WO1997044412A1 - Coal gasification apparatus, coal gasification method and integrated coal gasification combined cycle power generating system - Google Patents

Coal gasification apparatus, coal gasification method and integrated coal gasification combined cycle power generating system Download PDF

Info

Publication number
WO1997044412A1
WO1997044412A1 PCT/JP1997/001668 JP9701668W WO9744412A1 WO 1997044412 A1 WO1997044412 A1 WO 1997044412A1 JP 9701668 W JP9701668 W JP 9701668W WO 9744412 A1 WO9744412 A1 WO 9744412A1
Authority
WO
WIPO (PCT)
Prior art keywords
coal
heat recovery
section
gasification
heat
Prior art date
Application number
PCT/JP1997/001668
Other languages
French (fr)
Japanese (ja)
Inventor
Atsushi Morihara
Syntaro Koyama
Yoshio Naganuma
Shinji Tanaka
Sadao Takahashi
Takanori Kudou
Eiji Kida
Yoshiki Noguchi
Original Assignee
Hitachi, Ltd.
Babcock-Hitachi Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd., Babcock-Hitachi Kabushiki Kaisha filed Critical Hitachi, Ltd.
Priority to AU27900/97A priority Critical patent/AU730980B2/en
Priority to JP54199397A priority patent/JP4150937B2/en
Publication of WO1997044412A1 publication Critical patent/WO1997044412A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/466Entrained flow processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/485Entrained flow gasifiers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0959Oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1846Partial oxidation, i.e. injection of air or oxygen only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1861Heat exchange between at least two process streams
    • C10J2300/1884Heat exchange between at least two process streams with one stream being synthesis gas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the present invention relates to an integrated coal gasification combined cycle system that supplies fuel gasified using a coal gasifier to a gas turbine to generate power, and mainly relates to a coal gasifier and a coal gasification method.
  • coal in coal gasification, coal is not directly burned, but is converted into flammable gas by a gasification reaction using an oxidizing agent, and is directly supplied to power generation equipment such as gas turbines and fuel cells to be converted into electric energy. It is a method to do.
  • the heat generated in this process is supplied to a steam turbine, which converts it into electrical energy.
  • This method is more efficient because the gas turbine and fuel cell are driven directly by coal gas, compared to the conventional method of generating electricity by generating steam by directly burning coal.
  • power can be generated by using a steam turbine, which can further improve efficiency.
  • the power generation system based on coal gasification is expected as a next-generation high-efficiency power generation system.
  • Coal gasification technology is a technology that generates flammable gas composed of hydrogen, carbon monoxide, methane, carbon dioxide, steam, etc. by bringing coal into contact with oxidizing agents such as oxygen and steam at high temperature. It is.
  • the gas-bed type is a device in which coal is pulverized into fine particles of about 10 microns to improve the contact efficiency with gas. Since the reaction is fast, the temperature in the gasification furnace of the apparatus becomes high and the reaction is completed quickly.
  • a gas-bed gasifier is a coal gasifier with high efficiency and excellent environmental friendliness.
  • the generated gas is also hot.
  • the generated gas contains unreacted carbon remaining after the coal has not completed the reaction, ash contained in the coal, corrosive hydrogen sulfide, and ammonia. If the temperature is higher than 150 ° C, This measure is necessary because the ash in the coal also becomes molten (the molten ash is called slag) and adheres to various equipment.
  • a heat exchanger is provided directly connected to a gasification furnace (however, it is not provided in the same vessel).
  • the heat exchanger was not installed so as to block the gas flow, but was arranged so as to surround the gas flow. are doing. That is, a heat exchanger is installed in parallel with the gas flow. A heat exchanger is placed at a high density where the slag cools and solidifies to block the gas flow.
  • the heat exchanger In the method in which the heat exchanger is arranged so as to surround the gas flow, heat can be recovered without greatly disturbing the gas flow. In particular, even if suspended matter such as slag exists in the generated gas, there is little obstacle due to it. However, since the gas flow is arranged so as to surround the gas flow, the amount of heat transfer per volume of the heat exchange part of the heat exchanger becomes small, and there is a problem that the heat exchanger itself becomes large. Increasing the size of the heat exchanger will increase the cost of the entire system.
  • Japanese Patent Application Laid-Open No. 7-97579 discloses a method of providing a convection heat transfer surface for the purpose of recovering heat not only by radiation but also by heat transfer.
  • the heat transfer tubes can be packed in a large amount, so that the apparatus can be downsized, which is advantageous.
  • the slag in the gas flow adheres to the convection heat transfer surface, which may cause a blockage of the gas flow path or a local high temperature state.
  • the subsequent equipment in the above includes a dust removal device, a desulfurization device, and the like.
  • An object of the present invention is to provide a coal gasification apparatus and a coal gasification method capable of recovering heat obtained by a gasification reaction of coal at a low cost with a reduced burden on subsequent equipment.
  • the gist of the present invention that achieves the above object is as follows.
  • the heat recovery section is directly connected to a stage subsequent to the gasification reaction section, and is provided with power, radiation, and radiation. And a heat transfer tube that transfers heat by convection.
  • the heat transfer tube is provided substantially orthogonal to the gas flow, and the heat recovery unit and the gasification reaction unit are provided in one vessel.
  • the gasification reaction section is in a coal gasifier having an upper reaction area and a lower reaction area.
  • a heat recovery section provided directly after the gasification reaction section is provided with a first heat recovery section, and a surface of a first heat recovery section provided downstream of the first heat recovery section.
  • a coal gasifier consisting of a second heat recovery unit with a low temperature surface is there.
  • the first heat recovery section cools the generated gas temperature from about 140 CTC to about 90 CTC
  • the second heat recovery section converts the 900 ° C gas to about 400 ° C. It is to cool down.
  • coal gasifier having a carbon supply means between the gasification reaction section and the heat recovery section, which adjusts the ratio of carbon and ash in the produced gas by supplying carbon.
  • the heat recovery unit is provided directly after the gasification reaction unit, and is composed of a heat transfer tube that transfers heat by radiation and convection.
  • the heat transfer tube is provided substantially orthogonal to the gas flow.
  • the reaction section has an upper reaction area and a lower reaction area.
  • the upper reaction area is supplied with an amount of oxidizing agent at a temperature at which the ash contained in the coal does not melt, and the lower reaction area has an upper and lower reaction area.
  • Oxidizer is supplied by subtracting the oxidizer supplied to the upper part from the oxidizer required to convert all supplied coal to carbon monoxide and hydrogen, and the radiation provided directly to the reaction section And a coal gasification method in which heat of reaction is recovered by a heat recovery unit that transfers heat by convection.
  • the coal and the oxidizing agent are reacted in the gasification reaction section configured so that the cross-sectional area of the upper end and the lower end is reduced, and the ash content is melted and discharged from the lower end of the gasification reaction section.
  • Combustible gas generated from the upper end This is a coal gasification method in which cooling is performed by a heat recovery unit directly connected to the gasification system.
  • An oxidizing agent is supplied to the lower part of the gasification reaction unit in such a way that the ash of the supplied coal can be melted.
  • the upper part of the gasification reaction section is supplied with an oxidizing agent in an amount such that the ash content in the coal does not melt, and further, carbon is supplied from carbon supply means provided between the gasification reaction section and the heat recovery section.
  • This is a coal gasification method that controls the amount of carbon supplied so that ash does not adhere to the heat recovery section by supplying it.
  • FIG. 1 is a schematic diagram showing a state of a gasification reaction of a gasifier of the present invention.
  • FIG. 2 is a graph showing the relationship between the ratio of carbon and ash in the ash of a coal gasifier and the adhesion of the ash depending on the temperature.
  • FIG. 3 is a schematic longitudinal sectional view of the coal gasifier of Example 1.
  • FIG. 4 is a schematic cross-sectional view of the coal gasifier of the first embodiment.
  • FIG. 5 is a configuration diagram of an integrated coal gasification combined cycle system using the coal gasifier of the first embodiment.
  • FIG. 6 is a graph comparing the operating temperatures of the coal gasifier of the present embodiment and the conventional example.
  • FIG. 7 is a graph comparing the size of the coal gasifier of the present embodiment with that of the conventional example.
  • FIG. 8 is a schematic vertical sectional view of the coal gasifier of the second embodiment.
  • FIG. 9 is a schematic longitudinal sectional view of the coal gasifier of the third embodiment.
  • H 2 0 and C0 2 produced in volatiles of combustion of H 2 and CO (2), (3) reacts with unburned carbon (Chiya I) in a high temperature atmosphere as shown by the combustible gas Form.
  • the temperature of the coal is set to a temperature that is sufficient to melt the ash in the reaction stage, the ash is melted and taken out as a liquid slag, and the harmful metal is encapsulated by cooling it into a slag. Discharge.
  • the coal gasifier of the present invention is a gas-bed type two-stage gasifier, which divides the inside of the gasifier into upper and lower parts, and supplies coal and a small amount of oxidizing agent from the upper part and coal and a large amount of oxidizing agent from the lower part. As a result, the temperature in the lower stage is sufficient for the ash in the coal to melt.
  • FIG. 1 schematically shows a gasification reaction state of the gasification apparatus of the present invention.
  • Coal supplied from the lower parner reacts with a large amount of oxidizing agent to generate product gas and molten ash (slag).
  • coal supplied from the upper parner produces fine char due to the endothermic reaction.
  • the char generated in the upper part of the gasification furnace adheres as powder to the surface of the slag generated in the lower part of the gasification furnace, and has an action and an effect of suppressing adhesion to the furnace wall and the heat recovery part.
  • the coal gasifier of the present invention can prevent the slag generated in the gasifier from adhering to the heat recovery unit by reducing the slag generated in the gasifier.
  • the heat recovery section heat transfer tube
  • Figure 2 shows the relationship between the ratio of carbon and ash in coal ash (char) and the adhesion of ash to temperature.
  • the horizontal axis shows the carbon concentration of the ash, and the vertical axis shows the temperature.
  • the ash adhesion is high in the shaded area. In other words, it indicates that in the region where the temperature is high and the carbon concentration in the ash is low, the ash in the generated gas tends to adhere to the heat recovery section (heat transfer tube). On the other hand, when the temperature is low (below 90 CTC) or when the carbon concentration in the ash is high (over 10%), the adhesion of the ash in the produced gas is low. That is, it shows that it is hard to adhere to the heat transfer tube. From the above, by increasing the ratio of carbon to ash in the generated gas, it is possible to suppress ash from adhering to the heat recovery section such as a heat transfer tube. This This makes it possible to provide a compact coal gasifier in which a heat recovery section for recovering the heat generated in the reaction is integrally disposed immediately after the gasifier.
  • coal gasifier of the present invention supply of a cooling gas or the like is not required, or even if it is supplied, the amount thereof can be reduced. Therefore, subsequent equipment can be downsized.
