JP2008209041A - Combustion control method for gasification melting system and its system - Google Patents

Combustion control method for gasification melting system and its system Download PDF

Info

Publication number
JP2008209041A
JP2008209041A JP2007044751A JP2007044751A JP2008209041A JP 2008209041 A JP2008209041 A JP 2008209041A JP 2007044751 A JP2007044751 A JP 2007044751A JP 2007044751 A JP2007044751 A JP 2007044751A JP 2008209041 A JP2008209041 A JP 2008209041A
Authority
JP
Japan
Prior art keywords
furnace
furnace pressure
gasification
combustion
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007044751A
Other languages
Japanese (ja)
Other versions
JP5154094B2 (en
Inventor
Jun Sato
佐藤  淳
Toshimasa Shirai
利昌 白井
Yoshihisa Saito
芳久 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2007044751A priority Critical patent/JP5154094B2/en
Priority to KR1020070109475A priority patent/KR100910427B1/en
Publication of JP2008209041A publication Critical patent/JP2008209041A/en
Application granted granted Critical
Publication of JP5154094B2 publication Critical patent/JP5154094B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/027Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage
    • F23G5/0273Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage using indirect heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/50Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2201/00Pretreatment
    • F23G2201/40Gasification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2202/00Combustion
    • F23G2202/10Combustion in two or more stages
    • F23G2202/104Combustion in two or more stages with ash melting stage

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Incineration Of Waste (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a combustion control method of a gasification melting system and the system capable of reducing generation of CO and performing a stable operation. <P>SOLUTION: In this combustion control method of the gasification melting system where wastes 40 supplied into a gasification furnace 3 through a refuse feeding machine 2 is thermally decomposed, ash is melted by combustion heat of a thermal decomposition gas in a melting furnace 6, and an unburned component in a combustion exhaust gas is burned in a secondary combustion chamber 12, conditions of furnace internal pressure are set in a plurality of stages in advance corresponding to abnormality levels as the conditions of the furnace internal pressure indicating abnormal combustion in the gasification furnace 3, the supply of combustion air supplied to at least one of the gasification furnace 3, the melting furnace 6 and the secondary combustion chamber 12 is controlled when the furnace internal pressure detected in the gasification furnace 3 reaches the first furnace internal pressure condition, and the feeding of refuse to the gasification furnace 3 is controlled in addition to the control of the supply of the combustion air when the furnace internal pressure reaches the second furnace internal pressure condition having the abnormal level higher than that of the first furnace internal pressure condition. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、廃棄物を熱分解して熱分解ガスを発生させ、該熱分解ガスの燃焼熱で灰分を溶融するガス化溶融システムに関し、特に、排ガス中の有害ガスの発生を抑制し、安定した運転が可能なガス化溶融システムの燃焼制御方法及び該システムに関する。   The present invention relates to a gasification and melting system in which waste is pyrolyzed to generate pyrolysis gas, and ash is melted by the combustion heat of the pyrolysis gas. The present invention relates to a combustion control method for a gasification and melting system capable of performing the operation and the system.

従来より、都市ごみを始めとして不燃ごみ、焼却残渣、汚泥、埋立ごみ等の廃棄物まで幅広く処理できる技術としてガス化溶融システムが知られている。
ガス化溶融システムの概略を図4に示す。ガス化溶融システムは、廃棄物を熱分解してガス化するガス化炉3と、該ガス化炉3にて生成された熱分解ガスを高温燃焼し、ガス中の灰分を溶融スラグ化する旋回溶融炉6と、該旋回溶融炉6の排ガスが導入され、排ガス中の未燃分を燃焼させる二次燃焼室12と、減温塔14、除塵装置15、蒸気式加熱器16、触媒反応装置17等からなる排ガス処理設備とを備えている。廃棄物の資源化、減容化及び無害化を図るために、旋回溶融炉6からスラグを取り出して路盤材等の土木資材として再利用したり、二次燃焼室13の高温排ガスからボイラ部13にて廃熱を回収して発電を行うなどしている。
Conventionally, a gasification and melting system is known as a technology capable of processing a wide range of wastes such as municipal waste, non-combustible waste, incineration residue, sludge, landfill waste, and the like.
An outline of the gasification melting system is shown in FIG. The gasification melting system is a gasification furnace 3 that thermally decomposes and gasifies waste, and a swirl that burns the pyrolysis gas generated in the gasification furnace 3 at a high temperature and converts the ash content in the gas into molten slag. A melting furnace 6, a secondary combustion chamber 12 in which the exhaust gas of the swirling melting furnace 6 is introduced and unburned in the exhaust gas is combusted, a temperature reducing tower 14, a dust removing device 15, a steam heater 16, and a catalytic reaction device And an exhaust gas treatment facility consisting of 17 etc. In order to reduce the amount of waste, reduce the volume, and make it harmless, slag is taken out from the swivel melting furnace 6 and reused as civil engineering materials such as roadbed materials, or from the high-temperature exhaust gas in the secondary combustion chamber 13 The company collects waste heat and generates electricity.

このようなシステムにおいて、廃棄物は、ガス化炉3に設けられた給じん機2により炉内に定量供給される。給じん機2としては、例えばスクリューフィーダ等が用いられ、スクリューを回転駆動するモータの回転数制御により所定量の廃棄物を供給する構成となっている。
ガス化炉3では、炉底から供給される燃焼空気により廃棄物が熱分解される。該ガス化炉3で発生したCO、H等の可燃ガス、チャー(炭化物)、灰分を含む熱分解ガスは、熱分解ガスダクト25を介して旋回溶融炉6に供給される。旋回溶融炉6では、この熱分解ガスを燃焼させた燃焼熱により灰分を溶融する。該溶融炉3にて発生した排ガスは、溶融炉上方に連結された二次燃焼室12に送られ、ここでガス中の未燃分が燃焼される。旋回溶融炉6と二次燃焼室12には、燃焼を促進するための燃焼空気が夫々供給されるようになっている。
In such a system, the waste is quantitatively supplied into the furnace by a dust feeder 2 provided in the gasification furnace 3. As the dust feeder 2, for example, a screw feeder or the like is used, and a predetermined amount of waste is supplied by controlling the rotational speed of a motor that rotationally drives the screw.
In the gasification furnace 3, the waste is thermally decomposed by the combustion air supplied from the furnace bottom. A pyrolysis gas containing combustible gas such as CO and H 2 , char (carbide), and ash generated in the gasification furnace 3 is supplied to the swirl melting furnace 6 through a pyrolysis gas duct 25. In the slewing melting furnace 6, ash is melted by the combustion heat obtained by burning the pyrolysis gas. The exhaust gas generated in the melting furnace 3 is sent to a secondary combustion chamber 12 connected to the upper side of the melting furnace, where unburned components in the gas are burned. Combustion air for promoting combustion is supplied to the swirl melting furnace 6 and the secondary combustion chamber 12, respectively.

