JP6016196B2 - Waste gasification and melting apparatus and waste gasification and melting method - Google Patents

Waste gasification and melting apparatus and waste gasification and melting method Download PDF

Info

Publication number
JP6016196B2
JP6016196B2 JP2013065823A JP2013065823A JP6016196B2 JP 6016196 B2 JP6016196 B2 JP 6016196B2 JP 2013065823 A JP2013065823 A JP 2013065823A JP 2013065823 A JP2013065823 A JP 2013065823A JP 6016196 B2 JP6016196 B2 JP 6016196B2
Authority
JP
Japan
Prior art keywords
fuel gas
tuyere
oxygen
enriched air
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013065823A
Other languages
Japanese (ja)
Other versions
JP2014190599A (en
Inventor
内山 武
武 内山
中山 剛
剛 中山
堀内 聡
聡 堀内
奥山 契一
契一 奥山
肇 秋山
肇 秋山
脇元 一政
一政 脇元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2013065823A priority Critical patent/JP6016196B2/en
Publication of JP2014190599A publication Critical patent/JP2014190599A/en
Application granted granted Critical
Publication of JP6016196B2 publication Critical patent/JP6016196B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Incineration Of Waste (AREA)
  • Gasification And Melting Of Waste (AREA)

Description

本発明は、コークス床を有する炉体内で廃棄物を熱分解し残渣を溶融する廃棄物ガス化溶融炉のコークス床へ、酸素富化空気と燃料ガスとを、上記廃棄物ガス化溶融炉の炉体に設けられた羽口から吹き込むこととする廃棄物ガス化溶融装置及び廃棄物ガス化溶融方法に関する。   The present invention is directed to a waste gasification melting furnace in which waste is pyrolyzed in a furnace having a coke bed to melt the residue, and oxygen-enriched air and fuel gas are fed to the waste gasification melting furnace. The present invention relates to a waste gasification and melting apparatus and a waste gasification and melting method to be blown from a tuyere provided in a furnace body.

都市ごみやシュレッダーダストなどの廃棄物を処理する技術として、廃棄物を熱分解、燃焼して、熱分解残渣を溶融しスラグにして排出する廃棄物溶融処理が知られている。   As a technology for treating waste such as municipal waste and shredder dust, waste melting treatment is known in which waste is pyrolyzed and burned to melt the pyrolysis residue into slag and discharge it.

この処理方法は、廃棄物を熱分解してガス化することによりその燃焼熱を回収することができるとともに、熱分解残渣を溶融してスラグとして排出した後に、埋立処分などで最終処分されるべき量を減容することができる利点を有している。このような溶融処理方法には幾つかの方式があるが、その一つとして、竪型をなすシャフト炉式廃棄物ガス化溶融炉による方法がある。   This treatment method can recover the heat of combustion by pyrolyzing and gasifying waste, and it should be disposed of in landfills after melting the pyrolysis residue and discharging it as slag. It has the advantage that the volume can be reduced. There are several methods for such melting treatment, and one of them is a method using a shaft furnace type waste gasification melting furnace having a vertical shape.

このシャフト炉式廃棄物ガス化溶融炉は、例えば、炉下部に堆積させたコークスを燃焼させ、この高温のコークス上へ廃棄物を投入して、熱分解及び部分酸化させてガス化するとともに残渣を溶融してスラグにする処理を行なう炉である(特許文献1参照)。   This shaft furnace type waste gasification melting furnace, for example, burns coke deposited in the lower part of the furnace, throws the waste on this high temperature coke, pyrolyzes and partially oxidizes it, and gasifies it as residue Is a furnace that performs a process of melting slag into slag (see Patent Document 1).

特許文献1のシャフト炉式廃棄物ガス化溶融炉においては、竪型筒状をなす炉体の機能が大別して縦(上下)方向で3つの領域に区分される。すなわち、炉下部にコークスを堆積させたコークス床を有する高温燃焼帯が形成され、この高温燃焼帯の上に廃棄物層が形成され、炉体の上部にて該廃棄物層の上方に大きな空間のフリーボード部をなしている。   In the shaft furnace type waste gasification and melting furnace of Patent Document 1, the functions of a vertical cylindrical furnace body are roughly divided into three regions in the vertical (up and down) direction. That is, a high-temperature combustion zone having a coke bed with coke deposited at the lower part of the furnace is formed, a waste layer is formed on the high-temperature combustion zone, and a large space above the waste layer at the upper part of the furnace body. The free board part is made.

かかるガス化溶融炉では、上記3つの領域のそれぞれでは酸素含有ガスの炉内への吹込みが行われる。炉下部における高温燃焼帯には主羽口が設けられていて、投入されて堆積されたコークス床のコークスを燃焼させて、廃棄物の熱分解残渣を溶融する溶融熱源を得るために酸素富化空気が吹き込まれる。また、廃棄物層には副羽口が設けられ、投入されて堆積された廃棄物を緩やかに流動させると共に、廃棄物を熱分解及び部分酸化させるために空気が吹き込まれる。また、フリーボード部には三段目羽口が設けられ、廃棄物が熱分解されて生成した熱分解ガス(可燃性ガス)の一部を部分燃焼させて内部を所定温度に維持するために空気が吹き込まれる。   In such a gasification melting furnace, oxygen-containing gas is blown into the furnace in each of the three regions. A main tuyere is provided in the high-temperature combustion zone at the bottom of the furnace, and oxygen is enriched to obtain a melting heat source that burns the coke of the coke bed deposited and deposited to melt the pyrolysis residue of waste Air is blown. In addition, the waste layer is provided with a sub tuyere, and air is blown in order to gently flow the waste deposited and deposited, and to thermally decompose and partially oxidize the waste. In addition, the free board part is provided with a third stage tuyere to partially burn part of the pyrolysis gas (combustible gas) generated by pyrolyzing waste and maintaining the inside at a predetermined temperature Air is blown.