  • the heat recovery unit provided directly after the gasification reaction unit of the present invention includes:
  • first heat recovery section and the second heat recovery section having a lower temperature than the surface of the first heat recovery section are provided at a subsequent stage of the first heat recovery section.
  • the first and second heat recovery sections are installed in the gas flow so as to be orthogonal to the gas flow direction.
  • TC temperature of the generated gas
  • TC temperature reduced to 900 ° C.
  • high-temperature steam can be obtained.
  • the second heat recovery section the generated heat is generated.
  • Gas temperature 900 ° C is cooled to 40 (TC.
  • the reason for this configuration is to increase the heat transfer efficiency and to make more effective use of the volume.
  • the heat recovery section is a two-stage heat recovery section with different temperatures in order to recover the heat of the generated gas most efficiently.
  • a spiral or zigzag metallic heat transfer tube is preferable.
  • the formation density can be set arbitrarily according to the capacity of the gasification furnace.
  • High-temperature water (or high-temperature steam) is supplied to the heat transfer tube serving as the first heat recovery unit, and low-temperature water (or high-temperature water) is supplied to the heat transfer tube serving as the second heat recovery unit.
  • low-temperature steam to recover heat from the gasification reaction. That is, the first heat recovery unit is used as an evaporator or a super heater, and the second heat recovery unit is used as an evaporator or a economizer.
  • FIG. 3 shows a schematic longitudinal sectional view of the coal gasifier of the present invention.
  • the coal gasifier has a gasification reaction section surrounded by the vessel 51 and a heat recovery section arranged directly connected to the subsequent stage.
  • the gasification reaction section (hereinafter referred to as gasification furnace) consists of a furnace upper part 28 and a furnace lower part 29.
  • An upper nozzle 31 is installed in the furnace upper part 28, and a lower nozzle 32 is installed in the furnace lower part 29.
  • a recycle nozzle 6 is provided at the upper end of the gasifier 25, at the upper end of the gasifier 25, a recycle nozzle 6 is provided. At the lower end of the gasifier 25, a slag tap 26 is provided, and the diameter of the gasifier 25 is reduced at these points.
  • a slag water cooling tank 30 is provided below the gasification furnace 25. Further, a high-temperature heat recovery section 23 and a low-temperature heat recovery section 22 are provided immediately above the gasification furnace 25.
  • the inner wall of the gasifier 25 is protected by a water-cooled wall 24 cooled by water and a refractory material 60 on its surface.
  • Fig. 4 shows a cross-sectional view of the gasification furnace.
  • A Figure shows the part where the recycle nozzle 6 for supplying the recycle gas is provided,
  • (b) shows the part where the upper nozzle 31 is provided, and
  • (c) shows the part where the lower nozzle 32 is provided. It is a cross-sectional view of each of the parts.
  • each nozzle is oriented so that it is supplied to the center in the order of (a), (b), and (c) as shown in the swirl diameters 41 to 43 of the gas flow.
  • the furnace wall can be covered in the order of the recycle gas, the upper product gas, and the lower product gas from the side closer to the furnace wall. That is, the lower temperature gas is made to be on the furnace wall side to protect the furnace wall 44.
  • coal 9 and the oxygen 8 are supplied at a predetermined ratio so that the temperature of the coal 9 and the oxygen 8 does not melt the ash in the coal. From the lower nozzle 32, both coal 9 and oxygen 8 are supplied at a predetermined ratio so as to reach a temperature at which ash is melted.
  • an additive 11 made of limestone or the like for lowering the melting point of the ash or assisting a reaction such as desulfurization in a furnace may be supplied together with the coal.
  • steam 10 may be supplied as a furnace temperature control and an oxidizing agent.
  • the recycled charcoal 13 recovered by the equipment (dust removal device) at the latter stage of the coal gasifier is supplied from below the gasifier 25.
  • a reaction zone having a temperature lower than the melting point of the ash is formed in the furnace upper part 28.
  • a reaction region having a temperature higher than the melting point of the ash is formed in the lower furnace part 29, and a molten slag is formed between this region and the furnace wall.
  • the above-mentioned recycle channel is mainly composed of unburned carbon and ash.
  • Table 1 shows an example of the operating conditions of the above coal gasifier.
  • coal was supplied in equal amounts to the upper part 28 and the lower part 29 of the furnace.
  • Oxygen is supplied in sufficient quantity to gasify the supplied coal.
  • the ratio of total oxygen and total coal under these operating conditions is 0.8 by weight.
  • the ratio of oxygen-free coal was set to 0.58 in order to supply oxygen in an amount that would not melt the ash in the coal.
  • the amount of oxygen supplied to the lower part 29 of the furnace is supplied by subtracting the amount of oxygen supplied to the upper part of the furnace from the total amount of oxygen. Therefore, the ratio of oxygen coal in the lower part 29 of the furnace under the operating conditions is 1.02.
  • the ratio of oxygen supplied together with the recycling channel is included in the total oxygen amount.
  • the temperature of the lower furnace part 29 is about 156 ° C., which is a temperature sufficient to melt the ash in the coal.
  • the upper part 28 of the furnace is in a temperature range (900 to 140 ° C) lower than the melting point of ash, char is generated, and the slag generated in the lower part of the furnace is Adheres as powder on the surface of.
  • the heat recovery sections 23 and 22 heat transfer tubes installed above the gasifier 25, it does not adhere to them. Therefore, it is possible to improve a decrease in heat transfer due to slag adhering to the surface of the heat transfer tube.
  • the carbon powder helps to destroy the boundary layer of the attached matter, so that the heat transfer coefficient of the heat transfer tube can be favorably maintained.
  • the product gas containing slag with low adhesion wrapped in carbon powder is discharged from the outlet throttle section 27 of the gasifier 25 and cooled by the high-temperature heat recovery section 23 cooled first by high-temperature water 5. Heat is recovered as high-pressure steam 4. Next, it is further cooled by the low-temperature heat exchanger 22 cooled by the low-temperature water 3 and recovered as low-pressure steam 2.
  • the product gas cooled as described above is sent to equipment provided downstream of the gasifier outlet 21.
  • Fig. 5 shows the configuration of an integrated coal gasification combined cycle system using the coal gasifier of this embodiment.
  • This power generation system is composed of a coal gasifier, a gas purifier, a combined gas turbine / steam turbine generator, and the like.
  • Oxygen is supplied to the coal gasifier 82 by the oxygen generator 81.
  • Coal is atomized and supplied from a coal hopper 80, pressurized with excess nitrogen generated in an oxygen production unit 81, and compressed by an upper nozzle 31 and a lower nozzle 32 of a coal gasifier 82. Will be re-supplied.
  • the amount of coal supplied to the upper nozzle 31 is adjusted by the upper coal supply controller 92.
  • the amount of coal supplied to the lower nozzle 32 is similarly adjusted by the lower coal supply controller 93.
  • the gasifier 25 in the coal gasifier 82 is recovered as low-pressure water vapor 2 by a heat recovery unit (22, 23 in Fig. 1) that absorbs heat by convection and radiation. Is done.
  • a heat recovery unit 22, 23 in Fig. 1
  • Dust is removed from the generated gas by a dedusting device 83 composed of a cyclone, a high-temperature bag filter, or a high-temperature electrostatic precipitator. Further, sulfides such as H 2 S and COS are removed by a desulfurization device 84 such as a wet desulfurization device that desulfurizes by absorbing liquid or a dry desulfurization device that desulfurizes by using a solid desulfurizing agent.
  • a dedusting device 83 composed of a cyclone, a high-temperature bag filter, or a high-temperature electrostatic precipitator.
  • sulfides such as H 2 S and COS are removed by a desulfurization device 84 such as a wet desulfurization device that desulfurizes by absorbing liquid or a dry desulfurization device that desulfurizes by using a solid desulfurizing agent.
  • the resulting gas, from which dust and sulfur compounds have been removed and purified, is supplied to the combustor of gas turbine 85, which directly burns and drives the turbine and converts it into electric power. Is done.
  • the gas turbine re-loiling temperature must be about 40 (TC or less) for reasons such as valve reliability.
  • the air 61 is compressed to form compressed air.
  • the gas is supplied to the oxygen production unit 81 or the coal gasification unit 82.
  • a part of the purified gas is pressurized by a compressor 101 and supplied to a coal gasifier 82 from a recycling nozzle 6. This is used to cool the gas produced in the gasifier 25.
  • the high-temperature exhaust gas from the gas turbine 85 is recovered as steam by the heat recovery poir 86.
  • the recovered steam is supplied to the steam turbine 87 and converted into electric power.
  • Steam generated by the heat exchanger directly connected to the gasifier is also supplied to the steam turbine to generate power.
  • the coal gasifier of the present invention since the generated gas is efficiently cooled by the heat recovery unit provided directly, the supply amount of the cooling gas can be reduced. . Because of this, the amount of gas other than coal gas passing through the dust removal device 83 and the desulfurization device 84 is small, so that these gas purification devices can be downsized, and the integrated coal gasification combined cycle system can be integrated. It can be downsized.
  • FIG. 6 compares the operating temperatures of the coal gasifier of the present embodiment and the conventional example.
  • the gas temperature at the outlet of the gasifier is as high as about 150 ° C. Therefore, before the product gas reaches the heat exchanger, reduce the temperature to 900 ° C or less. Need to use large amounts of cooling gas. This temperature is shown in FIG.
  • the temperature force at the outlet 27 of the gasification furnace 25 is already as low as 40 CTC, and the ratio of carbon to ash in the generated gas Is large, the adhesion to the heat recovery section and the like is suppressed.
  • the temperature entering the heat recovery section may be about 1200 ° C. Therefore, even when the cooling gas is supplied, the amount may be small.
  • FIG. 7 is a graph comparing the size of the gasifier of the present embodiment with that of the conventional example (including the heat recovery unit).
  • Conventional example 1 is a case where a radiation type heat recovery unit is used in a single-stage reaction type gasification furnace, and since the radiation surface per unit cross-sectional area cannot be increased, the furnace becomes large.
  • Conventional example 2 is a two-stage reaction type gasification furnace, in which the temperature at the outlet of the furnace can be lowered, so that the heat recovery unit can be made relatively small.
  • the heat recovery section can use a convection heat transfer section in addition to the radiant heat transfer section, making the gasification apparatus extremely compact.
  • a gasification zone is formed in the upper and lower stages, only coal is supplied in the upper reaction zone, all ash formed in the upper reaction zone is discharged outside the furnace, and unreacted carbon catalyst collected outside the system is collected. Is collected and supplied to the lower reaction zone as a recycling channel 13. In the lower reaction zone 29, oxygen 8 and coal 9 are supplied, and combustion reaction mainly occurs. reaction A gasification reaction mainly occurs in the upper reaction zone 28 formed in the upper part of the furnace 25.
  • the specific effect of the present embodiment is that the combustible gas formed in the upper reaction zone 28 is discharged without any contact with the oxidizing agent, so that the calorific value of the generated gas can be increased.
  • Embodiment 3 will be described with reference to FIG.
  • This embodiment is a one-stage reaction type coal gasifier.
  • Reaction zone 33 is supplied with coal 9 and oxygen 8. Reduces the ratio of oxygen to coal, forms unreacted carbon, and suppresses adhesion to the heat recovery section. Unreacted carbon is collected by a dust removal device at the subsequent stage and supplied as a recycling channel.
  • ADVANTAGE OF THE INVENTION According to this invention, generation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Industrial Gases (AREA)