一般的な溶融炉における燃焼制御方法として、特許文献1(特開平11−351538号公報)等に記載されるように、溶融炉内に設置した温度センサにより炉内温度を検出し、該検出した温度に基づいて溶融炉に供給する燃焼空気量を制御する方法が用いられている。しかし、このようなガス化溶融システムにおいて廃棄物を処理対象とした場合、廃棄物の投入量や発熱量の変動により燃焼が不安定となり、二次燃焼室から排出される排ガスのCO濃度が高くなり、これを原因とする環境への悪影響が問題となっていた。   As a combustion control method in a general melting furnace, as described in Patent Document 1 (Japanese Patent Laid-Open No. 11-351538) and the like, the temperature in the furnace is detected by a temperature sensor installed in the melting furnace, and the detected temperature is detected. A method of controlling the amount of combustion air supplied to the melting furnace based on the temperature is used. However, when waste is treated in such a gasification and melting system, combustion becomes unstable due to fluctuations in the amount of waste input and the amount of heat generated, and the CO concentration in the exhaust gas discharged from the secondary combustion chamber is high. Therefore, the adverse effect on the environment caused by this has been a problem.

また、特許文献2(特開2003−269712号公報)では、熱分解炉に圧力検出装置を設け、炉内圧の検出結果に基づいて熱分解炉二次燃焼空気量、灰溶融炉燃焼空気量及び二次燃焼室燃焼空気量の少なくとも1つを制御する構成が開示されている。このように、各部で必要な燃焼空気量を制御して供給することにより、燃焼空気不足から起こる有害ガスの大量発生を防ぐようにしている。
さらに、特許文献3(特開2001−201023号公報)では、熱分解ガス化炉の炉内圧を計測することにより廃棄物の負荷変動を検出し、負荷急増が検出された際に溶融炉に燃焼溶融炉に供給する燃焼用空気の供給量を増加させることにより、溶融炉内での不完全燃焼を防止する構成を開示している。
Moreover, in patent document 2 (Unexamined-Japanese-Patent No. 2003-269712), a pressure detection apparatus is provided in a pyrolysis furnace, and based on the detection result of furnace pressure, the amount of pyrolysis furnace secondary combustion air, the amount of ash melting furnace combustion air, and A configuration for controlling at least one of the amount of combustion air in the secondary combustion chamber is disclosed. In this way, by controlling and supplying the necessary amount of combustion air in each part, a large amount of harmful gas resulting from a shortage of combustion air is prevented.
Further, Patent Document 3 (Japanese Patent Laid-Open No. 2001-201023) detects waste load fluctuations by measuring the furnace pressure of the pyrolysis gasification furnace, and burns in the melting furnace when a sudden increase in load is detected. The structure which prevents the incomplete combustion in a melting furnace by increasing supply_amount | feed_rate of the combustion air supplied to a melting furnace is disclosed.

特開平11−351538号公報JP 11-351538 A 特開2003−269712号公報JP 2003-269712 A 特開2001−201023号公報JP 2001-201023 A

上記したように、ガス化溶融システムにおいては廃棄物の投入量や発熱量の変動により燃焼が不安定となり、二次燃焼室から排出される排ガスのCO濃度が高くなるという問題があった。しかし、特許文献1に記載されるように、溶融炉の炉内温度に基づき該溶融炉への燃焼空気量を制御するのみではCO濃度を低減することは困難であった。これは、ガス化炉にて熱分解ガスが大量に発生した場合、溶融炉や二次燃焼室への燃焼空気供給量の制御だけではこれを完全燃焼することは不可能であり、また溶融炉へ大量の燃焼空気を供給すると炉内温度が低下して灰分の溶融に支障をきたすためである。   As described above, the gasification and melting system has a problem in that combustion becomes unstable due to fluctuations in the amount of waste input and the amount of heat generated, and the CO concentration of exhaust gas discharged from the secondary combustion chamber increases. However, as described in Patent Document 1, it is difficult to reduce the CO concentration only by controlling the amount of combustion air to the melting furnace based on the in-furnace temperature of the melting furnace. This is because when a large amount of pyrolysis gas is generated in the gasification furnace, it is impossible to completely burn it only by controlling the amount of combustion air supplied to the melting furnace and the secondary combustion chamber. This is because if a large amount of combustion air is supplied to the furnace, the temperature in the furnace decreases and the melting of ash is hindered.

一方、特許文献2及び3はガス化炉の炉内圧に基づいて燃焼空気量を制御する構成であり、この方法によれば熱分解ガスの発生量を適確に検出することができCO濃度低減に効果的な方法であるが、炉内圧の変動に対して一律的な燃焼空気量の制御のみでは燃焼状態を安定的に維持することが困難であった。また、大幅な炉内圧の変動に対して、燃焼空気量の制御のみでは対応が不十分であった。例えば、炉内圧が大きく上昇した場合、燃焼空気量を増大して熱分解ガスの燃焼を促進させても、ガス発生量が非常に多いため完全燃焼することなく排ガス中のCO濃度が高くなったり、燃焼空気量を増大させ過ぎて溶融炉の炉内温度が低下するという問題があった。
従って、本発明は上記従来技術の問題点に鑑み、ガス化炉においてガス発生量が変動した場合であっても正確にこれを検知し、的確な制御を行うことによりCO発生量を低減することができ、さらに大幅なガス発生量の変動にも対応可能としたガス化溶融システムの燃焼制御方法及び該システムを提供することを目的とする。
On the other hand, Patent Documents 2 and 3 are configured to control the amount of combustion air based on the internal pressure of the gasification furnace. According to this method, the amount of pyrolysis gas generated can be accurately detected and the CO concentration can be reduced. However, it is difficult to stably maintain the combustion state only by controlling the amount of combustion air uniformly with respect to fluctuations in the furnace pressure. In addition, the control of the combustion air amount alone has not been sufficient for a large fluctuation in the furnace pressure. For example, if the furnace pressure rises significantly, even if the combustion air amount is increased to promote the combustion of pyrolysis gas, the amount of gas generated is so large that the CO concentration in the exhaust gas becomes high without complete combustion. There is a problem that the temperature of the melting furnace decreases because the amount of combustion air is excessively increased.
Therefore, in view of the above-mentioned problems of the prior art, the present invention is capable of accurately detecting even when the gas generation amount fluctuates in the gasifier and reducing the CO generation amount by performing accurate control. It is another object of the present invention to provide a combustion control method for a gasification and melting system that can cope with a large variation in gas generation amount and the system.