このようにシャフト炉式廃棄物ガス化溶融炉は、一つの炉で、廃棄物をその炉内での降下に伴い熱分解ガス化処理と溶融処理の両方を行うことのできる設備である。投入された廃棄物は熱分解され、ガスと残渣が生成される。主羽口からの酸素富化空気の送風によりコークス床のコークスが燃焼され高温燃焼帯が形成され、廃棄物の熱分解残渣が溶融されスラグとメタルとして排出される。コークス床はコークス同士間に生ずる空隙で、主羽口からの酸素富化空気やコークス燃焼により発生した高温ガスを通ガスさせるとともに、溶融したスラグとメタルを通液させる高温火格子としても機能している。高温燃焼帯のコークス燃焼により発生した高温ガスが高温燃焼帯の上に形成された廃棄物層の廃棄物を加熱し、副羽口からの空気の送風により廃棄物は熱分解され、この熱分解により発生した可燃性ガスを含むガスは廃棄物層内を上昇し、フリーボード部を経て、炉内上部に設けられた排出煙道より、炉外の二次燃焼室へ排出される。ガスは可燃ガスを多量に含んでいて二次燃焼室で燃焼され、ボイラで熱回収され蒸気を発生させその蒸気が発電等に用いられる。ボイラから排出されたガスは、サイクロンで比較的粗いダストが除去され、さらに、減温装置で冷却され、有害物質除去剤との反応により有害ガスが除去され、集塵機で除塵処理されるなど排ガス処理された後、煙突から大気に放散される。   As described above, the shaft furnace type waste gasification and melting furnace is a facility capable of performing both pyrolysis gasification treatment and melting treatment in one furnace as the waste falls in the furnace. The input waste is pyrolyzed to produce gas and residue. The coke in the coke floor is combusted by blowing oxygen-enriched air from the main tuyere to form a high-temperature combustion zone, and the pyrolysis residue of the waste is melted and discharged as slag and metal. The coke floor is a gap created between cokes, and it functions as a high-temperature grate that allows oxygen-enriched air from the main tuyere and high-temperature gas generated by coke combustion to flow, and also allows molten slag and metal to flow. ing. The high-temperature gas generated by coke combustion in the high-temperature combustion zone heats the waste in the waste layer formed on the high-temperature combustion zone, and the waste is thermally decomposed by blowing air from the sub tuyere. The gas containing the combustible gas generated by the gas rises in the waste layer, and is discharged to the secondary combustion chamber outside the furnace from the exhaust flue provided in the upper part of the furnace through the free board part. The gas contains a large amount of combustible gas and is combusted in the secondary combustion chamber, and heat is recovered by the boiler to generate steam, which is used for power generation and the like. Exhaust gas treatment, such as removing relatively coarse dust with a cyclone, cooling with a temperature reducing device, removing harmful gas by reaction with a hazardous substance remover, and removing dust with a dust collector And then released from the chimney to the atmosphere.

かかる廃棄物ガス化溶融炉では、炉底部にコークスを堆積させたコークス床が形成され、コークスが燃焼して熱分解残渣の溶融熱源となっているが、近年、化石燃料に由来するコークスの使用量を低減して二酸化炭素排出量を削減することが要望されている。   In such a waste gasification and melting furnace, a coke bed in which coke is deposited at the bottom of the furnace is formed, and the coke burns to become a heat source for melting pyrolysis residues. Recently, coke derived from fossil fuels has been used. There is a demand to reduce the amount of carbon dioxide emissions by reducing the amount.

そこで、コークスの一部の代替としてLNG、LPG、廃棄物ガス化溶融炉にて熱分解により発生する可燃ガス等の燃料ガスを利用することが検討され、例えば、特許文献2では、主羽口(送風羽口)から酸素富化空気とともに燃料ガスを吹き込むことが提案されている。   Therefore, it has been studied to use fuel gas such as LNG, LPG, and combustible gas generated by thermal decomposition in a waste gasification and melting furnace as a substitute for a part of coke. It has been proposed to blow fuel gas together with oxygen-enriched air from (blower tuyere).

特許文献2では、酸素富化空気を炉内へ送入する主羽口(送風羽口)の先端(開口)が炉内に進入してコークス床内にまで突入して位置するようにして該主羽口が設けられている。燃料ガスはこの羽口の先端位置で主羽口内へ供給されて、主羽口先端から酸素富化空気とともにコークス床に吹き出され燃焼され、燃料ガスの燃焼熱がコークス床での溶融熱源の一部として用いられる。   In Patent Document 2, the tip (opening) of the main tuyere (blower tuyere) that feeds oxygen-enriched air into the furnace enters the furnace and enters the coke floor to be positioned. A main tuyere is provided. The fuel gas is supplied into the main tuyere at the tip of the tuyere, blown out from the tip of the main tuyere together with oxygen-enriched air and burned, and the combustion heat of the fuel gas is a source of melting heat in the coke bed. Used as a part.

特開平09−060830JP 09-060830 A 特開2001−090923JP 2001-090923 A

二酸化炭素排出量を削減するため、廃棄物ガス化溶融炉におけるコークスの使用量を低減するべく、特許文献2のようにコークスの一部の代替として燃料ガスを吹き込むとしても、次のような問題がある。すなわち、特許文献2では、燃料ガスと酸素富化空気が吹き出される主羽口の先端はコークス床内に位置していてコークス堆積層に直面しているのでコークス粒による通気抵抗が大きい。したがって、主羽口から吹き込まれる酸素富化空気の送風流量が低下してしまうので、燃料ガスの燃焼に必要な酸素量が不足し、その結果、燃料ガスの燃焼率が低下するという問題が生じる。   In order to reduce carbon dioxide emissions, even if fuel gas is blown in as a substitute for a part of coke as in Patent Document 2 in order to reduce the amount of coke used in a waste gasification and melting furnace, the following problems occur: There is. That is, in Patent Document 2, the tip of the main tuyere from which the fuel gas and oxygen-enriched air are blown is located in the coke floor and faces the coke deposit layer, so that the airflow resistance due to the coke grains is large. Therefore, since the flow rate of the oxygen-enriched air blown from the main tuyere is reduced, the amount of oxygen necessary for the combustion of the fuel gas is insufficient, resulting in a problem that the combustion rate of the fuel gas is reduced. .

本発明は、このような事情に鑑み、コークス床に吹き込まれる酸素富化空気量の送風流量が低下しても、燃料ガスの燃焼率の低下を防止できる廃棄物ガス化溶融装置及び廃棄物ガス化溶融方法を提供することを課題とする。   In view of such circumstances, the present invention provides a waste gasification and melting apparatus and waste gas that can prevent a reduction in the combustion rate of fuel gas even if the flow rate of the oxygen-enriched air blown into the coke floor is reduced. It is an object to provide a chemical melting method.

上述した課題は、本発明によると、廃棄物ガス化溶融装置及び廃棄物ガス化溶融方法に関し次のように構成することで解決される。   According to the present invention, the above-described problems are solved by configuring the waste gasification and melting apparatus and the waste gasification and melting method as follows.

<廃棄物ガス化溶融装置>
本発明に係る廃棄物ガス化溶融装置は、コークス床を有する炉体内で廃棄物を熱分解し残渣を溶融する廃棄物ガス化溶融炉のコークス床へ、酸素富化空気と燃料ガスとを、上記廃棄物ガス化溶融炉の炉体に設けられた羽口から吹き込むこととする。
<Waste gasification and melting equipment>
The waste gasification and melting apparatus according to the present invention, oxygen-enriched air and fuel gas are supplied to a coke bed of a waste gasification and melting furnace that thermally decomposes waste and melts residue in a furnace having a coke bed. The waste gasification melting furnace is blown from the tuyere provided in the furnace body.