Abstract

A coal gasification apparatus is constructed such that a gasification furnace and a heat recovery unit for recovering heat obtained by a coal gasifying reaction in the coal gasification furnace without imposing load on subsequent equipment are integrally provided in a single vessel. The heat recovery unit is provided immediately above the gasification furnace and composed of heating tubes extending perpendicularly to a generated gas flow, and the gasification furnace is composed of a lower furnace portion and an upper furnace portion. An upper stage nozzle is disposed in the upper furnace portion and a lower stage nozzle is disposed in the lower furnace portion. The lower furnace portion supplies coal and a large amount of oxidizer via the lower stage nozzle to provide a temperature sufficient to melt an ash content, and the upper furnace portion supplies coal and a small amount of oxidizer via the upper stage nozzle to provide a temperature insufficient to melt the ash content, whereby the deposition of the ash content on furnace walls and the heat recovery unit is prevented. Also, the heating tubes, which constitute the heat recovery unit, are composed of two stages, which are different in surface temperature from each other, whereby the generated gas can be efficiently decreased in temperature to ease influences on constituent materials of the subsequent equipment.

Description

明 細 書  Specification
石炭ガス化装置、 石炭ガス化方法および石炭ガス化複合発電システム 技術分野 Coal gasifier, coal gasification method and integrated coal gasification combined cycle system
本発明は、 石炭ガス化装置を用いてガス化した燃料をガスタービンに 供給し発電する石炭ガス化複合発電システムに係リ、 主に、 石炭ガス化 装置および石炭ガス化方法に関する。 背景技術  The present invention relates to an integrated coal gasification combined cycle system that supplies fuel gasified using a coal gasifier to a gas turbine to generate power, and mainly relates to a coal gasifier and a coal gasification method. Background art
石炭からエネルギーを取り出し発電する方式としては、 石炭を燃焼し て熱エネルギーに変換し、 スチームを発生させて回収する方式が現在最 も広く用いられている。  Currently, the most widely used method for generating electricity by extracting energy from coal is to burn coal, convert it into thermal energy, generate steam, and recover it.
これに対し、 石炭ガス化は、 石炭を直接燃焼せず、 酸化剤によりガス 化反応で可燃性ガスに変換し、 これを直接ガスタービンや燃料電池など の発電機器に供給して電気エネルギーに変換する方式である。 また、 こ のプロセスで発生した熱をスチームタービンに供給することで、 電気工 ネルギ一に変換するものである。 この方式は、 石炭を直接燃焼してスチームを発生させて発電する従来 の方式と比較して、 ガスタービンや燃料電池を石炭ガスにより直接駆動 するので効率がよい。 更に、 スチームタービンを併用して発電できるの で効率を一段と向上できる。 In contrast, in coal gasification, coal is not directly burned, but is converted into flammable gas by a gasification reaction using an oxidizing agent, and is directly supplied to power generation equipment such as gas turbines and fuel cells to be converted into electric energy. It is a method to do. The heat generated in this process is supplied to a steam turbine, which converts it into electrical energy. This method is more efficient because the gas turbine and fuel cell are driven directly by coal gas, compared to the conventional method of generating electricity by generating steam by directly burning coal. Furthermore, power can be generated by using a steam turbine, which can further improve efficiency.
以上の理由から、 石炭ガス化による発電システムは、 次世代の高効率 発電システムとして期待されている。  For the above reasons, the power generation system based on coal gasification is expected as a next-generation high-efficiency power generation system.
石炭ガス化技術は、 石炭を酸化剤である酸素, 水蒸気などに高温で接 触させることにより、 水素、 一酸化炭素、 メタン、 二酸化炭素、 水蒸気 などで構成された可燃性のガスを生成させるものである。  Coal gasification technology is a technology that generates flammable gas composed of hydrogen, carbon monoxide, methane, carbon dioxide, steam, etc. by bringing coal into contact with oxidizing agents such as oxygen and steam at high temperature. It is.
この石炭ガス化を実現する石炭ガス化装置として気流層 (噴流層) 型 ガス化装置がある。 気流層型とは、 石炭を数 1 0ミクロン程度の微粒に 粉碎し、 気体との接触効率を高めた装置である。 反応が早いために、 該 装置のガス化炉内は高温となり速やかに反応が完結する。  As a coal gasifier that realizes this coal gasification, there is a gas bed (spouted bed) type gasifier. The gas-bed type is a device in which coal is pulverized into fine particles of about 10 microns to improve the contact efficiency with gas. Since the reaction is fast, the temperature in the gasification furnace of the apparatus becomes high and the reaction is completed quickly.
更に、 ガス化炉内が高温 ( 1 4 0 0〜 1 8 0 0 °C ) となるために、 石 炭中に含まれる灰分を溶融させることが可能である。 灰分を溶融させる と、 含まれる有害な金属が溶融灰中に封じ込められるため対環境性にも 優れている。 従って、 気流層型ガス化装置は高効率で対環境性にも優れ た石炭ガス化装置である。  Furthermore, since the inside of the gasification furnace is at a high temperature (140 ° C to 180 ° C), it is possible to melt ash contained in coal. When the ash is melted, the contained harmful metals are contained in the molten ash, so it is also environmentally friendly. Therefore, a gas-bed gasifier is a coal gasifier with high efficiency and excellent environmental friendliness.
しかし、 石炭を高温 ( 1 4 0 0〜 1 8 0 0 °C ) で反応させるために生 成ガスも高温となる。 また、 生成ガス中には、 石炭が反応を完結しきれ ずに残存した未反応の炭素, 石炭中に含まれる灰分, 腐食性の硫化水素, アンモニアが含有されている。 1 5 0 0 °C以上の高温の状態であると、 石炭中の灰分も溶融状態 (溶融した灰分をスラグと呼ぶ) となリ、 各種 の機器等に付着するのでこの対策が必要となる。 However, since the coal is reacted at a high temperature (140 ° C to 180 ° C), the generated gas is also hot. The generated gas contains unreacted carbon remaining after the coal has not completed the reaction, ash contained in the coal, corrosive hydrogen sulfide, and ammonia. If the temperature is higher than 150 ° C, This measure is necessary because the ash in the coal also becomes molten (the molten ash is called slag) and adheres to various equipment.
高温となった生成ガスを、 ガスタービンに供給するためには、 現状のガ スタービン構成材料では、 およそ 4 0 0 °C以下に冷却する必要がある。 上記に対し、 高温の生成ガスを冷却する方法が提案されている。 冷却 方式には、 伝熱面から放射熱を奪うものと、 生成ガスの対流による伝熱 面での熱交換によるものとがある。 In order to supply the high-temperature product gas to the gas turbine, it is necessary to cool it to about 400 ° C or less with the current gas turbine constituent materials. On the other hand, there has been proposed a method for cooling a high-temperature product gas. There are two types of cooling systems: one that removes radiant heat from the heat transfer surface and one that uses heat exchange on the heat transfer surface due to convection of the generated gas.
特開昭 6 1 - 2 2 8 0 9 3号公報では、 ガス化炉に直結して熱交換器 が設置されている (但し、 同一ベッセル内に設けたものではない) 。 しかし、 ガス化炉から飛散するスラグの熱交換器への付着を避けるた め、 ガスの流れを遮るようには設置せずに、 ガスの流れの周囲を囲むよ うに構成した熱交換器を配置している。 即ち、 ガス流と平行に熱交換器 が設置されている。 そして、 スラグが冷えて固化する位置にガスの流れ を遮るように高密度に熱交換器を配置している。  In Japanese Unexamined Patent Publication (Kokai) No. Sho 61-222,093, a heat exchanger is provided directly connected to a gasification furnace (however, it is not provided in the same vessel). However, in order to avoid the slag scattered from the gasifier from adhering to the heat exchanger, the heat exchanger was not installed so as to block the gas flow, but was arranged so as to surround the gas flow. are doing. That is, a heat exchanger is installed in parallel with the gas flow. A heat exchanger is placed at a high density where the slag cools and solidifies to block the gas flow.
このガスの流れを取リ囲むように熱交換器を配置する方式では、 ガス の流れを大きく乱すことなく熱を回収することができる。 特に、 生成ガ ス中にスラグ等の浮遊物が存在してもそれによる障害が少ない。 しかし、 ガスの流れを取リ囲むように配置しているため、 熱交換器の熱交換部の 体積当りの伝熱量が小さくなり、 熱交換器自体が大型化すると云う問題 がある。 この熱交換器の大型化は装置全体としてのコストアップにつな がる。  In the method in which the heat exchanger is arranged so as to surround the gas flow, heat can be recovered without greatly disturbing the gas flow. In particular, even if suspended matter such as slag exists in the generated gas, there is little obstacle due to it. However, since the gas flow is arranged so as to surround the gas flow, the amount of heat transfer per volume of the heat exchange part of the heat exchanger becomes small, and there is a problem that the heat exchanger itself becomes large. Increasing the size of the heat exchanger will increase the cost of the entire system.
また、 大型化したため熱交換部を複数設ける必要がある。 これらを接 続する部分も高温となるので、 その材料の選定、 構造設計が難しくなる。 特にガス化炉が下から上へガスを流通させた場合、 伝熱部は接続管を通 じ上から下へと流すことになる。 こうすると、 飛散した微粒子が伝熱部 の下部に滞留し、 装置としては問題である。 In addition, because of the large size, it is necessary to provide multiple heat exchange units. Connect these Since the temperature of the connecting part also becomes high, it is difficult to select the material and design the structure. In particular, when the gasifier flows gas from bottom to top, the heat transfer section will flow from top to bottom through the connecting pipe. In this case, the scattered fine particles stay in the lower part of the heat transfer section, which is a problem for the device.
また、 特開平 7— 9 7 5 7 9号公報は、 放射だけでなく伝熱によって も熱を回収することを目的に、 対流伝熱面を設ける方式である。 この方 式では伝熱管を大量に詰め込むことができるので装置を小型化でき有利 である。 しかし、 ガス気流中のスラグが対流伝熱面に付着し、 ガス流路 の閉塞や局部的な高温状態を形成する要因となる問題がある。  Japanese Patent Application Laid-Open No. 7-97579 discloses a method of providing a convection heat transfer surface for the purpose of recovering heat not only by radiation but also by heat transfer. In this method, the heat transfer tubes can be packed in a large amount, so that the apparatus can be downsized, which is advantageous. However, there is a problem that the slag in the gas flow adheres to the convection heat transfer surface, which may cause a blockage of the gas flow path or a local high temperature state.
また、 冷却用ガスを生成ガス中に混合して冷却する方式がある。 この 方式では、 冷却用ガスが良好に混合できれば熱交換器がなくてもよい。 しかし、 多量の冷却用ガスの混合が必要で、 これによつてガス量全体が 増大するため、 後続の機器で扱うガス量も増大し、 これに伴い当該機器 が大型化する。  There is also a method of cooling by mixing a cooling gas into the generated gas. In this method, a heat exchanger is not required if the cooling gas can be mixed well. However, it is necessary to mix a large amount of cooling gas, which increases the total amount of gas, so that the amount of gas handled by subsequent equipment also increases, and the equipment becomes larger accordingly.
なお、 前記における後続の機器には脱塵装置、 脱硫装置などがあり、 これらが大型化するとプラント全体の大型化につながる。  In addition, the subsequent equipment in the above includes a dust removal device, a desulfurization device, and the like.
また、 生成ガスに石炭などを混合させ、 反応による吸熱により熱を回 収する方式がある。 これは、 吸熱反応で熟を回収するためガス化効率の 向上に有効である。  There is also a method in which coal is mixed with the generated gas and heat is recovered by endothermic reaction. This is effective in improving gasification efficiency because the ripeness is recovered by the endothermic reaction.
しかし、 未反応生成物が生成ガス中に混入するため、 それの分離回収 25 に特別な装置が必要となる。 具体的にはサイクロンやフィルタ等である。 こうした未反応生成物の分離は高温下で行う必要が生じ、 そのために装 置が複雑となる。 However, special equipment is required for the separation and recovery of unreacted products in the product gas. Specifically, it is a cyclone or a filter. Separation of such unreacted products must be carried out at high temperatures, and as a result Installation becomes complicated.
特に、 発電を目的とした場合、 この分離部分での応答が遅くなり、 負 荷変動に対するガス供給の追随に課題がある。  In particular, when the purpose is power generation, the response at the separation part becomes slow, and there is a problem in following the gas supply to the load fluctuation.