そこで、本発明はかかる課題を解決するために、給じん機を介してガス化炉内に供給された廃棄物を熱分解し、該ガス化炉にて発生した熱分解ガスを溶融炉に導入し、該溶融炉にて熱分解ガスの燃焼熱により灰分を溶融した後、前記溶融炉に連結された二次燃焼室にて燃焼排ガス中の未燃分を燃焼させるガス化溶融システムの燃焼制御方法において、
前記ガス化炉での異常燃焼を示す炉内圧の状態として、異常レベルに対応して複数段階の炉内圧条件が予め設定されており、
前記ガス化炉の炉内圧を検出し、該検出した炉内圧が、第1の炉内圧条件に達した場合に、前記ガス化炉、前記溶融炉、前記二次燃焼室の少なくとも何れかに供給する燃焼空気供給量を制御し、前記第1の炉内圧条件よりも異常レベルの高い第2の炉内圧条件に達した場合に、前記燃焼空気供給量の制御に加えて前記ガス化炉への給じん量を制御することを特徴とする。
Therefore, in order to solve such a problem, the present invention thermally decomposes the waste supplied into the gasification furnace via a dust feeder and introduces the pyrolysis gas generated in the gasification furnace into the melting furnace. Combustion control of a gasification and melting system in which ash is melted by the combustion heat of pyrolysis gas in the melting furnace and then unburned in combustion exhaust gas is burned in a secondary combustion chamber connected to the melting furnace In the method
As a state of the furnace pressure indicating abnormal combustion in the gasification furnace, a plurality of stages of furnace pressure conditions are set in advance corresponding to the abnormal level,
The internal pressure of the gasification furnace is detected, and when the detected internal pressure reaches the first internal pressure condition, the gasification furnace is supplied to at least one of the gasification furnace, the melting furnace, and the secondary combustion chamber. The amount of combustion air supplied to the gasifier is controlled in addition to the control of the amount of combustion air supplied when the second furnace pressure condition, which is higher than the first furnace pressure condition, is reached. It is characterized by controlling the amount of dust supply.

本発明では、炉内圧の異常レベルが低い第1の炉内圧条件では、燃焼空気供給量の制御を行い、ガス化炉の後段側にて熱分解ガスの燃焼を促進若しくは抑制することにより燃焼状態の安定化を図っており、異常レベルが高い第2の炉内圧条件では、燃焼空気供給量の制御に加えて給じん量を制御している。これは、炉内圧が高い場合には、給じん量を下げて廃棄物の供給量を低減することにより熱分解ガスの発生を抑制している。
本発明のように、燃焼空気供給量のみでなく、給じん量も制御することにより、大量の燃焼空気を供給することによる炉内温度の低下を防ぐことができ、燃焼排ガス中のCO濃度を抑制するだけでなく、溶融炉における溶融スラグの安定出滓が可能となる。
In the present invention, in the first furnace pressure condition where the abnormal level of the furnace pressure is low, the combustion air supply amount is controlled, and the combustion state of the combustion gas is promoted or suppressed on the rear stage side of the gasification furnace. In the second furnace pressure condition where the abnormal level is high, the amount of dust supplied is controlled in addition to the amount of combustion air supplied. This suppresses generation of pyrolysis gas by lowering the amount of dust supplied and reducing the amount of waste supplied when the furnace pressure is high.
By controlling not only the combustion air supply amount but also the supply amount as in the present invention, it is possible to prevent a decrease in furnace temperature due to supplying a large amount of combustion air, and to reduce the CO concentration in the combustion exhaust gas. In addition to the suppression, it is possible to stably produce molten slag in the melting furnace.

さらに、前記第1の炉内圧条件及び前記第2の炉内圧条件が夫々複数設定されており、
前記複数の第1の炉内圧条件に対応して燃焼空気供給量の制御内容が夫々設定され、該第1の炉内圧条件が複数重複した場合には、前記制御内容を加算するようにし、
前記複数の第2の炉内圧条件に対応して給じん量の制御内容が夫々設定され、該第2の炉内圧条件が複数重複した場合には、前記制御内容のうち制御量の大きい方を採用するようにしたことを特徴とする。
Furthermore, a plurality of the first furnace pressure conditions and the second furnace pressure conditions are respectively set,
The control contents of the combustion air supply amount are respectively set corresponding to the plurality of first furnace pressure conditions, and when the first furnace pressure conditions are duplicated, the control contents are added,
When the contents of control of the supply amount are respectively set corresponding to the plurality of second furnace pressure conditions, and when the plurality of second furnace pressure conditions overlap, the larger one of the control contents is controlled. It is characterized by adopting it.

本発明では、燃焼空気量の制御においては重複した制御内容を加算し、給じん量の制御においては重複した制御内容のうち制御量が大きい方を優先させるようにしている。これは、燃焼空気供給量の増減は給じん量の増減ほどシステムの運転状態に影響を及ぼさないので、制御内容を加算して大幅な制御を可能としている。一方、給じん量の増減はシステムの運転状態に及ぼす影響が比較的大きいので、制御内容の一方を優先させて給じん量の変動を最小限に抑えるようにしている。   In the present invention, duplicate control details are added in the control of the combustion air amount, and priority is given to the larger control amount among the duplicate control details in the control of the dust supply amount. This is because the increase / decrease in the combustion air supply amount does not affect the operation state of the system as much as the increase / decrease in the supply amount of the fuel, so that the control content can be added to enable significant control. On the other hand, since an increase or decrease in the amount of dust supply has a relatively large effect on the operating state of the system, priority is given to one of the control contents so as to minimize fluctuations in the amount of dust supply.

また、前記第1の炉内圧条件が、予め設定された適性な炉内圧を基準値とすると、該基準値を超える所定の設定値に達した場合、該基準値を超える所定の設定値が所定時間継続した場合のうち少なくとも何れか一方の条件を含むことを特徴とする。
このような炉内圧条件を設定することにより、炉内圧から燃焼状態の異常を的確に推測でき、適正な制御が可能となる。
Further, assuming that the first furnace pressure condition is a suitable preset furnace pressure set as a reference value, when the first furnace pressure condition reaches a predetermined set value exceeding the reference value, the predetermined set value exceeding the reference value is set to a predetermined value. It is characterized by including at least one of the conditions when the time continues.
By setting such an in-furnace pressure condition, an abnormality in the combustion state can be accurately estimated from the in-furnace pressure, and appropriate control becomes possible.