かかる廃棄物ガス化溶融装置において、本発明では、上記羽口は炉体の周方向で複数位置に設けられ、酸素富化空気を羽口へ吹込み供給するように各羽口に対して設けられた酸素富化空気供給装置と、燃料ガスを上記複数の羽口へ供給するように各羽口に対して設けられた燃料ガス供給装置と、それぞれの燃料ガス供給装置を独立して制御する制御装置とを有し、各羽口における酸素富化空気供給装置は、該各羽口への酸素富化空気の送風量を計測する流量計を有し、制御装置は、各羽口での酸素富化空気の送風量と燃料ガス供給量の比を所定範囲内とするように、各羽口における酸素富化空気供給装置の流量計での計測値に応じて対応羽口における燃料ガス供給装置からの燃料ガス供給量を制御することを特徴としている。   In such a waste gasification and melting apparatus, in the present invention, the tuyere is provided at a plurality of positions in the circumferential direction of the furnace body, and is provided for each tuyere so as to blow and supply oxygen-enriched air to the tuyere. The oxygen-enriched air supply device, the fuel gas supply device provided for each tuyere to feed the fuel gas to the plurality of tuyere, and the respective fuel gas supply devices are controlled independently The oxygen-enriched air supply device at each tuyere has a flow meter for measuring the amount of oxygen-enriched air blown into each tuyere, and the control device is provided at each tuyere. Fuel gas supply at the corresponding tuyere according to the measured value with the flow meter of the oxygen-enriched air supply device at each tuyere so that the ratio of the oxygen-enriched air blowing rate and the fuel gas feed rate is within a predetermined range It is characterized by controlling the amount of fuel gas supplied from the apparatus.

本発明では、制御装置が、各羽口における酸素富化空気供給装置の流量計での計測値に応じて対応羽口における燃料ガス供給装置からの燃料ガス供給量を制御することにより、各羽口での酸素富化空気の送風量と燃料ガス供給量の比が所定範囲内に収められる。したがって、燃料ガスの十分な燃焼率を確保できるように上記所定範囲を設定しておくことにより、仮に、各羽口から吹き込まれる酸素富化空気の送風流量が低下しても、燃料ガスの燃焼率の低下を確実に防止できる。また、上記制御装置は、炉体の周方向の複数位置に設けられた各羽口にそれぞれ対応する燃料ガス供給装置を独立して制御しているので、酸素富化空気の送風流量低下の程度が各羽口によって異なっていても、それぞれの各羽口において、燃料ガスの十分な燃焼率を確実に確保できる。   In the present invention, the control device controls the fuel gas supply amount from the fuel gas supply device at the corresponding tuyere according to the measured value of the flow meter of the oxygen-enriched air supply device at each tuyere, thereby The ratio of the amount of oxygen-enriched air blown at the mouth and the amount of fuel gas supplied is within a predetermined range. Therefore, by setting the predetermined range so as to ensure a sufficient combustion rate of the fuel gas, even if the flow rate of the oxygen-enriched air blown from each tuyere is reduced, the combustion of the fuel gas It is possible to reliably prevent the rate from decreasing. In addition, since the control device independently controls the fuel gas supply device corresponding to each tuyere provided at a plurality of positions in the circumferential direction of the furnace body, the degree of decrease in the blowing flow rate of oxygen-enriched air However, even if each tuyere is different, a sufficient combustion rate of the fuel gas can be reliably ensured in each tuyere.

<廃棄物ガス化溶融方法>
本発明に係る廃棄物ガス化溶融方法は、コークス床を有する炉体内で廃棄物を熱分解し残渣を溶融する廃棄物ガス化溶融炉のコークス床へ、酸素富化空気と燃料ガスとを、上記廃棄物ガス化溶融炉の炉体に設けられた羽口から吹き込むこととする。
<Waste gasification and melting method>
In the waste gasification melting method according to the present invention, the oxygen-enriched air and the fuel gas are supplied to the coke bed of the waste gasification melting furnace in which the waste is thermally decomposed in the furnace having the coke bed and the residue is melted. The waste gasification melting furnace is blown from the tuyere provided in the furnace body.

かかる廃棄物ガス化溶融方法において、本発明では、炉体の周方向複数位置で炉体に設けられた羽口のそれぞれで互いに独立して、酸素富化空気そして燃料ガスを供給し、各羽口への酸素富化空気の送風量を計測し、各羽口での酸素富化空気の送風量と燃料ガス供給量の比を所定範囲内とするように上記送風量の計測値に応じて該羽口への燃料ガス供給量を制御することを特徴としている。   In this waste gasification and melting method, in the present invention, oxygen-enriched air and fuel gas are supplied independently from each other at each tuyere provided at the furnace body at a plurality of positions in the circumferential direction of the furnace body. Measure the amount of oxygen-enriched air blown into the mouth and according to the measured value of the amount of air blown so that the ratio between the amount of oxygen-enriched air blown at each tuyere and the fuel gas supply amount is within a predetermined range. The fuel gas supply amount to the tuyere is controlled.

本発明は、以上のように、制御装置が、各羽口での酸素富化空気の送風量と燃料ガス供給量の比が所定範囲内となるように、各羽口における酸素富化空気供給装置の流量計での計測値に応じて対応羽口における燃料ガス供給装置からの燃料ガス供給量を制御するので、各羽口から吹き込まれる酸素富化空気の送風流量が低下しても、燃料ガスの燃焼率の低下を確実に防止できる。また、上記制御装置による燃料ガス供給量の制御は、炉体の周方向の複数位置に設けられた各羽口にそれぞれ対応する燃料ガス供給装置に対して独立して行われるので、酸素富化空気量の送風流量低下の程度が各羽口によって異なっていても、それぞれの羽口において、燃料ガスの十分な燃焼率を確実に確保できる。また、燃料ガスをコークスの一部の代替として用い、燃焼熱を溶融熱源として用いることが効率よくできるため、コークスの使用量を低減して二酸化炭素排出量を削減することができる。   As described above, according to the present invention, the control device supplies the oxygen-enriched air at each tuyere so that the ratio of the amount of blown oxygen-enriched air at each tuyere and the fuel gas supply rate is within a predetermined range. Since the fuel gas supply amount from the fuel gas supply device at the corresponding tuyere is controlled according to the measured value with the flow meter of the device, even if the blowing flow rate of the oxygen-enriched air blown from each tuyere decreases, the fuel A reduction in gas combustion rate can be reliably prevented. Further, the control of the fuel gas supply amount by the control device is performed independently for the fuel gas supply devices respectively corresponding to the tuyere provided at a plurality of positions in the circumferential direction of the furnace body. Even if the degree of decrease in the air flow rate of air varies between tuyere, a sufficient combustion rate of fuel gas can be reliably ensured in each tuyere. In addition, fuel gas can be used as a substitute for a part of coke and combustion heat can be efficiently used as a heat source for melting, so the amount of coke used can be reduced and the amount of carbon dioxide emissions can be reduced.