本発明は、 石炭のガス化反応で得られた熱を、 後続の機器への負担を 少なく して低コストで回収できる石炭ガス化装置並びに石炭ガス化方法 の提供を目的としている。  An object of the present invention is to provide a coal gasification apparatus and a coal gasification method capable of recovering heat obtained by a gasification reaction of coal at a low cost with a reduced burden on subsequent equipment.
また、 上記石炭ガス化装置を用いた石炭ガス化複合発電システムの提 供を目的としている。 発明の開示  It also aims to provide an integrated coal gasification combined cycle system using the above coal gasifier. Disclosure of the invention
上記目的を達成する本発明の要旨は次のとおりである。  The gist of the present invention that achieves the above object is as follows.
石炭のガス化反応部、 該反応部の熱を回収する熱回収部を有する石炭 ガス化装置において、 前記熱回収部がガス化反応部の後段に直結して設 けられ、 力、つ、 放射および対流により伝熱する伝熱管からなリ、 該伝熱 管はガス流に対して実質的に直交して設けられており、 前記熱回収部と ガス化反応部が一つのベッセル内に設けられていることを特徴とする石 炭ガス化装置にある。  In a coal gasifier having a coal gasification reaction section and a heat recovery section for recovering heat of the reaction section, the heat recovery section is directly connected to a stage subsequent to the gasification reaction section, and is provided with power, radiation, and radiation. And a heat transfer tube that transfers heat by convection. The heat transfer tube is provided substantially orthogonal to the gas flow, and the heat recovery unit and the gasification reaction unit are provided in one vessel. A coal gasifier.
前記ガス化反応部が上部反応領域と下部反応領域とを有する石炭ガス 化装置にある。  The gasification reaction section is in a coal gasifier having an upper reaction area and a lower reaction area.
また、 前記ガス化反応部の後段に直結して設けた熱回収部が、 第 1の 熱回収部と、 該第 1の熱回収部の後段に設けられている第 1の熱回収部 の表面よリも低温の表面の第 2の熱回収部とからなる石炭ガス化装置に ある。 Further, a heat recovery section provided directly after the gasification reaction section is provided with a first heat recovery section, and a surface of a first heat recovery section provided downstream of the first heat recovery section. To a coal gasifier consisting of a second heat recovery unit with a low temperature surface is there.
ここで、 第 1の熱回収部は、 生成ガスの温度約 1 4 0 CTCを 9 0 CTC 程度まで冷却し、 第 2の熱回収部では 9 0 0 °Cのガスを 4 0 0 °C程度ま でに冷却するものである。  Here, the first heat recovery section cools the generated gas temperature from about 140 CTC to about 90 CTC, and the second heat recovery section converts the 900 ° C gas to about 400 ° C. It is to cool down.
また、 前記ガス化反応部と前記熱回収部との間に、 生成ガス中の炭素 と灰分の割合を、 炭素を供給することで調節する炭素供給手段を有する 石炭ガス化装置にある。  Further, there is provided a coal gasifier having a carbon supply means between the gasification reaction section and the heat recovery section, which adjusts the ratio of carbon and ash in the produced gas by supplying carbon.
また、 石炭をガス化する反応部と、 該反応部の熱を回収する熱回収部 がーつのベッセル内に設けられている石炭ガス化装置を用いた石炭ガス 化方法において、  Further, in a coal gasification method using a coal gasification apparatus in which a reaction section for gasifying coal and a heat recovery section for recovering heat of the reaction section are provided in one vessel,
前記熱回収部はガス化反応部の後段に直結して設けられ、 かつ、 放射 および対流により伝熱する伝熱管からなリ、 該伝熱管はガス流に対して 実質的に直交して設けられており、  The heat recovery unit is provided directly after the gasification reaction unit, and is composed of a heat transfer tube that transfers heat by radiation and convection. The heat transfer tube is provided substantially orthogonal to the gas flow. And
前記反応部は上部反応領域と下部反応領域を有し、 上部反応領域には 石炭中の含有灰分が溶融しない温度とする量の酸化剤を供給し、 下部反 応領域には、 上部と下部とより供給した全石炭が一酸化炭素および水素 に変換するに必要な酸化剤量から、 上部に供給した酸化剤量を差し引い た量の酸化剤を供給し、 前記反応部に直結して設けた放射および対流に よリ伝熱する熱回収部によリ反応熱を回収する石炭ガス化方法にある。 さらにまた、 上端と下端の断面積が減少するよう構成したガス化反応 部内で石炭と酸化剤を反応させ、 ガス化反応部の下端よリ灰分を溶融さ せて排出し、 ガス化反応部の上端より生成した可燃性ガスを、 その上部 に直結して設けた熱回収部により冷却する石炭ガス化方法であって、 ガ ス化反応部の下部には供給する石炭の灰分が溶融し得る温度となる量の 酸化剤を供給し、 ガス化反応部の上部には石炭中の含有灰分が溶融しな い温度となる量の酸化剤を供給し、 更に、 ガス化反応部と前記熱回収部 の間に設けた炭素供給手段から炭素を供給することによリ、 灰分が熱回 収部に付着しないよう供給炭素量を制御する石炭ガス化方法にある。 図面の簡単な説明 The reaction section has an upper reaction area and a lower reaction area. The upper reaction area is supplied with an amount of oxidizing agent at a temperature at which the ash contained in the coal does not melt, and the lower reaction area has an upper and lower reaction area. Oxidizer is supplied by subtracting the oxidizer supplied to the upper part from the oxidizer required to convert all supplied coal to carbon monoxide and hydrogen, and the radiation provided directly to the reaction section And a coal gasification method in which heat of reaction is recovered by a heat recovery unit that transfers heat by convection. Furthermore, the coal and the oxidizing agent are reacted in the gasification reaction section configured so that the cross-sectional area of the upper end and the lower end is reduced, and the ash content is melted and discharged from the lower end of the gasification reaction section. Combustible gas generated from the upper end This is a coal gasification method in which cooling is performed by a heat recovery unit directly connected to the gasification system. An oxidizing agent is supplied to the lower part of the gasification reaction unit in such a way that the ash of the supplied coal can be melted. The upper part of the gasification reaction section is supplied with an oxidizing agent in an amount such that the ash content in the coal does not melt, and further, carbon is supplied from carbon supply means provided between the gasification reaction section and the heat recovery section. This is a coal gasification method that controls the amount of carbon supplied so that ash does not adhere to the heat recovery section by supplying it. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明のガス化装置のガス化反応の状態を示す模式図であ る。 第 2図は、 石炭ガス化装置の灰分中の炭素と灰分の割合と温度によ る灰分の付着性との関係を示すグラフである。 第 3図は、 実施例 1の石 炭ガス化装置の模式縦断面図である。 第 4図は、 実施例 1の石炭ガス化 装置の模式横断面図である。 第 5図は、 実施例 1の石炭ガス化装置を用 いた石炭ガス化複合発電システムの構成図である。 第 6図は、 本実施例 と従来例との石炭ガス化装置の運転温度を比較したグラフである。 第 7 図は、 本実施例の石炭ガス化装置の大きさを従来例と比較したグラフで ある。 第 8図は、 実施例 2の石炭ガス化装置の模式縦断面図である。 そ して、 第 9図は、 実施例 3の石炭ガス化装置の模式縦断面図である。 発明を実施するための最良の形態  FIG. 1 is a schematic diagram showing a state of a gasification reaction of a gasifier of the present invention. FIG. 2 is a graph showing the relationship between the ratio of carbon and ash in the ash of a coal gasifier and the adhesion of the ash depending on the temperature. FIG. 3 is a schematic longitudinal sectional view of the coal gasifier of Example 1. FIG. 4 is a schematic cross-sectional view of the coal gasifier of the first embodiment. FIG. 5 is a configuration diagram of an integrated coal gasification combined cycle system using the coal gasifier of the first embodiment. FIG. 6 is a graph comparing the operating temperatures of the coal gasifier of the present embodiment and the conventional example. FIG. 7 is a graph comparing the size of the coal gasifier of the present embodiment with that of the conventional example. FIG. 8 is a schematic vertical sectional view of the coal gasifier of the second embodiment. FIG. 9 is a schematic longitudinal sectional view of the coal gasifier of the third embodiment. BEST MODE FOR CARRYING OUT THE INVENTION
本発明をよリ詳細に説明するため、 添付の図面に従ってこれを説明す る。 まず、 石炭の主なガス化反応は ( 1 ) 〜 (4) 式で示すことができる。 石炭 → 揮発分 (CH4, CO, H2 etc.) +チヤ一 (C) ■·· ( 1 ) チヤ一 (C) +H2O → CO + H2 ··· (2) チヤ一 (C) +CO2 → 2 CO ■·· (3)The present invention will be described in more detail with reference to the accompanying drawings. First, the main gasification reaction of coal can be expressed by equations (1) to (4). Coal → volatile matter (CH 4 , CO, H 2 etc.) + CH (C) ■ (1) CH (C) + H 2 O → CO + H 2 · (2) CH ( C) + CO 2 → 2 CO (3)
(石炭、 チヤ一) +02 → CO + C02 … (4) 上記の ( 1 ) 〜 (3) は吸熱反応であり、 (4) は発熱反応である。 一般的には、 始めは ( 1 ) の反応で揮発分が生成しチヤ一の発生と同 時に揮発分が燃焼して炉内の温度が上昇する。 また、 (4) の反応が起 こり石炭と酸素が反応して、 やはり炉内の温度が上昇すると共に CO, C02が発生する。 (Coal, Chiya one) +0 2 → CO + C0 2 ... (4) (1) to (3) is an endothermic reaction, (4) is an exothermic reaction. In general, at first, volatiles are generated by the reaction of (1), and at the same time as the generation of char, the volatiles burn and the temperature in the furnace increases. Further, (4) reaction with the reaction force stiffness coal and oxygen, also the temperature in the furnace is CO, C0 2 is generated with increased.
揮発分の燃焼で生じた H20と C02は、 (2) , ( 3 ) で示すように 高温雰囲気下で未燃炭素 (チヤ一) と反応して可燃性ガスの H2および COを形成する。 H 2 0 and C0 2 produced in volatiles of combustion of H 2 and CO (2), (3) reacts with unburned carbon (Chiya I) in a high temperature atmosphere as shown by the combustible gas Form.
気流層型ガス化装置では、 反応の段階で石炭中の灰分を溶融するに十 分な温度とし、 灰分を溶融させて液体状のスラグとして取り出し、 冷却 によリガラス状にして有害金属を封じ込めて排出する。  In a gas-bed gasifier, the temperature of the coal is set to a temperature that is sufficient to melt the ash in the reaction stage, the ash is melted and taken out as a liquid slag, and the harmful metal is encapsulated by cooling it into a slag. Discharge.
本発明の石炭ガス化装置は気流層型の 2段ガス化装置で、 ガス化炉内 を上下に分け、 上段より石炭と少量の酸化剤、 下段より石炭と多量の酸 化剤を供給する。 これによつて下段では石炭中の灰分が溶融するのに十 分な温度となる。  The coal gasifier of the present invention is a gas-bed type two-stage gasifier, which divides the inside of the gasifier into upper and lower parts, and supplies coal and a small amount of oxidizing agent from the upper part and coal and a large amount of oxidizing agent from the lower part. As a result, the temperature in the lower stage is sufficient for the ash in the coal to melt.
また、 上段では灰分を溶融させない温度にすることで、 ガス化反応に よる灰分の炉壁への固着を抑制する。 これによつて、 灰のハンドリング とガス化の高効率化を両立させることができる。 In addition, by setting the temperature at which ash is not melted in the upper stage, sticking of ash to the furnace wall due to the gasification reaction is suppressed. This allows the handling of ash And high gasification efficiency can be achieved at the same time.
図 1は、 本発明のガス化装置のガス化反応の状態を模式的に示したも のである。  FIG. 1 schematically shows a gasification reaction state of the gasification apparatus of the present invention.
下段パーナから供給された石炭は、 多量の酸化剤と反応して生成ガス と溶融灰 (スラグ) を発生する。 一方、 上段パーナから供給された石炭 は吸熱反応により微細なチヤ一を生じる。  Coal supplied from the lower parner reacts with a large amount of oxidizing agent to generate product gas and molten ash (slag). On the other hand, coal supplied from the upper parner produces fine char due to the endothermic reaction.
ガス化炉上部で生成されたチヤ一は、 ガス化炉下部で生じたスラグの 表面に粉となって付着し、 炉壁ゃ熱回収部等への付着を抑制する作用, 効果を有する。 このように本発明の石炭ガス化装置は、 特に、 ガス化炉 内で生成されるスラグを付着性の少ないものとすることで、 熱回収部へ の付着を防止することができ、 ガス化炉と熱回収部 (伝熱管) とを一体 に構成することができる。  The char generated in the upper part of the gasification furnace adheres as powder to the surface of the slag generated in the lower part of the gasification furnace, and has an action and an effect of suppressing adhesion to the furnace wall and the heat recovery part. As described above, the coal gasifier of the present invention can prevent the slag generated in the gasifier from adhering to the heat recovery unit by reducing the slag generated in the gasifier. And the heat recovery section (heat transfer tube) can be integrated.
また、 図 2は、 石炭灰分 (チヤ一) 中の炭素と灰分の割合と、 温度に 対する灰分の付着性との関係を示したものである。 なお、 横軸には灰分 の炭素濃度、 縦軸には温度を示す。  Figure 2 shows the relationship between the ratio of carbon and ash in coal ash (char) and the adhesion of ash to temperature. The horizontal axis shows the carbon concentration of the ash, and the vertical axis shows the temperature.