また、前記第2の炉内圧条件が、予め設定された適性な炉内圧を基準値とすると、該基準値を超える所定の設定値に達した場合、該基準値を超える所定の設定値が所定時間継続した場合、炉内圧の時系列変化の反転が基準値から外れた位置にて行われる場合、炉内圧の変化率が所定の値を超えた場合のうち少なくとも何れか一つの条件を含むことを特徴とする。
本発明によれば、第1の炉内圧条件と同様に、炉内圧から燃焼状態の異常を的確に推測でき、適正な制御が可能となる。
また、炉内圧の時系列変化の反転が基準値から外れた位置にて連続的に行われる状態、及び炉内圧の変化率が所定の値を超えた状態は、特に異常レベルが高い時に出現するため、この条件に該当する際には給じん量を制御することが好適である。
Further, when the second furnace pressure condition is a preset appropriate furnace pressure, a predetermined set value exceeding the reference value is set to a predetermined value when reaching a predetermined set value exceeding the reference value. It includes at least one of the following conditions: when the time is continued, when the reversal of the time-series change in the furnace pressure is performed at a position deviating from the reference value, or when the rate of change in the furnace pressure exceeds a predetermined value It is characterized by.
According to the present invention, similarly to the first in-furnace pressure condition, an abnormality in the combustion state can be accurately estimated from the in-furnace pressure, and appropriate control can be performed.
In addition, a state in which the reversal of the time series change of the furnace pressure is continuously performed at a position deviating from the reference value, and a state in which the rate of change of the furnace pressure exceeds a predetermined value appear particularly when the abnormal level is high. Therefore, it is preferable to control the amount of dust supply when this condition is met.

さらにまた、前記第2炉内圧条件に対応した給じん量制御を行った後、該給じん量を復帰させる際に、所定速度で徐々に復帰させるようにしたことを特徴とする。
このように、設定された復帰速度に従って徐々に給じん量を復帰させることにより、急激な給じん量変化を防止し、ガス化炉内の燃焼状態を安定化させることができる。
Furthermore, after carrying out the dust supply amount control corresponding to the second furnace pressure condition, when returning the dust supply amount, it is gradually returned at a predetermined speed.
In this way, by gradually returning the supplied amount according to the set return speed, it is possible to prevent a sudden change in the supplied amount and stabilize the combustion state in the gasifier.

また、給じん機を介して供給された廃棄物を熱分解して熱分解ガスを発生させるガス化炉と、該熱分解ガスの燃焼熱により灰分を溶融する溶融炉と、該溶融炉で発生した燃焼排ガス中の未燃分を燃焼させる二次燃焼室とからなるガス化溶融システムにおいて、
前記ガス化炉での異常燃焼を示す炉内圧の状態として、異常レベルに対応して複数段階の炉内圧条件が予め設定されており、
前記ガス化炉の炉内圧を検出する炉内圧検出手段と、
前記炉内圧検出手段にて検出された炉内圧が、第1の炉内圧条件に達した場合に、前記ガス化炉、前記溶融炉、前記二次燃焼室の少なくとも何れかに供給する燃焼空気供給量を制御し、前記第1の炉内圧条件よりも異常レベルの高い第2の炉内圧条件に達した場合に、前記燃焼空気供給量の制御に加えて前記ガス化炉への給じん量を制御する制御手段とを備えたことを特徴とする。
Also, a gasification furnace that generates pyrolysis gas by pyrolyzing waste supplied via a dust feeder, a melting furnace that melts ash by the combustion heat of the pyrolysis gas, and generated in the melting furnace In a gasification and melting system consisting of a secondary combustion chamber that burns unburned components in the exhaust gas
As a state of the furnace pressure indicating abnormal combustion in the gasification furnace, a plurality of stages of furnace pressure conditions are set in advance corresponding to the abnormal level,
A furnace pressure detecting means for detecting a furnace pressure of the gasification furnace;
Combustion air supply that is supplied to at least one of the gasification furnace, the melting furnace, and the secondary combustion chamber when the furnace pressure detected by the furnace pressure detection means reaches a first furnace pressure condition. The amount of dust supplied to the gasification furnace is controlled in addition to the control of the combustion air supply amount when the second furnace pressure condition that is abnormally higher than the first furnace pressure condition is reached. And a control means for controlling.

さらに、前記制御手段には、前記第1の炉内圧条件及び前記第2の炉内圧条件が夫々複数設定されており、該制御手段にて、前記複数の第1の炉内圧条件に対応して燃焼空気供給量の制御内容が夫々設定され、該第1の炉内圧条件が複数重複した場合には、前記制御内容を加算するようにし、
前記複数の第2の炉内圧条件に対応して給じん量の制御内容が夫々設定され、該第2の炉内圧条件が複数重複した場合には、前記制御内容のうち制御量の大きい方を採用するようにしたことを特徴とする。
Further, a plurality of the first furnace pressure conditions and the second furnace pressure conditions are set in the control means, and the control means corresponds to the plurality of first furnace pressure conditions. When the control content of the combustion air supply amount is set respectively and the first furnace pressure condition is duplicated, the control content is added.
When the contents of control of the supply amount are respectively set corresponding to the plurality of second furnace pressure conditions, and when the plurality of second furnace pressure conditions overlap, the larger one of the control contents is controlled. It is characterized by adopting it.

また、前記制御手段に設定される前記第1の炉内圧条件が、予め設定された適性な炉内圧を基準値とすると、該基準値を超える所定の設定値に達した場合、該基準値を超える所定の設定値が所定時間継続した場合のうち少なくとも何れか一方の条件を含むことを特徴とする。
また、前記制御手段に設定される前記第2の炉内圧条件が、予め設定された適性な炉内圧を基準値とすると、該基準値を超える所定の設定値に達した場合、該基準値を超える所定の設定値が所定時間継続した場合、炉内圧の時系列変化の反転が基準値から外れた位置にて行われる場合、炉内圧の変化率が所定の値を超えた場合のうち少なくとも何れか一つの条件を含むことを特徴とする。
In addition, when the first furnace pressure condition set in the control means reaches a predetermined set value exceeding the reference value, assuming that the appropriate furnace pressure set in advance is a reference value, the reference value is It is characterized by including at least one of the conditions when the predetermined set value exceeding the predetermined time continues.
In addition, when the second furnace pressure condition set in the control means is a preset appropriate furnace pressure as a reference value, when a predetermined set value exceeding the reference value is reached, the reference value is set. When the predetermined set value exceeds the predetermined time, when the reversal of the time series change of the furnace pressure is performed at a position deviating from the reference value, or when the rate of change of the furnace pressure exceeds the predetermined value Or a single condition.

以上記載のごとく本発明によれば、廃棄物の投入量や発熱量の変動等によりガス化炉にて大量の熱分解ガスが発生した場合に、異常レベルに応じて燃焼空気供給量及び/又は給じん量の制御を行い、ガス発生量の安定化を図るとともに、燃焼空気不足に起因する有害ガスの発生を抑制し、安定した運転が可能なガス化溶融システムの燃焼制御方法およびシステムを提供することができる。   As described above, according to the present invention, when a large amount of pyrolysis gas is generated in the gasification furnace due to changes in the amount of waste input or the amount of heat generated, the amount of combustion air supplied and / or depending on the abnormal level Providing a combustion control method and system for a gasification and melting system that controls the amount of dust supplied, stabilizes the amount of gas generated, suppresses the generation of harmful gases due to shortage of combustion air, and enables stable operation can do.