本発明の一実施形態としての廃棄物ガス化溶融装置の概要構成を示す図である。It is a figure which shows schematic structure of the waste gasification melting apparatus as one Embodiment of this invention. 図1の廃棄物ガス化溶融装置について、各羽口における燃料ガスの供給量を制御する形態を示す概略図である。It is the schematic which shows the form which controls the supply amount of the fuel gas in each tuyere about the waste gasification-melting apparatus of FIG.

以下、添付図面にもとづき、本発明の実施形態を説明する。本実施形態では、シャフト炉式廃棄物ガス化溶融炉のコークス床へ酸素含有ガスとしての酸素富化空気と燃料ガスとを混合した混合気体を吹き込む際に、酸素富化空気の送風量に応じて燃料ガス供給量を制御することを特徴としているが、これらの特徴についての説明に先立ち、図1にもとづき、このシャフト炉式廃棄物ガス化溶融炉の概要構成を説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In the present embodiment, when a mixed gas in which oxygen-enriched air as an oxygen-containing gas and fuel gas are mixed is blown into the coke bed of the shaft furnace type waste gasification and melting furnace, according to the blown amount of oxygen-enriched air. The fuel gas supply amount is controlled, and prior to the description of these features, a schematic configuration of the shaft furnace type waste gasification and melting furnace will be described with reference to FIG.

図1に示される本発明の一実施形態で採用されているシャフト炉式廃棄物ガス化溶融炉には、ガス化溶融炉1の炉上部に、処理対象物としての廃棄物、燃料としてのコークス、スラグの成分調整材としての石灰石を炉内へ投入するための投入口2が設けられ、また、上部側方には炉内のガスを炉外へ排出するためのガス排出口3が設けられている。また、ガス化溶融炉1の炉底部には溶融スラグと溶融金属を排出するための出滓口4が設けられている。   A shaft furnace type waste gasification and melting furnace employed in an embodiment of the present invention shown in FIG. 1 includes waste as a processing object and coke as fuel in the upper part of the gasification and melting furnace 1. An inlet 2 for introducing limestone as a slag component adjusting material into the furnace is provided, and a gas outlet 3 for exhausting the gas in the furnace to the outside of the furnace is provided on the upper side. ing. In addition, an outlet 4 for discharging molten slag and molten metal is provided at the bottom of the gasification melting furnace 1.

シャフト炉式廃棄物ガス化溶融炉は、そのガス化溶融炉1の内部空間が縦方向で3つの領域に大別されていて、下方から、炉下部に形成された下部シャフト部I、その上に位置する中部シャフト部II、上部に形成されたフリーボード部IIIを有する領域となっている。これらの各部I,II,IIIは、それぞれ次のような機能を有する領域となっている。す
なわち、下部シャフト部Iは、堆積されたコークスでコークス床を形成し、コークスを燃焼させて高温燃焼帯を形成する領域、中部シャフト部IIは、この高温燃焼帯上に投入された廃棄物の堆積により形成された廃棄物層の廃棄物を熱分解させる領域、フリーボード部IIIは、生成した可燃性ガスを部分燃焼させる領域である。
In the shaft furnace type waste gasification and melting furnace, the internal space of the gasification and melting furnace 1 is roughly divided into three regions in the vertical direction. This is a region having a middle shaft portion II located at the top and a free board portion III formed at the top. Each of these parts I, II, and III is an area having the following functions. That is, the lower shaft portion I forms a coke bed with the deposited coke, and the coke is burned to form a high temperature combustion zone, and the middle shaft portion II is a waste of the waste put on the high temperature combustion zone. A region where the waste of the waste layer formed by deposition is thermally decomposed, the free board part III, is a region where the generated combustible gas is partially combusted.

廃棄物ガス化溶融炉1の上方には、都市ごみ等の廃棄物、コークス、生成するスラグの成分調整材として使用する石灰石をそれぞれ供給する供給装置(図示せず)が配設されており、この供給装置から供給された廃棄物、コークス、石灰石は搬送コンベア(図示せず)により搬送され炉上部の上記投入口2から炉内に投入される。   Above the waste gasification and melting furnace 1, a supply device (not shown) for supplying waste such as municipal waste, coke, and limestone used as a component adjusting material for slag to be generated is disposed. Waste, coke, and limestone supplied from this supply device are transported by a transport conveyor (not shown) and charged into the furnace through the charging port 2 at the top of the furnace.

廃棄物ガス化溶融炉1に形成された上記下部シャフト部I、中部シャフト部II、フリーボード部IIIの各部に対して、それぞれ酸素含有ガスを吹き込む羽口が炉壁に設けられている。すなわち、下部シャフト部Iには、堆積されたコークスを燃焼させて高温燃焼帯を形成し、熱分解残渣を溶融するための混合気体を吹き込む主羽口5が設けられ、中部シャフト部IIには、投入されて堆積された廃棄物を部分燃焼させると共に廃棄物を緩やかに流動させながら熱分解、燃焼させるための空気を吹き込む副羽口6が設けられ、フリーボード部IIIには、廃棄物が熱分解して生成した可燃性ガスを部分燃焼させて炉内部を所定温度に維持するための空気を吹き込む三段羽口7が設けられている。主羽口5、副羽口6および三段羽口7はそれぞれ炉体の周方向で複数位置に設けられている(主羽口5については図2参照)。   A tuyere for blowing oxygen-containing gas is provided on the furnace wall for each of the lower shaft portion I, the middle shaft portion II, and the freeboard portion III formed in the waste gasification melting furnace 1. That is, the lower shaft portion I is provided with a main tuyere 5 that burns the deposited coke to form a high-temperature combustion zone and blows a gas mixture for melting the pyrolysis residue, and the middle shaft portion II In addition, a sub tuyere 6 is provided to blow in air for causing thermal decomposition and combustion while causing the waste deposited and deposited to partially burn and slowly flow the waste. A three-stage tuyere 7 for blowing air for partially burning the combustible gas generated by pyrolysis and maintaining the inside of the furnace at a predetermined temperature is provided. The main tuyere 5, the sub tuyere 6 and the three-stage tuyere 7 are provided at a plurality of positions in the circumferential direction of the furnace body (see FIG. 2 for the main tuyere 5).