斜線で示す領域では灰の付着性が高い。 即ち、 温度が高く、 灰中の炭 素濃度が低い領域では、 生成ガス中の灰分は熱回収部 (伝熱管) に付着 し易いことを示している。 一方、 温度が低い (9 0 CTC以下) か、 ある いは、 灰中の炭素濃度が高い ( 1 0 %以上) 場合には、 生成ガス中の灰 分の付着性が小さい。 即ち、 伝熱管にも付着しにくいことを示している。 以上のことから、 生成ガス中の灰分に対する炭素の割合を大きくする ことで、 伝熱管等の熱回収部への灰分付着を抑制することができる。 こ れによって、 反応にょリ生じた熱を回収する熱回収部を、 ガス化炉のす ぐ後段に一体に配置したコンパク卜な石炭ガス化装置を提供することが できる。 The ash adhesion is high in the shaded area. In other words, it indicates that in the region where the temperature is high and the carbon concentration in the ash is low, the ash in the generated gas tends to adhere to the heat recovery section (heat transfer tube). On the other hand, when the temperature is low (below 90 CTC) or when the carbon concentration in the ash is high (over 10%), the adhesion of the ash in the produced gas is low. That is, it shows that it is hard to adhere to the heat transfer tube. From the above, by increasing the ratio of carbon to ash in the generated gas, it is possible to suppress ash from adhering to the heat recovery section such as a heat transfer tube. This This makes it possible to provide a compact coal gasifier in which a heat recovery section for recovering the heat generated in the reaction is integrally disposed immediately after the gasifier.
また、 本発明の石炭ガス化装置によれば、 冷却ガス等の供給を必要と しないか、 供給してもその量を少なくでき、 後続の機器に余分なガスの 混入が少ないので、 生成ガス量を最小限にできるため、 後続の機器を小 型化することができる。  Further, according to the coal gasifier of the present invention, supply of a cooling gas or the like is not required, or even if it is supplied, the amount thereof can be reduced. Therefore, subsequent equipment can be downsized.
本発明のガス化反応部の後段に直結して設けた熱回収部としては、 第 The heat recovery unit provided directly after the gasification reaction unit of the present invention includes:
1の熱回収部と、 該第 1の熱回収部の表面よリも低温の表面の第 2の熱 回収部が前記第 1の熱回収部の後段に設けられている構造がよい。 第 1, 第 2の熱回収部は、 ガス流中にガスの流れ方向に直交するように設置す る。 第 1の熱回収部では、 生成ガスの温度 1 4 0 (TCを 9 0 0 °Cまで冷 却する。 ここでは高温の水蒸気を得ることができる。 一方、 第 2の熱回 収部では生成ガスの温度 9 0 0 °Cを 4 0 (TCまで冷却する。 It is preferable that the first heat recovery section and the second heat recovery section having a lower temperature than the surface of the first heat recovery section are provided at a subsequent stage of the first heat recovery section. The first and second heat recovery sections are installed in the gas flow so as to be orthogonal to the gas flow direction. In the first heat recovery section, the temperature of the generated gas is cooled to 140 (TC is reduced to 900 ° C. Here, high-temperature steam can be obtained. On the other hand, in the second heat recovery section, the generated heat is generated. Gas temperature 900 ° C is cooled to 40 (TC.
このように構成したのは、 伝熱効率を上げるためと、 その容積をより 有効に利用するためである。 また、 熱回収部を温度の異なる 2段の熱回 収部としたのは、 生成ガスの熱を最も効率良く回収するためである。 上記熟回収部の具体的な形状例としては、 渦巻状またはじぐざく状の 金属性の伝熱管が好ましい。 また、 その形成密度は、 ガス化炉の容量に 応じて任意に設定することができる。  The reason for this configuration is to increase the heat transfer efficiency and to make more effective use of the volume. The heat recovery section is a two-stage heat recovery section with different temperatures in order to recover the heat of the generated gas most efficiently. As a specific example of the shape of the mature recovery section, a spiral or zigzag metallic heat transfer tube is preferable. The formation density can be set arbitrarily according to the capacity of the gasification furnace.
前記第 1の熱回収部である伝熱管には高温水 (または高温水蒸気) を、 そして第 2の熱回収部である伝熱管には第 1の伝熱管より低温水 (また は低温水蒸気) をそれぞれ通し、 ガス化反応による熱を回収する。 即ち、 第 1の熱回収部は蒸発器またはスーパ一ヒータとして、 第 2の熱回収部 は蒸発器または節炭器として用いられる。 High-temperature water (or high-temperature steam) is supplied to the heat transfer tube serving as the first heat recovery unit, and low-temperature water (or high-temperature water) is supplied to the heat transfer tube serving as the second heat recovery unit. Through low-temperature steam) to recover heat from the gasification reaction. That is, the first heat recovery unit is used as an evaporator or a super heater, and the second heat recovery unit is used as an evaporator or a economizer.
次に、 更に具体的な実施例に基づき本発明を説明する。  Next, the present invention will be described based on more specific examples.
〔実施例 1〕  (Example 1)
第 3図に本発明の石炭ガス化装置の模式縦断面図を示す。 石炭ガス化 装置はベッセル 5 1に囲まれガス化反応部とその後段に直結するように 配置された熱回収部を有する。 ガス化反応部 (以下ガス化炉と云う) は、 炉上部 2 8、 炉下部 2 9より構成される。 炉上部 2 8には上段ノズル 3 1が、 炉下部 2 9には下段ノズル 3 2が設置されている。  FIG. 3 shows a schematic longitudinal sectional view of the coal gasifier of the present invention. The coal gasifier has a gasification reaction section surrounded by the vessel 51 and a heat recovery section arranged directly connected to the subsequent stage. The gasification reaction section (hereinafter referred to as gasification furnace) consists of a furnace upper part 28 and a furnace lower part 29. An upper nozzle 31 is installed in the furnace upper part 28, and a lower nozzle 32 is installed in the furnace lower part 29.
また、 ガス化炉 2 5の上端部にはリサイクルノズル 6力 ガス化炉 2 5の下端部にはスラグタップ 2 6が設けられ、 これらの部分でガス化炉 2 5は縮径されている。 そして、 ガス化炉 2 5の下にはスラグ水冷槽 3 0が設けられている。 更に、 ガス化炉 2 5の直上には高温熱回収部 2 3、 低温熱回収部 2 2が設置されている。 ガス化炉 2 5の内壁は、 水で冷却 する水冷壁 2 4およびその表面の耐火材 6 0で保護されている。  At the upper end of the gasifier 25, a recycle nozzle 6 is provided. At the lower end of the gasifier 25, a slag tap 26 is provided, and the diameter of the gasifier 25 is reduced at these points. A slag water cooling tank 30 is provided below the gasification furnace 25. Further, a high-temperature heat recovery section 23 and a low-temperature heat recovery section 22 are provided immediately above the gasification furnace 25. The inner wall of the gasifier 25 is protected by a water-cooled wall 24 cooled by water and a refractory material 60 on its surface.
第 4図にガス化炉の横断面図を示す。 (a ) 図はリサイクルガス供給 用のリサイクルノズル 6が設けられている部分、 (b ) は上段ノズル 3 1が設けられている部分、 そして、 (c ) は下段ノズル 3 2が設けられ ている部分のそれぞれの横断面図である。  Fig. 4 shows a cross-sectional view of the gasification furnace. (A) Figure shows the part where the recycle nozzle 6 for supplying the recycle gas is provided, (b) shows the part where the upper nozzle 31 is provided, and (c) shows the part where the lower nozzle 32 is provided. It is a cross-sectional view of each of the parts.
各ノズルの方向は、 ガス流の旋回円径 4 1〜4 3に示すように ( a ) 、 ( b ) 、 ( c ) の順に、 より中心部に供給されるように向けられている。 これによつて、 炉壁に近い方からリサイクルガス、 上段生成ガス、 下段 生成ガスの順に炉壁を覆うことができる。 即ち、 温度のより低いガスが 炉壁側となるようにし、 炉壁 4 4を保護する。 The direction of each nozzle is oriented so that it is supplied to the center in the order of (a), (b), and (c) as shown in the swirl diameters 41 to 43 of the gas flow. In this way, the furnace wall can be covered in the order of the recycle gas, the upper product gas, and the lower product gas from the side closer to the furnace wall. That is, the lower temperature gas is made to be on the furnace wall side to protect the furnace wall 44.
上段ノズル 3 1からは、 石炭 9と酸素 8とを石炭中の灰分が溶融しな い温度となるように両者を所定の割合で供給する。 また、 下段ノズル 3 2からは、 石炭 9と酸素 8を灰分が溶融する温度となるよう両者を所定 の割合で供給する。  From the upper nozzle 31, the coal 9 and the oxygen 8 are supplied at a predetermined ratio so that the temperature of the coal 9 and the oxygen 8 does not melt the ash in the coal. From the lower nozzle 32, both coal 9 and oxygen 8 are supplied at a predetermined ratio so as to reach a temperature at which ash is melted.
なおここで、 灰の融点の低下、 あるいは、 炉内での脱硫等の反応を助 成する石灰石等からなる添加剤 1 1を、 石炭と共に供給してもよい。 更 に、 炉内温度の調節および酸化剤として水蒸気 1 0を供給してもよい。 また、 石炭ガス化装置の後段の機器 (脱塵装置) で回収されたリサイ クルチヤー 1 3は、 ガス化炉 2 5の下方より供給される。 これにより、 炉上部 2 8には灰の融点よりも低温の反応領域が形成される。 さらにま た、 炉下部 2 9には灰の融点より高温の反応領域が形成され、 この領域 と炉壁の間には溶融スラグが形成される。 なお、 上記のリサイクルチヤ 一は未燃炭素および灰分が主成分である。  Here, an additive 11 made of limestone or the like for lowering the melting point of the ash or assisting a reaction such as desulfurization in a furnace may be supplied together with the coal. Further, steam 10 may be supplied as a furnace temperature control and an oxidizing agent. In addition, the recycled charcoal 13 recovered by the equipment (dust removal device) at the latter stage of the coal gasifier is supplied from below the gasifier 25. As a result, a reaction zone having a temperature lower than the melting point of the ash is formed in the furnace upper part 28. Further, a reaction region having a temperature higher than the melting point of the ash is formed in the lower furnace part 29, and a molten slag is formed between this region and the furnace wall. In addition, the above-mentioned recycle channel is mainly composed of unburned carbon and ash.
次に、 上記の石炭ガス化装置の操作条件の一例を第 1表に示す。 Next, Table 1 shows an example of the operating conditions of the above coal gasifier.
第 1 表 Table 1
Figure imgf000015_0001
本操作条件において、 石炭は、 炉上部 2 8と炉下部 2 9とで等量供給 した。 酸素は、 供給した石炭がガス化するのに十分な量を供給する。 な お、 本操作条件における全酸素 全石炭の比率は重量比で 0 . 8である。 炉上部 2 8では、 石炭中の灰分が溶融しない温度となる量の酸素を供 給するために、 酸素ノ石炭の比率を 0 . 5 8と設定した。 また、 炉下部 2 9への酸素の供給量は、 全酸素量から炉上部に供給す る酸素量を差し引いた量の酸素を供給する。 従って、 本操作条件での炉 下部 2 9の酸素 石炭の比率は 1 . 0 2となる。 なお、 リサイクルチヤ 一と一緒に供給される酸素も全酸素量に含めての比率である。
Figure imgf000015_0001
Under these operating conditions, coal was supplied in equal amounts to the upper part 28 and the lower part 29 of the furnace. Oxygen is supplied in sufficient quantity to gasify the supplied coal. The ratio of total oxygen and total coal under these operating conditions is 0.8 by weight. In the upper part 28 of the furnace, the ratio of oxygen-free coal was set to 0.58 in order to supply oxygen in an amount that would not melt the ash in the coal. The amount of oxygen supplied to the lower part 29 of the furnace is supplied by subtracting the amount of oxygen supplied to the upper part of the furnace from the total amount of oxygen. Therefore, the ratio of oxygen coal in the lower part 29 of the furnace under the operating conditions is 1.02. The ratio of oxygen supplied together with the recycling channel is included in the total oxygen amount.
上記の操作条件では、 炉下部 2 9の温度は約 1 5 6 0 °Cとなり、 これ は石炭中の灰分を溶融させるに十分な温度である。  Under the above operating conditions, the temperature of the lower furnace part 29 is about 156 ° C., which is a temperature sufficient to melt the ash in the coal.
—方、 炉上部 2 8は、 灰の融点より低い温度領域 ( 9 0 0〜 1 4 0 0 °C ) であるために、 チヤ一が生成し、 このチヤ一が炉下部で生成したス ラグの表面に粉となって付着する。 これによりスラグがガス化炉 2 5の 上に設置された熱回収部 2 3, 2 2 (伝熱管) に到達してもこれらに付 着することがない。 従って、 伝熱管の表面へのスラグ付着による伝熱の 低下を改善することができる。  On the other hand, since the upper part 28 of the furnace is in a temperature range (900 to 140 ° C) lower than the melting point of ash, char is generated, and the slag generated in the lower part of the furnace is Adheres as powder on the surface of. As a result, even if the slag reaches the heat recovery sections 23 and 22 (heat transfer tubes) installed above the gasifier 25, it does not adhere to them. Therefore, it is possible to improve a decrease in heat transfer due to slag adhering to the surface of the heat transfer tube.