以下、図面を参照して本発明の好適な実施例を例示的に詳しく説明する。但しこの実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。
図1は本発明の実施例に係るガス化溶融システムの全体構成図、図2は図1のシステムにおける制御方法の基本フローを示す図、図3は図1のシステムにおける制御方法の具体例を示す図である。
Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, but are merely illustrative examples. Not too much.
1 is an overall configuration diagram of a gasification and melting system according to an embodiment of the present invention, FIG. 2 is a diagram showing a basic flow of a control method in the system of FIG. 1, and FIG. 3 is a specific example of a control method in the system of FIG. FIG.

図1を参照して、本実施例に係るガス化溶融システムの全体構成を説明する。尚、以下に示される数値は一例であり、これらに限定されるものではない。
廃棄物投入ホッパ1から投入された廃棄物40は、給じん機2を介して流動床式ガス化炉3へ定量供給される。流動床ガス化炉3では、温度約120〜230℃、空気比0.2〜0.7程度の燃焼空気41が炉下部から風箱4を介して炉内に吹き込まれ、流動層温度が550〜650℃程度に維持されている。
廃棄物40は流動床ガス化炉3で熱分解ガス化され、ガス、タール、チャー(炭化物)に分解される。タールは、常温では液体となる成分であるが、ガス化炉内ではガス状で存在する。ガス化炉3の不燃物は不燃物排出口5より逐次排出される。
チャーは流動層内で徐々に微粉化され、ガス及びタールに同伴して旋回溶融炉6へ導入される。以下、溶融炉6へ導入されるこれらの成分を総称して熱分解ガスと呼ぶ。
尚、本実施例にてガス化炉として流動床式ガス化炉3を例に挙げたが、これに限定されるものではなく、廃棄物を熱分解ガス化する構成を有する炉であれば何れでもよい。
With reference to FIG. 1, the whole structure of the gasification melting system which concerns on a present Example is demonstrated. In addition, the numerical value shown below is an example and is not limited to these.
The waste 40 input from the waste input hopper 1 is quantitatively supplied to the fluidized bed gasifier 3 through the dust feeder 2. In the fluidized bed gasification furnace 3, combustion air 41 having a temperature of about 120 to 230 ° C. and an air ratio of about 0.2 to 0.7 is blown into the furnace through the wind box 4 from the lower part of the furnace, and the fluidized bed temperature is 550. It is maintained at about ˜650 ° C.
The waste 40 is pyrolyzed and gasified in the fluidized bed gasification furnace 3 and decomposed into gas, tar, and char (carbide). Tar is a component that becomes liquid at room temperature, but is present in a gaseous state in the gasification furnace. The incombustible material in the gasification furnace 3 is sequentially discharged from the incombustible material discharge port 5.
The char is gradually pulverized in the fluidized bed, and is introduced into the swirl melting furnace 6 along with gas and tar. Hereinafter, these components introduced into the melting furnace 6 are collectively referred to as a pyrolysis gas.
In addition, although the fluidized bed type gasification furnace 3 was mentioned as an example as a gasification furnace in the present Example, it is not limited to this, Any if it is a furnace which has the structure which pyrolyzes and gasifies waste. But you can.

前記流動床ガス化炉3の炉頂部より排出された熱分解ガスは、熱分解ガスダクト25を経て旋回溶融炉6の熱分解ガスバーナへ導入される。該熱分解ガスバーナで、熱分解ガスは燃焼空気42と混合されて炉内に導入され、旋回流を形成する。このとき、燃焼空気は空気比0.9〜1.1、好ましくは1.0程度であると良い。
前記旋回溶融炉6では、熱分解ガスと燃焼空気42の混合ガスが燃焼するとともに、必要に応じて種火バーナ26、補助燃料バーナ27により炉内温度が1300〜1500℃に維持され、熱分解ガス中の灰分が溶融、スラグ化される。溶融したスラグは、旋回溶融炉6の内壁面に付着、流下し、炉底部のスラグ出滓口7からスラグ抜出シュート8を経て排出される。旋回溶融炉6から排出されたスラグは、水砕槽9で急冷され、スラグコンベア10により搬出されて水砕スラグとして回収される。回収された水砕スラグは、路盤材等に有効利用することが可能である。尚、本実施例にて溶融炉として旋回溶融炉6を例に挙げたが、これに限定されるものではなく、灰分を含む熱分解ガスを燃焼溶融する構成を有する炉であれば何れでもよい。
The pyrolysis gas discharged from the top of the fluidized bed gasification furnace 3 is introduced into the pyrolysis gas burner of the swirling melting furnace 6 through the pyrolysis gas duct 25. In the pyrolysis gas burner, the pyrolysis gas is mixed with the combustion air 42 and introduced into the furnace to form a swirling flow. At this time, the combustion air may have an air ratio of 0.9 to 1.1, preferably about 1.0.
In the swirl melting furnace 6, the mixed gas of the pyrolysis gas and the combustion air 42 is combusted, and the furnace temperature is maintained at 1300 to 1500 ° C. by the seed flame burner 26 and the auxiliary fuel burner 27 as necessary. The ash in the gas melts and slags. The molten slag adheres and flows down on the inner wall surface of the swirl melting furnace 6 and is discharged from the slag outlet 7 at the bottom of the furnace through the slag extraction chute 8. The slag discharged from the slewing melting furnace 6 is rapidly cooled in the water granulating tank 9, carried out by the slag conveyor 10, and collected as granulated slag. The recovered granulated slag can be effectively used for roadbed materials and the like. In this embodiment, the swirl melting furnace 6 is taken as an example of the melting furnace. However, the present invention is not limited to this, and any furnace may be used as long as it is configured to burn and melt pyrolysis gas containing ash. .

一方、旋回溶融炉6から排出された燃焼排ガスは連結部11を介して二次燃焼室12へ導入される。二次燃焼室12では、燃焼空気43が空気比1.2〜1.5となるように供給されるとともに、必要に応じて補助燃料バーナ32で所定温度まで昇温され、前記燃焼排ガス中の未燃分はここで完全燃焼される。   On the other hand, the combustion exhaust gas discharged from the swirl melting furnace 6 is introduced into the secondary combustion chamber 12 through the connecting portion 11. In the secondary combustion chamber 12, the combustion air 43 is supplied so as to have an air ratio of 1.2 to 1.5, and is heated to a predetermined temperature by the auxiliary fuel burner 32 as necessary. The unburned portion is completely burned here.