複数の主羽口5のそれぞれには、各主羽口5に対応して、混合気体を炉内へ吹き込むための送気管(図示せず)が接続されており、該送気管には酸素富化空気供給装置14および燃料ガス供給装置15が接続されている。酸素富化空気供給装置14は、空気に酸素を混入して得られた酸素含有ガスとしての酸素富化空気を上記送気管に供給し、燃料ガス供給装置15は、燃料ガスを上記送気管に供給するようになっている。上記送気管内では、酸素富化空気と燃料ガスとが混合されて混合気体が形成される。該送気管は、酸素富化空気と燃料ガスとを管内で混合できる構成を有していればよく、例えば、単管、二重管、三重管等を用いることができる。   Each of the plurality of main tuyere 5 is connected to an air supply pipe (not shown) for injecting a mixed gas into the furnace corresponding to each main tuyere 5, and the air supply pipe is oxygen-rich. The converted air supply device 14 and the fuel gas supply device 15 are connected. The oxygen-enriched air supply device 14 supplies oxygen-enriched air as an oxygen-containing gas obtained by mixing oxygen into the air to the air supply pipe, and the fuel gas supply device 15 supplies the fuel gas to the air supply pipe. It comes to supply. In the air pipe, oxygen-enriched air and fuel gas are mixed to form a mixed gas. The air supply tube only needs to have a configuration in which oxygen-enriched air and fuel gas can be mixed in the tube. For example, a single tube, a double tube, a triple tube, or the like can be used.

また、本実施形態の廃棄物ガス化溶融装置には制御装置16を有しており、該制御装置16は、後述するように、燃料ガス供給装置15からの主羽口5への燃料ガス供給量を、酸素富化空気供給装置14から主羽口5への酸素富化空気の送風量に応じて制御するようになっている。この燃料ガス供給量の制御は、各主羽口5に対して設けられた燃料ガス供給装置15について独立して行われる。   Further, the waste gasification and melting apparatus of the present embodiment has a control device 16, and the control device 16 supplies fuel gas from the fuel gas supply device 15 to the main tuyere 5 as will be described later. The amount is controlled in accordance with the amount of oxygen-enriched air blown from the oxygen-enriched air supply device 14 to the main tuyere 5. The control of the fuel gas supply amount is performed independently for the fuel gas supply device 15 provided for each main tuyere 5.

図2は、図1の廃棄物ガス化溶融装置について、各主羽口5における燃料ガスの供給量を制御する形態を示す概略図である。図2では、後述の送風流量計17から制御装置16への信号の流れが細い破線の矢印で、制御装置16から後述の燃料ガス供給量調整装置18への信号の流れが太い破線の矢印で示されている。また、制御装置16は、複数の主羽口5(図2の例では四つ)のそれぞれと対応しており、図2では、制御装置16と各主羽口5との対応関係が、同一のアルファベット(A〜D)を付すことにより示されている。   FIG. 2 is a schematic view showing a form of controlling the supply amount of fuel gas at each main tuyere 5 for the waste gasification and melting apparatus of FIG. In FIG. 2, the signal flow from the blast flow meter 17 described later to the control device 16 is indicated by a thin broken arrow, and the signal flow from the control device 16 to the fuel gas supply amount adjusting device 18 described later is indicated by a thick broken arrow. It is shown. The control device 16 corresponds to each of a plurality of main tuyere 5 (four in the example of FIG. 2), and in FIG. 2, the correspondence between the control device 16 and each main tuyere 5 is the same. It is shown by attaching | subjecting the alphabet of (A-D).

各主羽口5に対応して設けられた酸素富化空気供給装置14(図1参照)は、対応する主羽口5への酸素富化空気の送風量を計測する送風流量計17を有している。また、各主羽口5に対応して設けられた燃料ガス供給装置15(図1参照)は、対応する主羽口5への燃料ガス供給量を調整するための燃料ガス供給量調整装置18を有している。該燃料ガス供給量調整装置18は、主羽口5への燃料ガスの流量を調整するための流量調整バルブ又はダンパ(図示せず)を有している。制御装置16は、各主羽口5における酸素富化空気供給装置14の送風流量計17での計測値に応じて、対応羽口における燃料ガス供給装置15の流量調整バルブ又はダンパの開度を調整することにより、燃料ガス供給量を制御するようになっている。制御の詳細については後述する。   The oxygen-enriched air supply device 14 (see FIG. 1) provided corresponding to each main tuyere 5 has an air flow meter 17 that measures the amount of oxygen-enriched air sent to the corresponding main tuyere 5. doing. Further, a fuel gas supply device 15 (see FIG. 1) provided corresponding to each main tuyere 5 has a fuel gas supply amount adjusting device 18 for adjusting the fuel gas supply amount to the corresponding main tuyere 5. have. The fuel gas supply amount adjusting device 18 has a flow rate adjusting valve or a damper (not shown) for adjusting the flow rate of the fuel gas to the main tuyere 5. The control device 16 determines the opening of the flow rate adjustment valve or the damper of the fuel gas supply device 15 at the corresponding tuyere according to the measurement value of the air flow meter 17 of the oxygen-enriched air supply device 14 at each main tuyere 5. By adjusting the fuel gas supply amount, the fuel gas supply amount is controlled. Details of the control will be described later.

図1に見られるように、ガス排出口3に二次燃焼室10が接続して設けられており、廃棄物を熱分解して生成した可燃性ガスを燃焼する。二次燃焼のための空気を吹き込む空気送風口11が設けられている。また、この二次燃焼室10には、該二次燃焼室10で可燃性ガスを燃焼した燃焼ガスから熱回収するボイラ12が隣接して設けられている。   As shown in FIG. 1, a secondary combustion chamber 10 is connected to the gas discharge port 3 and combusts a combustible gas generated by pyrolyzing waste. An air blowing port 11 for blowing air for secondary combustion is provided. Further, the secondary combustion chamber 10 is provided with a boiler 12 adjacent to which heat is recovered from the combustion gas obtained by burning the combustible gas in the secondary combustion chamber 10.

また、ボイラ12からの排気は、排気管13で排出され、後流側に設けられた減温装置や集塵機、さらには排ガス処理装置(いずれも図示せず)を経て無害化された後に大気に放出されるようになっている。   Exhaust gas from the boiler 12 is exhausted through an exhaust pipe 13 and is detoxified through a temperature reducing device, a dust collector, and an exhaust gas treatment device (both not shown) provided on the downstream side. To be released.