また、 伝熱管表面においても、 上記炭素粉が該付着物の境界層の破壊 に役立つため、 伝熱管の熱伝達係数を良好に維持することができる。 炭素粉に包まれた付着性の少ないスラグを含む生成ガスは、 ガス化炉 2 5の出口絞り部 2 7より排出され、 最初に高温水 5により冷却された 高温熱回収部 2 3により冷却され高圧水蒸気 4として熱回収される。 次 に、 低温水 3により冷却された低温用熱交換器 2 2により更に冷却され 低圧水蒸気 2として熱回収される。 上記により冷却された生成ガスは、 ガス化装置出口 2 1より後段に設けられている機器へ送られる。  Further, also on the surface of the heat transfer tube, the carbon powder helps to destroy the boundary layer of the attached matter, so that the heat transfer coefficient of the heat transfer tube can be favorably maintained. The product gas containing slag with low adhesion wrapped in carbon powder is discharged from the outlet throttle section 27 of the gasifier 25 and cooled by the high-temperature heat recovery section 23 cooled first by high-temperature water 5. Heat is recovered as high-pressure steam 4. Next, it is further cooled by the low-temperature heat exchanger 22 cooled by the low-temperature water 3 and recovered as low-pressure steam 2. The product gas cooled as described above is sent to equipment provided downstream of the gasifier outlet 21.
本実施例では、 熱回収部とガス化炉 2 5とがベッセル 5 1内に一体化 されているので、 ガス化装置全体を小型化できる。 次に、 本実施例の石炭ガス化装置を用いた石炭ガス化複合発電システ ムの構成を第 5図に示す。 In this embodiment, since the heat recovery unit and the gasifier 25 are integrated in the vessel 51, the entire gasifier can be reduced in size. Next, Fig. 5 shows the configuration of an integrated coal gasification combined cycle system using the coal gasifier of this embodiment.
本発電システムは、 石炭ガス化装置、 ガス精製装置、 ガスタービン · スチームタービン複合発電機等により構成される。  This power generation system is composed of a coal gasifier, a gas purifier, a combined gas turbine / steam turbine generator, and the like.
石炭ガス化装置 8 2には、 酸素製造装置 8 1により酸素を供給される。 石炭は、 微粒化され石炭ホッパ 8 0から供給され、 酸素製造装置 8 1に ょリ生じた余剰の窒素で加圧されて、 石炭ガス化装置 8 2の上段ノズル 3 1および下段ノズル 3 2よリ供給される。 上段ノズル 3 1の石炭供給 量は、 上段石炭供給量制御装置 9 2により調節される。 また、 下段ノズ ル 3 2の石炭供給量は、 同様に下段石炭供給量制御装置 9 3により調節 される。 そして、 石炭ガス化装置 8 2内のガス化炉 2 5には、 対流およ び放射により吸熱する熱回収部 (第 1図の 2 2, 2 3 ) によリ低圧水蒸 気 2として回収される。 ここで、 伝熱管はガス流に対して直交している ので、 高温ガスとの熱交換が十分に起こり、 生成ガスは 1 4 0 0 °C以上 の高温から 4 0 0 °Cまで冷却される。  Oxygen is supplied to the coal gasifier 82 by the oxygen generator 81. Coal is atomized and supplied from a coal hopper 80, pressurized with excess nitrogen generated in an oxygen production unit 81, and compressed by an upper nozzle 31 and a lower nozzle 32 of a coal gasifier 82. Will be re-supplied. The amount of coal supplied to the upper nozzle 31 is adjusted by the upper coal supply controller 92. The amount of coal supplied to the lower nozzle 32 is similarly adjusted by the lower coal supply controller 93. The gasifier 25 in the coal gasifier 82 is recovered as low-pressure water vapor 2 by a heat recovery unit (22, 23 in Fig. 1) that absorbs heat by convection and radiation. Is done. Here, since the heat transfer tube is orthogonal to the gas flow, heat exchange with the high-temperature gas occurs sufficiently, and the generated gas is cooled from a high temperature of 140 ° C or more to 400 ° C. .
生成されたガスは、 サイクロン, 高温バグフィルタまたは高温電気集 塵器により構成された脱塵装置 8 3によりダストが除かれる。 更に、 吸 収液により脱硫する湿式脱硫装置、 または、 固形脱硫剤により脱硫する 乾式脱硫装置等の脱硫装置 8 4により、 H2 Sや C O Sなどの硫化物が 除去される。 Dust is removed from the generated gas by a dedusting device 83 composed of a cyclone, a high-temperature bag filter, or a high-temperature electrostatic precipitator. Further, sulfides such as H 2 S and COS are removed by a desulfurization device 84 such as a wet desulfurization device that desulfurizes by absorbing liquid or a dry desulfurization device that desulfurizes by using a solid desulfurizing agent.
こうしてダストや硫黄化合物を除去, 精製した生成ガスは、 ガスター ビン 8 5の燃焼器に供給されタービンを直接燃焼, 駆動して電力に変換 される。 ガスタービンの入リロ温度としては、 バルブの信頼性等の理由 で約 4 0 (TC以下にすることが必要なのである。 ガスタービン 8 5では、 空気 6 1が圧縮されて加圧空気となリ、 酸素製造装置 8 1あるいは石炭 ガス化装置 8 2に供給される。 The resulting gas, from which dust and sulfur compounds have been removed and purified, is supplied to the combustor of gas turbine 85, which directly burns and drives the turbine and converts it into electric power. Is done. The gas turbine re-loiling temperature must be about 40 (TC or less) for reasons such as valve reliability. In the gas turbine 85, the air 61 is compressed to form compressed air. The gas is supplied to the oxygen production unit 81 or the coal gasification unit 82.
また、 精製ガスの一部は、 圧縮機 1 0 1により加圧され、 リサイクル ノズル 6より石炭ガス化装置 8 2に供給される。 これは、 ガス化炉 2 5 の生成ガスの冷却に使用される。  A part of the purified gas is pressurized by a compressor 101 and supplied to a coal gasifier 82 from a recycling nozzle 6. This is used to cool the gas produced in the gasifier 25.
また、 ガスタービン 8 5からの高温の排ガスは、 熱回収ポイラ 8 6に より水蒸気として回収される。 回収された水蒸気はスチームタービン 8 7に供給され、 電力に変換される。  The high-temperature exhaust gas from the gas turbine 85 is recovered as steam by the heat recovery poir 86. The recovered steam is supplied to the steam turbine 87 and converted into electric power.
前記ガス化炉に直結した熱交換器により生じたスチームも、 このスチ —ムタービンへ供給され発電される。  Steam generated by the heat exchanger directly connected to the gasifier is also supplied to the steam turbine to generate power.
以上のように本発明の石炭ガス化装置では、 直結して設けられた熱回 収部によって生成ガスが高効率に冷却されるために、 冷却用のガスの供 給量を少なくすることができる。 このため脱塵装置 8 3や脱硫装置 8 4 を通過する石炭ガス以外のガスの量が少ないので、 これらのガス精製装 置も小型化することができ、 石炭ガス化複合発電システムを総合的に小 型化することができる。  As described above, in the coal gasifier of the present invention, since the generated gas is efficiently cooled by the heat recovery unit provided directly, the supply amount of the cooling gas can be reduced. . Because of this, the amount of gas other than coal gas passing through the dust removal device 83 and the desulfurization device 84 is small, so that these gas purification devices can be downsized, and the integrated coal gasification combined cycle system can be integrated. It can be downsized.
次に、 第 6図は、 本実施例と従来例との石炭ガス化装置の運転温度を 比較したものである。  Next, FIG. 6 compares the operating temperatures of the coal gasifier of the present embodiment and the conventional example.
従来方式ではガス化炉の出口でのガス温度は 1 5 0 0 °C程度と高い。 従って、 熱交換器に生成ガスが到達する前に、 9 0 0 °C以下にまで下げ る必要があるために、 大量の冷却ガスが必要となる。 この温度は第 2図 に示されたものである。 In the conventional method, the gas temperature at the outlet of the gasifier is as high as about 150 ° C. Therefore, before the product gas reaches the heat exchanger, reduce the temperature to 900 ° C or less. Need to use large amounts of cooling gas. This temperature is shown in FIG.
これに対し、 本実施例の二段反応のガス化方式によれば、 ガス化炉 2 5の出口 2 7での温度力既に 4 0 CTCと低く、 更に、 生成ガス中の炭素 の灰分に対する割合が大きいので、 熱回収部等への付着が抑制される。 なお、 熱回収部に入る温度は 1 2 0 0 °C程度でよい。 従って、 冷却ガス を供給する場合でもその量は少なくてよい。  On the other hand, according to the gasification method of the two-stage reaction of the present embodiment, the temperature force at the outlet 27 of the gasification furnace 25 is already as low as 40 CTC, and the ratio of carbon to ash in the generated gas Is large, the adhesion to the heat recovery section and the like is suppressed. The temperature entering the heat recovery section may be about 1200 ° C. Therefore, even when the cooling gas is supplied, the amount may be small.
第 7図は、 本実施例のガス化装置の大きさを従来例 (熱回収部を含め て) と比較した場合のグラフである。  FIG. 7 is a graph comparing the size of the gasifier of the present embodiment with that of the conventional example (including the heat recovery unit).
従来例 1は、 一段反応型ガス化炉に放射型熱回収部を用いた場合で、 単位断面積当りの放射面を大きくできないので、 炉が大きくなる。  Conventional example 1 is a case where a radiation type heat recovery unit is used in a single-stage reaction type gasification furnace, and since the radiation surface per unit cross-sectional area cannot be increased, the furnace becomes large.
また、 従来例 2は、 二段反応型ガス化炉で、 炉の出口の温度を低くす ることができるので熱回収部を比較的小型化できる。  Conventional example 2 is a two-stage reaction type gasification furnace, in which the temperature at the outlet of the furnace can be lowered, so that the heat recovery unit can be made relatively small.
熱回収部をガス化炉と一体に形成した本実施例の石炭ガス化装置では、 熱回収部が、 放射伝熱部に加えて対流伝熱部の使用が可能となり、 ガス 化装置を著しく小型化できる。  In the coal gasifier of this embodiment in which the heat recovery section is formed integrally with the gasification furnace, the heat recovery section can use a convection heat transfer section in addition to the radiant heat transfer section, making the gasification apparatus extremely compact. Can be
〔実施例 2〕  (Example 2)
本実施例を第 8図により説明する。 上下 2段にガス化領域を形成し、 上段の反応領域では石炭のみを供給し、 上段反応領域で形成した灰分は 全て炉外へ排出し、 系外で捕集された未反応の炭素チヤ一を捕集して、 下段反応領域にリサイクルチヤ一 1 3として供給される。 下段反応領域 2 9では酸素 8および石炭 9力供給され、 主に燃焼反応が起こる。 反応 炉 2 5内の上部に形成した上段反応領域 2 8では主にガス化反応が起こ る。 This embodiment will be described with reference to FIG. A gasification zone is formed in the upper and lower stages, only coal is supplied in the upper reaction zone, all ash formed in the upper reaction zone is discharged outside the furnace, and unreacted carbon catalyst collected outside the system is collected. Is collected and supplied to the lower reaction zone as a recycling channel 13. In the lower reaction zone 29, oxygen 8 and coal 9 are supplied, and combustion reaction mainly occurs. reaction A gasification reaction mainly occurs in the upper reaction zone 28 formed in the upper part of the furnace 25.
本実施例の特有の効果は、 上段反応領域 2 8で形成した可燃性のガス を、 酸化剤と全く触れさせることなく排出するので、 生成ガスの発熱量 を高くすることができる。  The specific effect of the present embodiment is that the combustible gas formed in the upper reaction zone 28 is discharged without any contact with the oxidizing agent, so that the calorific value of the generated gas can be increased.
〔実施例 3〕  (Example 3)
実施例 3を第 9図により説明する。 本実施例は一段反応型の石炭ガス 化装置である。 反応領域 3 3に石炭 9と酸素 8が供給される。 酸素の石 炭に対する割合を小さくし、 未反応の炭素を形成させ、 熱回収部への付 着を抑制する。 未反応の炭素は後段の脱塵装置で回収しリサイクルチヤ 一として供給する。  Embodiment 3 will be described with reference to FIG. This embodiment is a one-stage reaction type coal gasifier. Reaction zone 33 is supplied with coal 9 and oxygen 8. Reduces the ratio of oxygen to coal, forms unreacted carbon, and suppresses adhesion to the heat recovery section. Unreacted carbon is collected by a dust removal device at the subsequent stage and supplied as a recycling channel.
また、 リサイクルチヤ一 1 3の供給位置が、 熱回収部 2 3の直下に設 置されているために、 このチヤ一によつてスラグの付着が抑制される。 本実施例の特有の効果は、 反応領域 (3 3 ) を- -段としたことでその 構造を単純化することができ、 装置のコスト低減を図ることができる。 産業上の利用可能性  In addition, since the supply position of the recycling channel 13 is located immediately below the heat recovery section 23, the adhesion of slag is suppressed by this channel. The specific effect of this embodiment is that the reaction region (33) is made into a --- stage, so that its structure can be simplified and the cost of the apparatus can be reduced. Industrial applicability
本発明によれば、 ガス化炉に未燃炭素の生成、 または、 チヤ一を供給 することにより、 灰分スラグの付着を抑制したことで、 熱回収部とガス 化炉との一体化が実現でき、 石炭ガス化装置の小型化を図ることができ る。  ADVANTAGE OF THE INVENTION According to this invention, generation | occurrence | production of unburned carbon or gas supply to a gasifier suppresses adhesion of ash slag, and integration of a heat recovery part and a gasifier can be realized. Thus, the size of the coal gasifier can be reduced.
また、 冷却ガスの供給を特に必要としないので、 後続の機器に余分な ガスが混入せず、 システム全体を簡素化できる, In addition, since there is no need to supply a cooling gas, Gas is not mixed, simplifying the entire system,