前記流動床ガス化炉3は、側壁に廃棄物投入ホッパ1と、該ホッパ1の下方に連結された給じん機2とを備えている。該給じん機2は、ケーシング内に挿通された回転軸と、該回転軸に固定されたスクリュー羽根と、回転軸の端部に連結され該回転軸を回転駆動するモータ2aとから構成される。この給じん機は2、原則としてモータ2aにより回転軸とスクリュー羽根を回転制御することにより、炉内に供給する廃棄物の供給量(供給速度)を調整するようになっている。   The fluidized bed gasification furnace 3 includes a waste charging hopper 1 on a side wall and a dust feeder 2 connected to the lower side of the hopper 1. The dust feeder 2 is composed of a rotating shaft inserted into the casing, a screw blade fixed to the rotating shaft, and a motor 2a connected to an end of the rotating shaft and rotating the rotating shaft. . In this dust feeder, in principle, the rotation amount of the rotating shaft and screw blades are controlled by the motor 2a to adjust the supply amount (supply speed) of waste to be supplied into the furnace.

また、流動床ガス化炉3には、炉底部に流動砂が充填された流動層20が形成され、その上方に補助燃料バーナ21が設けられている。炉底部には複数の風箱4が並設されており、該風箱4を介して炉内に燃焼空気41が導入される。通常運転時の流動層20は、450〜650℃程度の温度に維持される。
燃焼空気41は送風機23により供給され、該供給ライン上にはFDFダンパ(押込送風機ダンパ)24が配置されている。FDFダンパ24は、開度制御することにより風箱4に供給する燃焼空気供給量を調整する。FDFダンパ24の開度制御は、制御装置35により行われる。
また、流動床ガス化炉3の上方には、旋回溶融炉6に接続される熱分解ガスダクト25が配置される。該流動床ガス化炉3上方の熱分解ガス出口側には、炉内圧を検出する炉内圧センサ22が設けられており、連続的に検出を行って連続的に検出値を制御装置35に送信する。該制御装置35では、この炉内圧の検出値に基づいて、前記FDFダンパ24の開度制御、及び後述する2次FDFダンパ(2次送風機ダンパ)30、OFAダンパ(2次空気ダンパ)31の開度制御を行い、各装置内への燃焼空気供給量を調整する。
The fluidized bed gasification furnace 3 is formed with a fluidized bed 20 filled with fluidized sand at the bottom of the furnace, and an auxiliary fuel burner 21 is provided above the fluidized bed 20. A plurality of wind boxes 4 are arranged in parallel at the bottom of the furnace, and combustion air 41 is introduced into the furnace through the wind boxes 4. The fluidized bed 20 during normal operation is maintained at a temperature of about 450 to 650 ° C.
The combustion air 41 is supplied by the blower 23, and an FDF damper (push-in blower damper) 24 is disposed on the supply line. The FDF damper 24 adjusts the amount of combustion air supplied to the wind box 4 by controlling the opening. The opening degree control of the FDF damper 24 is performed by the control device 35.
A pyrolysis gas duct 25 connected to the swirling melting furnace 6 is disposed above the fluidized bed gasification furnace 3. A furnace pressure sensor 22 for detecting the furnace pressure is provided on the pyrolysis gas outlet side above the fluidized bed gasification furnace 3, and continuously detects and transmits the detected value to the control device 35. To do. In the control device 35, based on the detected value of the furnace pressure, the opening degree of the FDF damper 24, the secondary FDF damper (secondary blower damper) 30, and the OFA damper (secondary air damper) 31 to be described later are controlled. The opening degree is controlled, and the amount of combustion air supplied into each device is adjusted.

前記旋回溶融炉は6は断面円形状の炉本体を有しており、側壁には、熱分解ガスダクト25から延設され熱分解ガスを炉内に吹き込む一又は複数の熱分解ガスバーナが配設される。熱分解ガスバーナの近傍には、種火バーナ26、補助燃料バーナ27が配設される。さらに、炉上部は絞り構造の連結部11を介して二次燃焼室12に連通しており、旋回溶融炉6で発生した燃焼排ガスは二次燃焼室12に送られる。炉底部にはスラグ出滓口7が設けおり、該スラグ出滓口7から下方に延設されたスラグ抜出シュート8を通って溶融スラグが排出されるようになっている。スラグ抜出シュート8にはスラグ出滓口7へ向けて溶融固化物溶融バーナ28が取り付けられており、スラグ出滓口7から排出される溶融スラグが固化して閉塞しないように加温するようになっている。   The swirl melting furnace 6 has a furnace body having a circular cross section, and one or more pyrolysis gas burners extending from the pyrolysis gas duct 25 and blowing pyrolysis gas into the furnace are disposed on the side walls. The In the vicinity of the pyrolysis gas burner, a seed flame burner 26 and an auxiliary fuel burner 27 are disposed. Further, the upper part of the furnace communicates with the secondary combustion chamber 12 via the connecting portion 11 having a throttle structure, and the combustion exhaust gas generated in the swirling melting furnace 6 is sent to the secondary combustion chamber 12. A slag outlet 7 is provided at the bottom of the furnace, and molten slag is discharged through a slag extraction chute 8 extending downward from the slag outlet 7. The slag extraction chute 8 is provided with a melt-solidified melt burner 28 toward the slag outlet 7 so as to heat the molten slag discharged from the slag outlet 7 so that it does not solidify and become blocked. It has become.

熱分解ガスダクト25には燃焼空気42が供給される。燃焼空気42は送風機29により供給され、該供給ライン上には2次FDFダンパ30が配置されている。2次FDFダンパ30は、開度制御することにより旋回溶融炉6及び二次燃焼室12に供給する燃焼空気供給量を調整する。2次FDFダンパ30の開度制御は、制御装置35により行われる。
二次燃焼室12の側壁には一又は複数の補助燃料バーナ32が設けられており、必要に応じて二次燃焼室内の温度を維持するようになっている。
さらに、二次燃焼室12には燃焼空気43が供給される。燃焼空気43は、旋回溶融炉6に供給される燃焼空気42と同一の送風機29により供給される。送風機29から供給される燃焼空気は2次FDFダンパ30を経由した後に分岐され、一方はOFAダンパ31を介して二次燃焼室12へ供給され、他方は熱分解ガスダクト25に供給されて溶融炉内に導入される。OFAダンパ31は、開度制御により二次燃焼室12と溶融炉6に供給する燃焼空気比率を調整する。OFAダンパ31の制御は、制御装置35により行われる。
Combustion air 42 is supplied to the pyrolysis gas duct 25. The combustion air 42 is supplied by a blower 29, and a secondary FDF damper 30 is disposed on the supply line. The secondary FDF damper 30 adjusts the amount of combustion air supplied to the swirling melting furnace 6 and the secondary combustion chamber 12 by controlling the opening degree. The opening degree control of the secondary FDF damper 30 is performed by the control device 35.
One or a plurality of auxiliary fuel burners 32 are provided on the side wall of the secondary combustion chamber 12 so as to maintain the temperature in the secondary combustion chamber as necessary.
Further, combustion air 43 is supplied to the secondary combustion chamber 12. The combustion air 43 is supplied by the same blower 29 as the combustion air 42 supplied to the swirl melting furnace 6. The combustion air supplied from the blower 29 is branched after passing through the secondary FDF damper 30, one is supplied to the secondary combustion chamber 12 via the OFA damper 31, and the other is supplied to the pyrolysis gas duct 25 for melting furnace. Introduced in. The OFA damper 31 adjusts the ratio of combustion air supplied to the secondary combustion chamber 12 and the melting furnace 6 by opening degree control. The control of the OFA damper 31 is performed by the control device 35.