次に、制御装置16による燃料ガス供給量の制御について説明する。本実施形態では、主羽口5での酸素富化空気の送風量と燃料ガス供給量との比について、燃焼ガスの十分な燃焼率を確保するために許容可能な所定の範囲が設定されており、この所定範囲についてのデータが制御装置16に予め記憶されている。本実施形態では、上記「所定範囲」は、コークス床にて熱分解残渣を十分に溶融し、炉から溶融スラグを円滑に排出できる程度に、燃料ガスの十分な燃焼率を確保できる範囲として設定されている。また、この「所定範囲」は、例えば、燃料ガス供給量を変化させつつコークス床の温度を計測して、コークス床の温度が適正な範囲に維持するために必要な酸素富化空気の送風量と燃料ガス供給量の比を算出することにより得られる。   Next, control of the fuel gas supply amount by the control device 16 will be described. In the present embodiment, an allowable predetermined range is set for the ratio between the amount of oxygen-enriched air blown at the main tuyere 5 and the amount of fuel gas supplied to ensure a sufficient combustion rate of the combustion gas. The data about the predetermined range is stored in the control device 16 in advance. In the present embodiment, the “predetermined range” is set as a range in which a sufficient combustion rate of fuel gas can be secured to such an extent that the pyrolysis residue can be sufficiently melted in the coke bed and the molten slag can be smoothly discharged from the furnace. Has been. In addition, the “predetermined range” is, for example, the amount of oxygen-enriched air necessary for measuring the coke bed temperature while changing the fuel gas supply amount and maintaining the coke bed temperature in an appropriate range. And the ratio of the fuel gas supply amount.

酸素富化空気供給装置14は、送風流量計17での計測値、すなわち主羽口5への酸素富化空気の送風量のデータを連続的にあるいは定期的に制御装置16へ送る。制御装置16は、上記所定範囲についてのデータを参照して、酸素富化空気供給装置14から得られた送風量との比が上記所定範囲内にとなるような燃料ガス供給量を算出する。そして、該制御装置16は、その算出した燃料ガス供給量にもとづいて、燃料ガス供給装置15の燃料ガス供給量調整装置18を制御する。   The oxygen-enriched air supply device 14 sends the measured value of the air flow meter 17, that is, the data of the amount of oxygen-enriched air blown to the main tuyere 5 to the control device 16 continuously or periodically. The control device 16 refers to the data about the predetermined range, and calculates the fuel gas supply amount such that the ratio with the blast volume obtained from the oxygen-enriched air supply device 14 falls within the predetermined range. Then, the control device 16 controls the fuel gas supply amount adjusting device 18 of the fuel gas supply device 15 based on the calculated fuel gas supply amount.

このように、本実施形態では、制御装置16が、各主羽口5での酸素富化空気の送風量と燃料ガス供給量の比が所定範囲内となるように、各羽口における酸素富化空気供給装置14の送風流量計17での計測値に応じて対応主羽口5における燃料ガス供給装置15からの燃料ガス供給量を制御するので、コークス床における通気抵抗が増加し各主羽口5から吹き込まれる酸素富化空気の送風流量が低下しても、燃料ガスの燃焼率の低下を確実に防止できる。また、上記制御装置16による燃料ガス供給量の制御は、炉体の周方向の複数位置に設けられた各主羽口5にそれぞれ対応する燃料ガス供給装置15の燃料ガス供給量調整装置18に対して独立して行われるので、酸素富化空気量の送風流量低下の程度が各主羽口5によって異なっていても、それぞれの主羽口5において、燃料ガスの十分な燃焼率を確実に確保できる。また、燃料ガスをコークスの一部の代替として用い、燃焼熱を溶融熱源として用いることが効率よくできるため、コークスの使用量を低減して二酸化炭素排出量を削減することができる。   Thus, in this embodiment, the control device 16 allows the oxygen enrichment at each tuyere to be within a predetermined range so that the ratio of the amount of oxygen-enriched air blown at each main tuyere 5 and the amount of fuel gas supply is within a predetermined range. Since the amount of fuel gas supplied from the fuel gas supply device 15 at the corresponding main tuyere 5 is controlled according to the measurement value of the blower flow meter 17 of the conditioned air supply device 14, the ventilation resistance at the coke floor is increased and each main wing is increased. Even if the flow rate of the oxygen-enriched air blown from the port 5 is reduced, it is possible to reliably prevent a reduction in the combustion rate of the fuel gas. Further, the control of the fuel gas supply amount by the control device 16 is performed on the fuel gas supply amount adjusting device 18 of the fuel gas supply device 15 corresponding to each main tuyere 5 provided at a plurality of positions in the circumferential direction of the furnace body. However, even if the degree of decrease in the flow rate of the oxygen-enriched air flow varies depending on the main tuyere 5, the main tuyere 5 ensures a sufficient combustion rate of the fuel gas. It can be secured. In addition, fuel gas can be used as a substitute for a part of coke and combustion heat can be efficiently used as a heat source for melting, so the amount of coke used can be reduced and the amount of carbon dioxide emissions can be reduced.

このように構成される本実施形態装置では、廃棄物のガス化溶融処理は次の要領で行われる。   In the present embodiment configured as described above, the waste gasification and melting treatment is performed as follows.

供給装置からの廃棄物、コークス、石灰石がガス化溶融炉1の上部に設けられた投入口2を経て、それぞれ所定量ずつ炉内へ投入され、主羽口5、副羽口6、及び三段羽口7から、それぞれ混合気体又は空気が炉内へ吹き込まれる。特に、主羽口5からは、酸素富化空気供給装置14から供給される酸素富化空気と燃料ガス供給装置15から供給される燃料ガスとの混合により得られた混合気体が炉内へ吹き込まれる。ここで、燃料ガス供給装置15から供給される燃料ガス供給量は、既述したように酸素富化空気の送風量の計測値に応じて調整される。上記投入口2から投入された廃棄物は、炉内で中部シャフト部IIに堆積して廃棄物層を形成し、下部シャフト部Iの高温燃焼帯から上昇してくる高温ガス及び副羽口から吹き込まれる空気によって乾燥され、次いで部分燃焼および熱分解される。熱分解により生成した可燃性ガスは、フリーボード部IIIにて、三段羽口7から吹き込まれる空気により一部が燃焼され、フリーボード部IIIが850℃以上の高温の還元雰囲気に保たれ、有害ガスとタール分を分解させる処理が施され、可燃性ガスを含むガスは炉外に設けられた二次燃焼室10へ送られ二次燃焼され、ボイラ12でその燃焼ガスから熱回収される。   Waste, coke, and limestone from the supply device are respectively introduced into the furnace by a predetermined amount through the inlet 2 provided in the upper portion of the gasification melting furnace 1, and main tuyere 5, sub tuyere 6, and three From the stage tuyere 7, a mixed gas or air is blown into the furnace. In particular, from the main tuyere 5, a mixed gas obtained by mixing oxygen-enriched air supplied from the oxygen-enriched air supply device 14 and fuel gas supplied from the fuel gas supply device 15 is blown into the furnace. It is. Here, the fuel gas supply amount supplied from the fuel gas supply device 15 is adjusted according to the measured value of the blowing amount of the oxygen-enriched air as described above. The waste introduced from the inlet 2 is deposited on the middle shaft part II in the furnace to form a waste layer, and from the high temperature gas and sub tuyere rising from the high temperature combustion zone of the lower shaft part I. It is dried by blown air and then partially burned and pyrolyzed. The combustible gas generated by pyrolysis is partly combusted by the air blown from the three-stage tuyere 7 in the free board part III, and the free board part III is kept in a high-temperature reducing atmosphere of 850 ° C. or higher. A process for decomposing toxic gas and tar content is performed, and a gas containing a combustible gas is sent to a secondary combustion chamber 10 provided outside the furnace and subjected to secondary combustion, and heat is recovered from the combustion gas in a boiler 12. .

