れに対向する方向に流 すことを特徴とするガス化方法。  1. Collect soot and dust containing unreacted combustible components entrained in the product gas discharged from the outlet at the outlet side of the product gas of the gasifier that partially burns the solid fuel to generate gas. A gasification method comprising: supplying a slurry generated by the above-described method; and flowing the supplied slurry in a direction opposite to a flow of a generated gas toward the outlet in the gasification furnace.
2 . 前記ガス化炉が、 該ガス化炉内に前記固体燃料を供給する下段パーナ と、 前記ガス化炉の前記下段パーナよりも前記出口側部分に設けられ、 前 記ガス化炉内に前記固体燃料を供給すると共に前記ガス化炉内に下降流を 形成する上段パーナとを有し、 前記スラリを前記ガス化炉の前記上段バ一 ナが設けられた段部に供給することを特徴とする請求項 1に記載のガス化 方法。  2. The gasification furnace is provided with a lower-stage parner for supplying the solid fuel into the gasification furnace, and provided at the outlet side of the gasification furnace with respect to the lower-stage parner; And an upper stage for supplying a solid fuel and forming a downward flow in the gasification furnace, wherein the slurry is supplied to a step portion of the gasification furnace provided with the upper stage burner. The gasification method according to claim 1, wherein
3 . 前記スラリを前記ガス化炉内に噴出し、 前記ガス化炉内に前記出口に 向かう生成ガスの流れに対向する方向への流れを形成することを特徴とす る請求項 1に記載のガス化方法。  3. The method according to claim 1, wherein the slurry is jetted into the gasification furnace to form a flow in the gasification furnace in a direction opposite to a flow of the generated gas toward the outlet. Gasification method.
4 . 固体燃料を部分燃焼させてガスを生成するガス化炉と、 該ガス化炉で 生成された生成ガスが通流する生成ガス流路と、 該生成ガス流路に設けら れて前記生成ガスに同伴された未反応の可燃成分を含む煤麈を回収し、 該 回収された煤塵からスラリを生成するスラリ生成手段と、 該スラリ生成手 段で生成したスラリを加圧して搬送するポンプと、 該ポンプによって前記 スラリ生成手段から搬送されたスラリを前記ガス化炉内に供給するノズル とを備え、  4. A gasifier for partially combusting the solid fuel to generate a gas, a product gas channel through which the product gas generated by the gasifier flows, and A slurry generating means for collecting dust containing unreacted combustible components entrained in the gas and generating a slurry from the collected dust, and a pump for pressurizing and conveying the slurry generated by the slurry generating means. A nozzle for supplying the slurry conveyed from the slurry generating means by the pump into the gasification furnace;
該ノズルは、 前記ガス化炉の生成ガスの出口側部分に設けられており、 前記ノズルから前記ガス化炉内に供給されたスラリは、 前記出口に向かう ガス化炉内の生成ガスの流れに対向する方向に流れてなることを特徴とす るガス化装置。  The nozzle is provided at an outlet side of a product gas of the gasification furnace, and the slurry supplied from the nozzle into the gasification furnace is directed to the flow of the product gas in the gasification furnace toward the outlet. A gasifier characterized by flowing in opposite directions.
5 . 前記ガス化炉は、 該ガス化炉内に前記固体燃料を供給する下段パーナ と、 前記ガス化炉の前記下段パーナよりも前記出口側の部分に設けられ、 前記ガス化炉内に前記固体燃料を供給すると共に前記ガス化炉内に下降流 を形成する上段パーナとを有し、 前記ノズルは、 前記ガス化炉の前記上段 パーナが設けられた段部に設けられていることを特徴とする請求項 4に記 載のガス化装置。 5. The gasifier is a lower-stage parner that supplies the solid fuel into the gasifier. And an upper stage provided at a portion of the gasification furnace closer to the outlet side than the lower stage parner, and configured to supply the solid fuel into the gasification furnace and form a downward flow in the gasification furnace. 5. The gasifier according to claim 4, wherein the nozzle is provided in a step portion of the gasification furnace provided with the upper-side parner.
6 . 前記ノズルは、 前記ガス化炉内にスラリを噴出して、 前記ガス化炉内 に前記出口に向かう生成ガスの流れに対向する方向への流れを形成してな ることを特徴とする請求項 4に記載のガス化装置。  6. The nozzle is characterized by ejecting a slurry into the gasification furnace to form a flow in the gasification furnace in a direction opposite to a flow of the generated gas toward the outlet. The gasifier according to claim 4.
7 . 前記スラリ生成手段は、 生成ガス流路を通流する生成ガスを水又はァ ルカリ溶液で洗浄して前記生成ガスに同伴された煤麈を生成ガスから除去 して回収する洗浄器と、 該洗浄器で回収された煤麈を含む洗浄排水から水 の一部を除去してスラリ中の水の量を調整する脱水機とを有することを特 徴とする請求項 4に記載のガス化装置。  7. The above-mentioned slurry generation means, a cleaning device for cleaning the generated gas flowing through the generated gas flow path with water or alkali solution to remove and collect soot and dust accompanying the generated gas from the generated gas, The gasification according to claim 4, further comprising a dehydrator for removing a part of the water from the cleaning wastewater containing soot and dust collected by the cleaning device to adjust the amount of water in the slurry. apparatus.
8 . 前記ガス化炉から排出される生成ガスの温度を測定する温度検出器を 備え、 前記スラリ生成手段は、 前記温度検出器で検出した生成ガスの温度 に応じてスラリ中の水の量を調整してなることを特徴とする請求項 4に記 載のガス化装置。  8. A temperature detector for measuring the temperature of the product gas discharged from the gasifier is provided, and the slurry generating means determines the amount of water in the slurry according to the temperature of the product gas detected by the temperature detector. The gasifier according to claim 4, wherein the gasifier is adjusted.
9 . 請求項 4に記載のガス化装置を備え、 前記固体燃料が固体炭化水素で あることを特徴とする水素製造装置。  9. A hydrogen production apparatus comprising the gasifier according to claim 4, wherein the solid fuel is a solid hydrocarbon.
1 0 . 請求項 4に記載のガス化装置と、 該ガス化装置から排出される生成 ガスに含まれる一酸化炭素と水から水素を生成する反応に対する触媒を有 する触媒反応器とを備え、 前記固体燃料が固体炭化水素であることを特徴 とする水素製造装置。  10. The gasifier according to claim 4, and a catalytic reactor having a catalyst for a reaction for generating hydrogen from carbon monoxide and water contained in a product gas discharged from the gasifier, The hydrogen producing apparatus, wherein the solid fuel is a solid hydrocarbon.
PCT/JP2003/001282 2002-02-12 2003-02-06 Method and device for gasification WO2003068894A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003207084A AU2003207084A1 (en) 2002-02-12 2003-02-06 Method and device for gasification