上記したような流動床ガス化炉3では、廃棄物の発熱量や投入量の変動等により熱分解ガスの発生量にも変動が生じる。流動床ガス化炉3にて熱分解ガスが多量に発生すると、後流側の溶融炉6にて熱分解ガスが完全燃焼せずにCOを大量に含む排ガスが生じてしまう。従って、本実施例では流動床ガス化炉3、及び旋回溶融炉6、二次燃焼室12における燃焼を適正化し、排ガス中のCO濃度を低減する構成を備える。   In the fluidized bed gasification furnace 3 as described above, the amount of pyrolysis gas generated varies due to changes in the heat generation amount and input amount of waste. When a large amount of pyrolysis gas is generated in the fluidized bed gasification furnace 3, the pyrolysis gas is not completely burned in the downstream melting furnace 6 and exhaust gas containing a large amount of CO is generated. Therefore, in the present embodiment, a configuration is provided in which combustion in the fluidized bed gasification furnace 3, the swirl melting furnace 6, and the secondary combustion chamber 12 is optimized and the CO concentration in the exhaust gas is reduced.

本実施例では、流動床ガス化炉3の上部に炉内圧を検出する炉内圧センサ22を具備する。さらに、ガス化炉3での異常燃焼を示す炉内圧の状態として、異常レベルに対応して複数段階の炉内圧条件が予め設定されている。
図2の基本フローに示されるように、炉内圧センサ22により検出した炉内圧が、第1の炉内圧条件に達した場合に、ガス化炉3、溶融炉6、二次燃焼室12の少なくとも何れかに供給する燃焼空気供給量を制御し、前記検出した炉内圧が、第2の炉内圧条件に達した場合に、前記燃焼空気供給量の制御とともに、給じん機における給じん量(給じん速度)を制御する構成とした。
本実施例では、燃焼空気量の制御と給じん量の制御は、制御装置35により行われる。しかし、この構成に限定されるものではなく、夫々の制御が別個の制御装置により行われるようにし、これらの制御装置が夫々カスケード制御されるように構成してもよい。
In this embodiment, a furnace pressure sensor 22 for detecting the furnace pressure is provided in the upper part of the fluidized bed gasification furnace 3. Furthermore, as a state of the furnace pressure indicating abnormal combustion in the gasification furnace 3, a plurality of stages of furnace pressure conditions are set in advance corresponding to the abnormal level.
As shown in the basic flow of FIG. 2, when the furnace pressure detected by the furnace pressure sensor 22 reaches the first furnace pressure condition, at least one of the gasification furnace 3, the melting furnace 6, and the secondary combustion chamber 12. The amount of combustion air supplied to any of the above is controlled, and when the detected furnace pressure reaches the second furnace pressure condition, the combustion air supply amount is controlled and the dust supply amount (supply) in the feeder is controlled. (Reel speed) is controlled.
In this embodiment, the control of the amount of combustion air and the amount of dust supply are performed by the control device 35. However, the present invention is not limited to this configuration, and each control may be performed by separate control devices, and these control devices may be cascade-controlled.

上記したように、ガス化炉3の炉内圧が第1の炉内圧条件に達したら、制御内容として燃焼空気供給量の制御を行う。
第1の炉内圧条件は複数設定され、適性な炉内圧を基準値とすると、該基準値に対する所定の絶対値を超えた場合、該基準値に対する所定の絶対値が所定時間継続された場合等の条件が挙げられる。
この第1の炉内圧条件に対応した制御内容としては、2次FDFダンパの開度制御、FDFダンパの開度制御、OFAダンパの開度制御の何れか一つ若しくは複数の組み合わせ等の条件が挙げられる。
As described above, when the furnace pressure of the gasification furnace 3 reaches the first furnace pressure condition, the amount of combustion air supplied is controlled as the control content.
When a plurality of first in-furnace pressure conditions are set and an appropriate in-furnace pressure is set as a reference value, when a predetermined absolute value with respect to the reference value is exceeded, a predetermined absolute value with respect to the reference value is continued for a predetermined time, etc. These conditions are listed.
Control contents corresponding to the first furnace pressure condition include conditions such as one or a combination of opening control of the secondary FDF damper, opening control of the FDF damper, and opening control of the OFA damper. Can be mentioned.

また、本実施例では、第1の炉内圧条件が複数重複した場合に、重複した制御内容を加算していく制御を行う。即ち、2次FDFダンパの開度を+10%に制御した後、復帰前に同ダンパの開度を+15%に制御することになった場合、2次FDFダンパの開度を加算して+25%に制御する。
このように、重複した制御内容を加算するのは、燃焼空気供給量の増減は給じん量の増減ほどシステムの運転状態に影響を及ぼさないため、大幅な制御が可能であることに起因する。
この制御内容を実施した後、予め設定された復帰条件に達したら、ダンパの開度を元の状態に戻す。復帰条件としては、正常状態を示す所定の炉内圧となった場合、所定の炉内圧にて所定時間継続した場合、或いは制御継続時間が所定時間に達した場合などの条件が挙げられる。
Further, in this embodiment, when a plurality of first furnace pressure conditions are duplicated, control is performed to add duplicate control details. That is, when the opening degree of the secondary FDF damper is controlled to + 10% and then the opening degree of the damper is controlled to + 15% before returning, the opening degree of the secondary FDF damper is added to + 25%. To control.
In this manner, the overlapping control contents are added because the increase or decrease in the combustion air supply amount does not affect the operation state of the system as much as the increase or decrease in the supply amount of the fuel, and therefore, a large control is possible.
After implementing this control content, when the preset return condition is reached, the opening degree of the damper is returned to the original state. The return condition includes conditions such as when a predetermined furnace pressure indicating a normal state is reached, when a predetermined furnace pressure continues for a predetermined time, or when a control continuation time reaches a predetermined time.