コークスは下部シャフト部Iに下降して高温燃焼帯(コークス床)を形成する。廃棄物層で廃棄物が熱分解した残渣は下降し、下部シャフト部Iのコークス床に達する。熱分解残渣(灰分、不燃物)は、コークス床でコークスと燃料ガスの燃焼により加熱され、溶融し溶融スラグと溶融金属になる。溶融スラグと溶融金属は出滓口4から排出され、炉外に設けられた水砕装置に供給され冷却固化され、冷却固化された水砕スラグと水砕金属が回収される。   The coke descends to the lower shaft portion I to form a high temperature combustion zone (coke bed). The residue resulting from the thermal decomposition of the waste in the waste layer descends and reaches the coke floor of the lower shaft portion I. Pyrolysis residue (ash content, incombustible material) is heated by the combustion of coke and fuel gas in the coke bed and melts into molten slag and molten metal. The molten slag and molten metal are discharged from the tap 4 and supplied to a water granulating device provided outside the furnace, cooled and solidified, and the cooled and solidified granulated slag and granulated metal are recovered.

本実施形態では、主羽口5から混合気体のみを吹き込むこととしたが、これに代えて、二次燃焼室10やボイラ12から回収したダストを混合気体とともに吹き込むこととしてもよい。このように混合気体とともにダストをも吹き込んだ場合、該混合気体中のダストは主羽口5から高温燃焼帯へ達すると、溶融して熱分解残渣の溶融物とともに炉底部の出滓口4から抜き出される。このように、ダストを溶融処理することにより減容化して、埋立処分量を大幅に削減することができる。   In the present embodiment, only the mixed gas is blown from the main tuyere 5, but instead of this, dust recovered from the secondary combustion chamber 10 and the boiler 12 may be blown together with the mixed gas. When dust is also blown together with the mixed gas in this way, the dust in the mixed gas melts when it reaches the high temperature combustion zone from the main tuyere 5 and from the outlet 4 at the bottom of the furnace together with the molten pyrolysis residue. Extracted. Thus, the volume can be reduced by melting the dust, and the landfill disposal amount can be greatly reduced.

1 廃棄物ガス化溶融炉
5 (主)羽口
14 酸素富化空気供給装置
15 燃料ガス供給装置
16 制御装置
17 (送風)流量計
DESCRIPTION OF SYMBOLS 1 Waste gasification melting furnace 5 (Main) tuyere 14 Oxygen-enriched air supply apparatus 15 Fuel gas supply apparatus 16 Control apparatus 17 (Blower) flowmeter

Claims (2)

コークス床を有する炉体内で廃棄物を熱分解し残渣を溶融する廃棄物ガス化溶融炉のコークス床へ、酸素富化空気と燃料ガスとを、上記廃棄物ガス化溶融炉の炉体に設けられた羽口から吹き込むこととする廃棄物ガス化溶融装置において、
上記羽口は炉体の周方向で複数位置に設けられ、酸素富化空気を羽口へ吹込み供給するように各羽口に対して設けられた酸素富化空気供給装置と、燃料ガスを上記複数の羽口へ供給するように各羽口に対して設けられた燃料ガス供給装置と、それぞれの燃料ガス供給装置を独立して制御する制御装置とを有し、各羽口における酸素富化空気供給装置は、該各羽口への酸素富化空気の送風量を計測する流量計を有し、制御装置は、各羽口での酸素富化空気の送風量と燃料ガス供給量の比を所定範囲内とするように、各羽口における酸素富化空気供給装置の流量計による酸素富化空気の送風量の計測値に応じて対応羽口における燃料ガス供給装置からの燃料ガス供給量を制御し、
燃料ガス供給量を変化させつつコークス床の温度を計測して、コークス床にて熱分解残渣を十分に溶融し溶融スラグとし炉から溶融スラグを円滑に排出できる適正な温度範囲にコークス床の温度を維持することができる燃料ガス供給量を求めることにより、酸素富化空気の送風量と燃料ガス供給量の比の所定範囲が酸素富化空気の送風量と燃料ガス供給量の比の適正な範囲として設定されて制御装置に予め記憶されていることを特徴とする廃棄物ガス化溶融装置。
Oxygen-enriched air and fuel gas are installed in the furnace body of the waste gasification and melting furnace to the coke floor of the waste gasification and melting furnace that thermally decomposes the waste and melts the residue in the furnace body having the coke bed. In the waste gasification and melting device to be blown from the tuyere,
The tuyere is provided at a plurality of positions in the circumferential direction of the furnace body, and an oxygen-enriched air supply device provided for each tuyere to blow and supply oxygen-enriched air to the tuyere, and a fuel gas A fuel gas supply device provided for each tuyere to supply to the plurality of tuyere and a control device for controlling each fuel gas supply device independently; The activated air supply device has a flow meter for measuring the amount of oxygen-enriched air blown to each tuyere, and the control device is configured to control the amount of oxygen-enriched air blown at each tuyere and the amount of fuel gas supplied. Fuel gas supply from the fuel gas supply device at the corresponding tuyere according to the measured value of the amount of oxygen-enriched air blown by the flow meter of the oxygen-enriched air supply device at each tuyere so that the ratio is within a predetermined range Control the quantity,
The coke bed temperature is measured while changing the fuel gas supply rate, and the coke bed temperature is within an appropriate temperature range where the pyrolysis residue is sufficiently melted in the coke bed to form molten slag and the molten slag can be discharged smoothly from the furnace. Therefore, the predetermined range of the ratio of the oxygen-enriched air blowing rate and the fuel gas supplying rate is the appropriate ratio of the oxygen-enriched air blowing rate and the fuel gas supply rate. A waste gasification and melting apparatus set as a range and stored in advance in a control device.
コークス床を有する炉体内で廃棄物を熱分解し残渣を溶融する廃棄物ガス化溶融炉のコークス床へ、酸素富化空気と燃料ガスとを、上記廃棄物ガス化溶融炉の炉体に設けられた羽口から吹き込むこととする廃棄物ガス化溶融方法において、
炉体の周方向複数位置で炉体に設けられた羽口のそれぞれで互いに独立して、酸素富化空気そして燃料ガスを各羽口に供給し、各羽口への酸素富化空気の送風量を計測し、各羽口での酸素富化空気の送風量と燃料ガス供給量の比を所定範囲内とするように制御装置により上記酸素富化空気の送風量の計測値に応じて該羽口への燃料ガス供給量を制御し、
燃料ガス供給量を変化させつつコークス床の温度を計測して、コークス床にて熱分解残渣を十分に溶融し溶融スラグとし炉から溶融スラグを円滑に排出できる適正な温度範囲にコークス床の温度を維持することができる燃料ガス供給量を求めることにより、酸素富化空気の送風量と燃料ガス供給量の比の所定範囲を酸素富化空気の送風量と燃料ガス供給量の比の適正な範囲として設定して制御装置に予め記憶していることを特徴とする廃棄物ガス化溶融方法。
Oxygen-enriched air and fuel gas are installed in the furnace body of the waste gasification and melting furnace to the coke floor of the waste gasification and melting furnace that thermally decomposes the waste and melts the residue in the furnace body having the coke bed. In the waste gasification and melting method to be blown from the tuyere,
The oxygen-enriched air and fuel gas are supplied to each tuyere independently from each other at the tuyere provided at the furnace body at a plurality of positions in the circumferential direction of the furnace body, and the oxygen-enriched air is sent to each tuyere. The air volume is measured, and the control device controls the oxygen-enriched air flow rate according to the measured value of the oxygen-enriched air flow rate so that the ratio of the oxygen-enriched air flow rate and the fuel gas supply rate at each tuyere Control the amount of fuel gas supplied to the tuyere ,
The coke bed temperature is measured while changing the fuel gas supply rate, and the coke bed temperature is within an appropriate temperature range where the pyrolysis residue is sufficiently melted in the coke bed to form molten slag and the molten slag can be discharged smoothly from the furnace. By determining the fuel gas supply amount that can be maintained, the predetermined range of the ratio of the oxygen-enriched air blowing amount and the fuel gas supply amount can be set to an appropriate ratio of the oxygen-enriched air blowing amount and the fuel gas supply amount. A waste gasification and melting method, which is set as a range and stored in advance in a control device .
JP2013065823A 2013-03-27 2013-03-27 Waste gasification and melting apparatus and waste gasification and melting method Active JP6016196B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013065823A JP6016196B2 (en) 2013-03-27 2013-03-27 Waste gasification and melting apparatus and waste gasification and melting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013065823A JP6016196B2 (en) 2013-03-27 2013-03-27 Waste gasification and melting apparatus and waste gasification and melting method