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002034173A JP4085239B2 (en) 2002-02-12 2002-02-12 Gasification method and gasification apparatus
JP2002-34173 2002-02-12

Publications (1)

Publication Number Publication Date
WO2003068894A1 true WO2003068894A1 (en) 2003-08-21

Family

ID=27678020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/001282 WO2003068894A1 (en) 2002-02-12 2003-02-06 Method and device for gasification

Country Status (4)

Country Link
JP (1) JP4085239B2 (en)
CN (1) CN100447221C (en)
AU (1) AU2003207084A1 (en)
WO (1) WO2003068894A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4490300B2 (en) * 2005-02-04 2010-06-23 株式会社日立製作所 Solid fuel gasifier and gasification method
DE102005035921B4 (en) * 2005-07-28 2008-07-10 Choren Industries Gmbh Process for the endothermic gasification of carbon
JP2008231294A (en) * 2007-03-22 2008-10-02 Electric Power Dev Co Ltd Two-stage gasification furnace
US7993131B2 (en) * 2007-08-28 2011-08-09 Conocophillips Company Burner nozzle
CN104479748B (en) * 2010-04-16 2018-01-05 新日铁住金工程技术株式会社 Coal gasifier
EP3305876B1 (en) * 2016-10-07 2019-06-05 Meva Energy AB Improved gasification system and method
CN112831352B (en) * 2021-01-09 2021-09-07 中国华能集团清洁能源技术研究院有限公司 Efficient gasification furnace and working method thereof
KR102312365B1 (en) * 2021-03-26 2021-10-15 주식회사 한양 에프엔티 High temperature reformer
KR102467994B1 (en) * 2021-05-11 2022-11-17 주식회사 한양 에프엔티 High temperatue reformer with capsule type reforming furnace
CN113319113A (en) * 2021-05-17 2021-08-31 太原理工大学 Thermal desorption device and process for organic contaminated soil