Claims

請 求 の 範 囲 The scope of the claims
1 . 石炭のガス化反応部、 該反応部の熱を回収する熱回収部を有する石 炭ガス化装置において、 前記熱回収部がガス化反応部の後段に直結して 設けられ、 かつ、 放射および対流により伝熱する伝熱管からなり、 該伝 熱管はガス流に対して実質的に直交して設けられており、 前記熱回収部 とガス化反応部が一つのベッセル内に設けられていることを特徴とする 石炭ガス化装置。 1. In a coal gasifier having a coal gasification reaction section and a heat recovery section for recovering heat of the reaction section, the heat recovery section is provided directly connected to a stage subsequent to the gasification reaction section, and is radiated. And a heat transfer tube that transfers heat by convection. The heat transfer tube is provided substantially orthogonal to the gas flow, and the heat recovery unit and the gasification reaction unit are provided in one vessel. A coal gasifier characterized by the following.
2 . 石炭のガス化反応部が上部反応領域と下部反応領域とを有し、 前記 二つの反応領域のそれぞれに石炭供給手段が設けられ、 上部反応領域と 直結して熱回収部が設けられている請求の範囲第 1項に記載の石炭ガス 化装置。  2. The coal gasification reaction section has an upper reaction area and a lower reaction area, and a coal supply means is provided in each of the two reaction areas, and a heat recovery section is provided directly connected to the upper reaction area. The coal gasifier according to claim 1.
3 . 前記ガス化反応部が耐火材を内張りした水冷壁で構成され、 前記熱 回収部が水冷管で形成されている請求の範囲第 1項または第 2項に記載 の石炭ガス化装置。  3. The coal gasifier according to claim 1, wherein the gasification reaction section is constituted by a water-cooled wall lined with a refractory material, and the heat recovery section is formed by a water-cooled tube.
4 . 前記ガス化反応部の後段に直結して設けた熱回収部が、 第 1の熱回 収部と、 該第 1の熱回収部の後段に設けた第 1の熱回収部の表面よりも 低温の表面の第 2の熱回収部を有する請求の範囲第 1項〜第 3項のいず れかに記載の石炭ガス化装置。  4. The heat recovery unit directly connected to the subsequent stage of the gasification reaction unit includes a first heat recovery unit and a surface of the first heat recovery unit provided downstream of the first heat recovery unit. The coal gasifier according to any one of claims 1 to 3, further comprising a second heat recovery unit having a low-temperature surface.
5 . 前記ガス化反応部と、 前記熱回収部との間に生成ガス中の炭素と灰 分の割合を、 炭素を供給することで調節する炭素供給手段を有する請求 の範囲第 1項〜第 4項のいずれかに記載の石炭ガス化装置。 5. A carbon supply means between the gasification reaction section and the heat recovery section, the carbon supply means for adjusting the ratio of carbon and ash in the product gas by supplying carbon. 5. The coal gasifier according to any one of items 4.
6 . 石炭をガス化する反応部と、 該反応部の熱を回収する熱回収部が一 つのベッセル内に設けられている石炭ガス化装置を用いた石炭ガス化方 法において、 6. In a coal gasification method using a coal gasifier in which a reaction section for gasifying coal and a heat recovery section for recovering heat of the reaction section are provided in one vessel,
前記熱回収部はガス化反応部の後段に直結して設けられ、 かつ、 放射 および対流によリ伝熱する伝熱管からなり、 該伝熱管はガス流に対して 実質的に直交して設けられておリ、  The heat recovery unit is provided directly after the gasification reaction unit, and is composed of a heat transfer tube that transfers heat by radiation and convection. The heat transfer tube is provided substantially orthogonal to the gas flow. Have been
前記反応部は上部反応領域と下部反応領域を有し、 上部反応領域には 石炭中の含有灰分が溶融しない温度とする量の酸化剤を供給し、 下部反 応領域には、 上部と下部とより供給した全石炭が一酸化炭素および水素 に変換するに必要な酸化剤量から、 上部に供給した酸化剤量を差し引い た量の酸化剤を供給し、 前記反応部に直結して設けた放射および対流に より伝熱する熱回収部により反応熱を回収することを特徴とする石炭ガ ス化方法。  The reaction section has an upper reaction area and a lower reaction area. The upper reaction area is supplied with an amount of oxidizing agent at a temperature at which the ash contained in the coal does not melt, and the lower reaction area has an upper and lower reaction area. Oxidizer is supplied by subtracting the oxidizer supplied to the upper part from the oxidizer required to convert all supplied coal to carbon monoxide and hydrogen, and the radiation provided directly to the reaction section A method for converting coal into gas, comprising recovering reaction heat by a heat recovery unit that transfers heat by convection.
7 . 上端と下端の断面積が減少するよう構成したガス化反応部内で石炭 と酸化剤を反応させ、 ガス化反応部の下端よリ灰分を溶融させて排出し、 ガス化反応部の上端よリ生成した可燃性ガスをその上部に直結して設け た熱回収部により冷却する石炭ガス化方法であって、  7. Coal reacts with the oxidizing agent in the gasification reaction section configured to reduce the cross-sectional area of the upper and lower ends, melts and discharges the ash from the lower end of the gasification reaction section, and discharges the ash from the upper end of the gasification reaction section. A coal gasification method in which regenerated combustible gas is cooled by a heat recovery unit provided directly above the combustible gas,
前記熱回収部は放射および対流にょリ伝熱する伝熱管からなり、 該伝 熱管はガス流に対して実質的に直交して設けられており、  The heat recovery unit includes a heat transfer tube that transfers heat to radiation and convection, and the heat transfer tube is provided substantially orthogonal to the gas flow.
前記ガス化反応部の下部には供給する石炭の灰分を溶融し得る温度と なる量の酸化剤を供給し、 ガス化反応部の上部には石炭中の含有灰分が 溶融しない温度となる量の酸化剤を供給し、 更に、 ガス化反応部と前記 熱回収部の間に設けた炭素供給手段から炭素を供給することによリ、 灰 分が熱回収部に付着しないように炭素量を制御することを特徴とする石 炭ガス化方法。 The lower part of the gasification reaction section is supplied with an amount of oxidizing agent at a temperature capable of melting the ash of the supplied coal, and the upper part of the gasification reaction section is supplied with an amount of oxidant at a temperature at which the ash contained in the coal does not melt. Supplying an oxidizing agent, and further, A coal gasification method comprising supplying carbon from a carbon supply means provided between heat recovery sections to control the amount of carbon so that ash does not adhere to the heat recovery section.
8 . ガス化された石炭ガスを脱塵装置に通すことにより分離した炭素を 含む灰分をガス化反応部にリサイクルして混合する請求の範囲第 6項ま たは第 7項に記載の石炭ガス化方法。  8. The coal gas according to claim 6 or 7, wherein the ash containing carbon separated by passing the gasified coal gas through a dust remover is recycled and mixed into the gasification reaction section. Method.
9 . 前記ガス化反応部の後段に直結して設けた熱回収部が、 第 1の熱回 収部と、 該第 1の熱回収部の後段に設けた第 1の熱回収部の表面よりも 低温の表面の第 2の熱回収部との二段の熱回収部よりなる請求の範囲第 6項〜第 8項のいずれかに記載の石炭ガス化方法。  9. A heat recovery section provided directly after the gasification reaction section is a first heat recovery section and a first heat recovery section provided after the first heat recovery section. The coal gasification method according to any one of claims 6 to 8, comprising a two-stage heat recovery unit with a second heat recovery unit having a low-temperature surface.
1 0 . 石炭ガス化装置、 酸素製造装置、 ガス精製装置、 および、 ガスタ 一ビン発電装置で構成された石炭ガス化複合発電システムにおいて、 前記石炭ガス化装置が、 石炭のガス化反応部、 該反応部の熱を回収す る熱回収部を有し、 前記熱回収部がガス化反応部の後段に直結して設け られ、 かつ、 放射および対流により伝熱する伝熱管からなり、 該伝熱管 はガス流に対して実質的に直交して設けられており、 前記熱回収部とガ ス化反応部が一つのベッセル内に設けられていることを特徴とする石炭 ガス化複合発電システム。  10. In a combined coal gasification power generation system including a coal gasification device, an oxygen production device, a gas purification device, and a gas turbine power generation device, the coal gasification device includes: a coal gasification reaction unit; A heat recovery unit that recovers heat of the reaction unit, wherein the heat recovery unit is provided directly connected to a subsequent stage of the gasification reaction unit, and includes a heat transfer tube that transfers heat by radiation and convection. Is provided substantially orthogonal to the gas flow, and the heat recovery section and the gasification reaction section are provided in a single vessel.
1 1 . 前記ガス化反応部の後段に直結して設けた熱回収部が、 第 1の熱 回収部と、 該第 1の熱回収部の後段に設けた第 1の熱回収部の表面よリ も低温の表面の第 2の熱回収部を有する請求の範囲第 1 0項に記載の石 炭ガス化複合発電システム。 1 1. A heat recovery section provided directly after the gasification reaction section is a first heat recovery section and a surface of a first heat recovery section provided after the first heat recovery section. 10. The integrated coal gasification combined cycle system according to claim 10, further comprising: a second heat recovery unit having a low-temperature surface.
1 2 . 前記ガス化反応部と、 前記熱回収部との間に生成ガス中の炭素と 灰分の割合を、 炭素を供給することで調節する炭素供給手段を有する請 求の範囲第 1 0項または第 1 1項に記載の石炭ガス化複合発電システム。12. Claim 10 having a carbon supply means between the gasification reaction section and the heat recovery section, the carbon supply means for adjusting the ratio of carbon and ash in the product gas by supplying carbon. Or the integrated coal gasification combined cycle system according to paragraph 11.
1 3 . ガス化された石炭ガスをガス精製装置に通すことによリ分離した 石炭ガス中の炭素を含む灰分をガス化反応部にリサイクルして混合する 請求の範囲第 1 0項〜第 1 2項のいずれかに記載の石炭ガス化複合発電 システム。 13. The ash containing carbon in the coal gas separated by passing the gasified coal gas through a gas purifier is recycled and mixed into the gasification reaction section. 3. The integrated coal gasification combined cycle system according to any one of items 2.
PCT/JP1997/001668 1996-05-20 1997-05-19 Coal gasification apparatus, coal gasification method and integrated coal gasification combined cycle power generating system WO1997044412A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU27900/97A AU730980B2 (en) 1996-05-20 1997-05-19 Coal gasification apparatus and a coal gasification hybrid power generation system
JP54199397A JP4150937B2 (en) 1996-05-20 1997-05-19 Coal gasifier and coal gasification method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP8/124396 1996-05-20
JP12439696 1996-05-20