Publications (2)

Publication Number Publication Date
JP2014190599A JP2014190599A (en) 2014-10-06
JP6016196B2 true JP6016196B2 (en) 2016-10-26

Family

ID=51837029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013065823A Active JP6016196B2 (en) 2013-03-27 2013-03-27 Waste gasification and melting apparatus and waste gasification and melting method

Country Status (1)

Country Link
JP (1) JP6016196B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110107901B (en) * 2019-04-26 2020-08-18 北京科太亚洲生态科技股份有限公司 Control system and control method for waste of three-waste integrated reactor
CN112240553B (en) * 2020-10-20 2023-02-24 江苏天楹等离子体科技有限公司 Plasma gasification melting furnace system and control method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5325127B2 (en) * 1972-10-25 1978-07-25
JPS5719308A (en) * 1980-07-10 1982-02-01 Nippon Steel Corp Method for blowing fuel to blast furnace
JPS6023714A (en) * 1983-07-18 1985-02-06 Osaka Gas Co Ltd Fusing method of industrial waste
JP4077584B2 (en) * 1999-09-24 2008-04-16 新日鉄エンジニアリング株式会社 Method of injecting fuel gas into a waste melting furnace
JP2002130632A (en) * 2000-10-27 2002-05-09 Kawasaki Heavy Ind Ltd Waste gasifying melting furnace and its operation method
JP2002147749A (en) * 2000-11-07 2002-05-22 Nippon Steel Corp Automatic combustion control system
JP2004293993A (en) * 2003-03-28 2004-10-21 Jfe Engineering Kk Melting furnace for gasifying refuse and operation method for it
JP2008241181A (en) * 2007-03-28 2008-10-09 Sumitomo Metal Ind Ltd Estimating method of slug staying state in gasifying melting furnace, operation method of gasifying melting furnace and gasifying melting furnace

Also Published As

Publication number Publication date
JP2014190599A (en) 2014-10-06

Similar Documents

Publication Publication Date Title
JP2002081624A (en) Waste gasification melting furnace and operation method of the melting furnace
JP2007271203A (en) Fluidized bed gasification furnace and its fluidized bed monitoring/controlling method
JP4126316B2 (en) Operation control method of gasification and melting system and system
JP2010255890A (en) Waste melting treatment method and waste melting treatment device
WO2014103417A1 (en) Waste material melting furnace
JP2010043840A (en) Method and apparatus for melting waste
JP5611418B2 (en) Combustion control method for gasification melting system and system
JP6016196B2 (en) Waste gasification and melting apparatus and waste gasification and melting method
JP2008209041A (en) Combustion control method for gasification melting system and its system
JP6066461B2 (en) Waste gasification and melting apparatus and waste gasification and melting method
CN112240553A (en) Plasma gasification melting furnace system and control method thereof
JP5510782B2 (en) Waste melting treatment method and waste melting treatment apparatus
JP2010065932A (en) Device and method for controlling combustion in secondary combustion furnace for pyrolysis gas
JP4126317B2 (en) Operation control method of gasification and melting system and system
JP4918834B2 (en) Waste melting furnace and waste melting furnace operating method
JP2019190730A (en) Waste gasification melting device and waste gasification melting method
JP2007078197A (en) Incinerator and incinerating method of waste
JP5605576B2 (en) Waste gasification and melting equipment
JP2011064383A (en) Waste melting treatment method and waste melting treatment device
JP6098804B2 (en) Mixed gas blowing device, waste gasification and melting furnace having the same, mixed gas blowing method, and waste gasification and melting method using the same
JP6066454B2 (en) Mixed gas blowing device, waste gasification and melting furnace having the same, mixed gas blowing method, and waste gasification and melting method using the same
JP2014190598A (en) Mixture gas blowing device, waste gasification melting furnace with the same, mixture gas blowing method, and waste gasification melting method using the same
JP5974950B2 (en) Mixed gas blowing device, waste gasification and melting furnace having the same, mixed gas blowing method, and waste gasification and melting method using the same
JP2018040534A (en) Waste gasification melting apparatus and waste gasification melting method
JP6493744B2 (en) Waste gasification and melting apparatus and waste gasification and melting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160918

R150 Certificate of patent or registration of utility model

Ref document number: 6016196

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350