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5821482A (en) * 1981-07-31 1983-02-08 Electric Power Dev Co Ltd Method and apparatus for feeding raw material slurry to coal gasification furnace
US4773917A (en) * 1983-03-28 1988-09-27 Babcock-Hitachi Kabushiki Kaisha Coal gasifier
JPH03239797A (en) * 1990-02-16 1991-10-25 Babcock Hitachi Kk Prevention of slag adhesion in coal gasification furnace
WO1997044412A1 (en) * 1996-05-20 1997-11-27 Hitachi, Ltd. Coal gasification apparatus, coal gasification method and integrated coal gasification combined cycle power generating system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3430212A1 (en) * 1984-08-17 1986-02-27 Carbon Gas Technologie GmbH, 4030 Ratingen Process for generating gas from carbonaceous fuels
US4666462A (en) * 1986-05-30 1987-05-19 Texaco Inc. Control process for gasification of solid carbonaceous fuels

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5821482A (en) * 1981-07-31 1983-02-08 Electric Power Dev Co Ltd Method and apparatus for feeding raw material slurry to coal gasification furnace
US4773917A (en) * 1983-03-28 1988-09-27 Babcock-Hitachi Kabushiki Kaisha Coal gasifier
JPH03239797A (en) * 1990-02-16 1991-10-25 Babcock Hitachi Kk Prevention of slag adhesion in coal gasification furnace
WO1997044412A1 (en) * 1996-05-20 1997-11-27 Hitachi, Ltd. Coal gasification apparatus, coal gasification method and integrated coal gasification combined cycle power generating system

Also Published As

Publication number Publication date
CN1630701A (en) 2005-06-22
JP4085239B2 (en) 2008-05-14
CN100447221C (en) 2008-12-31
AU2003207084A1 (en) 2003-09-04
JP2003231888A (en) 2003-08-19

Similar Documents

Publication Publication Date Title
AU2006201142B2 (en) Method and device for high-capacity entrained flow gasifier
US9051522B2 (en) Gasification reactor
US7094264B2 (en) Apparatus for obtaining combustion gases of high calorific value
AU2007245732B2 (en) Gasification reactor and its use
JP6594206B2 (en) Second stage gasifier in staged gasification
JP2008542481A (en) System for converting coal to gas of specific composition
CA2610806A1 (en) A system for the conversion of carbonaceous feedstocks to a gas of a specified composition
WO2007125046A1 (en) Gasification system and its use
US10927007B2 (en) Method and plant for the production of synthesis gas
JPH0668108B2 (en) Gasification method and equipment for carbonaceous material
US20180094199A1 (en) Burner nozzle with backflow prevention for a fluidized bed biogasifier
US20080000155A1 (en) Gasification system and its use
US20070294943A1 (en) Gasification reactor and its use
JP4085239B2 (en) Gasification method and gasification apparatus
JP5450799B2 (en) Coal gasification system and coal gasification method
KR101066187B1 (en) Syngas production and tar reduction system by using air and steam at fluidized bed
US8303673B2 (en) Method and device for a high-capacity entrained flow gasifier
JP2003171675A (en) Liquid fuel synthesis system
JP2001354975A (en) Coal gasification and ash fusion furnace, and composite electricity generation system
EP0305047B1 (en) High temperature desulfurization of synthesis gas
AU2011301418C1 (en) Method for generating synthesis gas
WO1999025792A1 (en) Gasification of coal
JP2006028211A (en) Waste gasifier
AU2006203439B2 (en) Method and device for high-capacity entrained flow gasifier
WO2023148784A1 (en) An oxygen enriched air blown pilot scale pressurized fluidized bed refractory lined gasifier

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CN ID US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 20038036053

Country of ref document: CN