Publications (1)

Publication Number Publication Date
WO1997044412A1 true WO1997044412A1 (en) 1997-11-27

Family

ID=14884404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/001668 WO1997044412A1 (en) 1996-05-20 1997-05-19 Coal gasification apparatus, coal gasification method and integrated coal gasification combined cycle power generating system

Country Status (5)

Country Link
JP (1) JP4150937B2 (en)
KR (1) KR20000015802A (en)
CN (1) CN1221446A (en)
AU (1) AU730980B2 (en)
WO (1) WO1997044412A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002001103A (en) * 2000-06-14 2002-01-08 Osaka Gas Co Ltd Method for controlling two-stage reactor
WO2003068894A1 (en) * 2002-02-12 2003-08-21 Hitachi, Ltd. Method and device for gasification
JP2008231295A (en) * 2007-03-22 2008-10-02 Electric Power Dev Co Ltd Gasification furnace
CN101608136B (en) * 2008-06-19 2012-10-24 侯长连 Efficient coal gasification furnace
JP2012251169A (en) * 2012-09-24 2012-12-20 Electric Power Dev Co Ltd Gasification furnace
CN105779007A (en) * 2016-03-25 2016-07-20 北京澳柯清洁煤气工程技术有限公司 Method for gasifying fly ash with waste heat utilization into coal gas

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101250439B (en) * 2008-03-28 2011-02-09 中国船舶重工集团公司第七一一研究所 Dry coal powder gasification stove
JP4898759B2 (en) * 2008-10-22 2012-03-21 三菱重工業株式会社 Coal gasifier
CN104479748B (en) * 2010-04-16 2018-01-05 新日铁住金工程技术株式会社 Coal gasifier
CN102443443A (en) * 2010-09-30 2012-05-09 新奥科技发展有限公司 Transcritical catalytic gasification method of coal
CN102226111A (en) * 2011-05-27 2011-10-26 吴道洪 Method for gasifying cyclone bed powder coal
JP5818704B2 (en) * 2012-01-25 2015-11-18 三菱日立パワーシステムズ株式会社 Gasification furnace, gasification power plant
JP5518161B2 (en) * 2012-10-16 2014-06-11 三菱重工業株式会社 Gasifier
CN103409170B (en) * 2013-08-22 2015-07-01 中国船舶重工集团公司第七一一研究所 Slag blockage preventing gasification reactor with graded carbonaceous fuel feeding
JP6637797B2 (en) * 2016-03-11 2020-01-29 三菱日立パワーシステムズ株式会社 Carbon-containing raw material gasification system and method for setting oxidizing agent distribution ratio
CN106590760A (en) * 2017-01-10 2017-04-26 北京清创晋华科技有限公司 Gas producer with constant liquid level and waste heat boiler
CN109373313B (en) * 2018-12-03 2024-03-22 北京京诚泽宇能源环保工程技术有限公司 Purification and recovery integrated heating furnace system
KR20230067743A (en) * 2021-11-08 2023-05-17 주식회사 선진티에스 Combined system of coal-gasifier and blast-furnace using water-free coal and method using the same

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5529593A (en) * 1978-08-18 1980-03-01 Metallgesellschaft Ag Gasifying of solid fuel
JPS57179289A (en) * 1981-04-28 1982-11-04 Agency Of Ind Science & Technol Recovering method of heat from gasified product of hydrocarbon
JPS58127789A (en) * 1982-01-20 1983-07-29 ル−ルコ−レ・アクチエンゲゼルシヤフト Quenching process in coal gasification
JPS58194987A (en) * 1982-04-26 1983-11-14 シエル・インタ−ナシヨネイル・リサ−チ・マ−チヤツピイ・ベ−・ウイ Gasification of solid carbon-containing fuel
JPS59172589A (en) * 1983-03-23 1984-09-29 Hitachi Ltd Gasification of coal
JPS60158293A (en) * 1984-01-11 1985-08-19 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Synthetic gas manufacture and apparatus
JPS61207492A (en) * 1985-03-13 1986-09-13 Mitsubishi Heavy Ind Ltd Coal gasifying apparatus
JPS61228093A (en) * 1985-04-01 1986-10-11 Mitsubishi Heavy Ind Ltd Fuel gasification apparatus
JPH0797579A (en) * 1993-09-28 1995-04-11 Hitachi Ltd Device for gasifying coal
JPH07286186A (en) * 1994-04-20 1995-10-31 Hitachi Ltd Coal gasification power generation plant
JPH07332612A (en) * 1994-06-13 1995-12-22 Mitsubishi Heavy Ind Ltd Apparatus for oxidizing cas and its operating method
JPH0873869A (en) * 1994-09-06 1996-03-19 Mitsubishi Heavy Ind Ltd Coal gasification furnace having two-stage jet bed
JPH08104882A (en) * 1994-10-05 1996-04-23 Hitachi Ltd Coal gasifying furnace of entrained layer and method for gasifying coal

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5529593A (en) * 1978-08-18 1980-03-01 Metallgesellschaft Ag Gasifying of solid fuel
JPS57179289A (en) * 1981-04-28 1982-11-04 Agency Of Ind Science & Technol Recovering method of heat from gasified product of hydrocarbon
JPS58127789A (en) * 1982-01-20 1983-07-29 ル−ルコ−レ・アクチエンゲゼルシヤフト Quenching process in coal gasification
JPS58194987A (en) * 1982-04-26 1983-11-14 シエル・インタ−ナシヨネイル・リサ−チ・マ−チヤツピイ・ベ−・ウイ Gasification of solid carbon-containing fuel
JPS59172589A (en) * 1983-03-23 1984-09-29 Hitachi Ltd Gasification of coal
JPS60158293A (en) * 1984-01-11 1985-08-19 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Synthetic gas manufacture and apparatus
JPS61207492A (en) * 1985-03-13 1986-09-13 Mitsubishi Heavy Ind Ltd Coal gasifying apparatus
JPS61228093A (en) * 1985-04-01 1986-10-11 Mitsubishi Heavy Ind Ltd Fuel gasification apparatus
JPH0797579A (en) * 1993-09-28 1995-04-11 Hitachi Ltd Device for gasifying coal
JPH07286186A (en) * 1994-04-20 1995-10-31 Hitachi Ltd Coal gasification power generation plant
JPH07332612A (en) * 1994-06-13 1995-12-22 Mitsubishi Heavy Ind Ltd Apparatus for oxidizing cas and its operating method
JPH0873869A (en) * 1994-09-06 1996-03-19 Mitsubishi Heavy Ind Ltd Coal gasification furnace having two-stage jet bed
JPH08104882A (en) * 1994-10-05 1996-04-23 Hitachi Ltd Coal gasifying furnace of entrained layer and method for gasifying coal

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002001103A (en) * 2000-06-14 2002-01-08 Osaka Gas Co Ltd Method for controlling two-stage reactor
WO2003068894A1 (en) * 2002-02-12 2003-08-21 Hitachi, Ltd. Method and device for gasification
JP2008231295A (en) * 2007-03-22 2008-10-02 Electric Power Dev Co Ltd Gasification furnace
CN101608136B (en) * 2008-06-19 2012-10-24 侯长连 Efficient coal gasification furnace
JP2012251169A (en) * 2012-09-24 2012-12-20 Electric Power Dev Co Ltd Gasification furnace
CN105779007A (en) * 2016-03-25 2016-07-20 北京澳柯清洁煤气工程技术有限公司 Method for gasifying fly ash with waste heat utilization into coal gas
CN105779007B (en) * 2016-03-25 2019-02-01 北京澳柯清洁煤气工程技术有限公司 The method that the flyash utilized that has surplus heat regasifies into coal gas

Also Published As

Publication number Publication date
JP4150937B2 (en) 2008-09-17
KR20000015802A (en) 2000-03-15
AU730980B2 (en) 2001-03-22
CN1221446A (en) 1999-06-30
AU2790097A (en) 1997-12-09

Similar Documents

Publication Publication Date Title
WO1997044412A1 (en) Coal gasification apparatus, coal gasification method and integrated coal gasification combined cycle power generating system
JP5606623B2 (en) Biomass pyrolysis gasification method and apparatus via two interconnected furnaces
EP1194508B1 (en) Electric power generating system by gasification
US8480766B2 (en) Gasification equipment
PL195893B1 (en) Method for producing clean energy from coal
KR20080028409A (en) A system for the conversion of coal to a gas of a specified composition
AU2008330927B2 (en) Burner for highly caking coal, and gasifier
AU782972B2 (en) Method for the gasification of coal
BRPI0722330B1 (en) PROCESS AND INSTALLATION TO PRODUCE COAL AND FUEL GAS
CN116867565A (en) Apparatus comprising a chemical chain process
JP3976888B2 (en) Coal air bed gasification method and apparatus
JPS6150995B2 (en)
KR100637273B1 (en) High temperature air gasification process for hydrogen production and apparatus thereof
JP3578494B2 (en) Spouted bed coal gasifier and coal gasification method
JP3559163B2 (en) Gasification method using biomass and fossil fuel
JPH10251669A (en) Gasification/generation system
JP4435966B2 (en) Coal air bed type gasification method
JPH10279960A (en) Fluidized bed gasification
JP2000328074A (en) Coal gasification system
JP3952236B2 (en) Fossil fuel gasification power plant and method for preheating the equipment
JPS6032672B2 (en) Method for producing electrical energy and gas from pulverized caking coal
JP6957198B2 (en) Gasification furnace equipment and gasification combined cycle equipment equipped with this
JP2614091B2 (en) Spouted bed coal gasifier
JPS62260889A (en) Method of desulfurization in gasifying oven
JP2004067896A (en) Waste gasification system

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 97195408.9

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1019980709351

Country of ref document: KR

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA

WWP Wipo information: published in national office

Ref document number: 1019980709351

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1019980709351

Country of ref document: KR