一方、ガス化炉3の炉内圧が、第2の炉内圧条件に達したら、制御内容として給じん量の制御を行う。
第2の炉内圧条件は複数設定され、適性な炉内圧を基準値とすると、該基準値に対する所定の絶対値を超えた場合、該基準値に対する所定の絶対値が所定時間継続された場合等の条件が挙げられる。
さらに第2の炉内圧条件として、炉内圧の変化率が挙げられる。これは、一定時間内に所定範囲以上の炉内圧変化が連続的に複数回出現した場合、燃焼状態の異常レベルが高いものと判断し、給じん量の制御を行うようにする。例えば、1秒以内に0.05kPa以上の変化が3秒以上継続した場合、ガス化炉3内にて熱分解ガスが大量に発生しているものと推測され、これを抑制するために、後段側における燃焼空気量の増大とともに入口側における給じん量を低減して、熱分解ガスの発生量そのものを抑制する。
On the other hand, when the furnace pressure of the gasification furnace 3 reaches the second furnace pressure condition, the amount of dust supplied is controlled as a control content.
When a plurality of second furnace pressure conditions are set and an appropriate furnace pressure is used as a reference value, when a predetermined absolute value with respect to the reference value is exceeded, when a predetermined absolute value with respect to the reference value is continued for a predetermined time, etc. These conditions are listed.
Further, the second furnace pressure condition includes a rate of change of the furnace pressure. In this case, when a change in the furnace pressure exceeding a predetermined range appears continuously several times within a predetermined time, it is determined that the abnormal level of the combustion state is high, and the amount of dust supplied is controlled. For example, when a change of 0.05 kPa or more within 1 second continues for 3 seconds or more, it is estimated that a large amount of pyrolysis gas is generated in the gasification furnace 3, and in order to suppress this, As the amount of combustion air on the side increases, the amount of dust supplied on the inlet side decreases to suppress the amount of pyrolysis gas generated.

さらにまた、第2の炉内圧条件として、炉内圧の反転条件が挙げられる。これは、炉内圧の時系列変化が、基準値よりも上方若しくは下方にて反転を行い、基準値まで復帰しない場合に、燃焼状態の異常レベルが高いものと判断し、給じん量の制御を行うようにする。例えば、基準値よりも高い値で反転を繰り返す場合、熱分解ガスの発生量が増大し続けているものと推測され、これを抑制するために、後段側における燃焼空気量の増大とともに給じん量を低減して、熱分解ガスの発生量そのものを抑制する。   Furthermore, the second in-furnace pressure condition includes an inversion condition of the in-furnace pressure. This is because if the time-series change in the furnace pressure is reversed above or below the reference value and does not return to the reference value, it is determined that the abnormal level of the combustion state is high, and the amount of dust supplied is controlled. To do. For example, when reversal is repeated at a value higher than the reference value, it is presumed that the amount of pyrolysis gas generated continues to increase, and in order to suppress this, the amount of dust supplied with the increase in the amount of combustion air on the rear stage side To reduce the amount of pyrolysis gas generated.

この第2の炉内圧条件に対応した制御内容としては、給じん機モータ2aの回転数制御が挙げられる。
このとき、第2の炉内圧条件は、第1の炉内圧条件より異常レベルが上回っているため、必然的に燃焼空気量の制御も行われている。従って、第2の炉内圧条件に達したら、燃焼空気量の制御に加えて、給じん量の制御を行うこととなる。
The control content corresponding to the second furnace pressure condition includes rotation speed control of the dust feeder motor 2a.
At this time, since the abnormal level of the second furnace pressure condition is higher than that of the first furnace pressure condition, the amount of combustion air is inevitably controlled. Therefore, when the second furnace pressure condition is reached, in addition to controlling the amount of combustion air, the amount of dust supplied is controlled.

また、本実施例では、第2の炉内圧条件が複数重複した場合に、重複した制御内容のうち、制御量が大きい方の制御内容を実行する。即ち、給じん速度を−10%に制御した後、復帰前に給じん速度を−18%に制御することになった場合、給じん速度−18%の方を採用する。
このように、重複した制御内容のうち制御量が大きい方を優先させるのは、給じん量の増減はシステムの運転状態へ及ぼす影響が比較的大きいので、給じん量の変動を最小限に抑えるためである。
Further, in this embodiment, when a plurality of second furnace pressure conditions are duplicated, the control content with the larger control amount is executed among the duplicated control details. That is, if the feed rate is controlled to -18% before returning after the feed rate is controlled to -10%, the feed rate of -18% is adopted.
In this way, giving priority to the larger control amount among the duplicated control contents is because the increase or decrease in the amount of dust supply has a relatively large effect on the operating state of the system, so the fluctuation in the amount of dust supply is minimized. Because.

この制御内容を実施した後、予め設定された復帰条件に達したら、ダンパの開度を元の状態に戻す。復帰条件としては、正常状態を示す所定の炉内圧となった場合、所定の炉内圧にて所定時間継続した場合、或いは制御継続時間が所定時間に達した場合などの条件が挙げられる。さらに、給じん量の制御においては、復帰する際に、復帰速度を設けることが好ましい。所定の復帰速度に従って徐々に給じん量を復帰させることにより、急激な給じん量変化を防止し、ガス化炉内の燃焼状態を安定化させることができる。   After implementing this control content, when the preset return condition is reached, the opening degree of the damper is returned to the original state. The return condition includes conditions such as when a predetermined furnace pressure indicating a normal state is reached, when a predetermined furnace pressure continues for a predetermined time, or when a control continuation time reaches a predetermined time. Further, in the control of the dust supply amount, it is preferable to provide a return speed when returning. By gradually returning the dust supply amount according to a predetermined return speed, it is possible to prevent a sudden change in the dust supply amount and to stabilize the combustion state in the gasifier.

図3に、制御方法の一例を示す。図3(a)は炉内圧センサ22により測定した炉内圧の時系列変化を示し、(b)は燃焼空気量の制御を示し、(c)は給じん量の制御を示す。炉内圧の基準値Pは適切な燃焼状態における炉内圧で、設定値P〜Pはこの基準値Pを超え、異常な燃焼状態を示す炉内圧で、P<P<P<P<Pである。また、P−Pは、基準値PからPだけ低い値である。
同図において、第1の炉内圧条件に達したA点とB点では、夫々の炉内圧条件に対応した燃焼空気量に関する制御内容が実行される。A点では、炉内圧が設定値Pを越えたため、2次FDFダンパを開に制御する。B点では炉内圧が設定値Pを越えたため、OFAダンパを開に制御する。このとき、制御内容を加算していくため、2次FDFダンパは開のままとする。その後、これらのダンパ制御を復帰条件のもとで復帰させる。C点では、炉内圧が設定値Pを越えているため、A点と同様の制御を行う。
FIG. 3 shows an example of the control method. FIG. 3A shows the time-series change of the furnace pressure measured by the furnace pressure sensor 22, FIG. 3B shows the control of the combustion air amount, and FIG. 3C shows the control of the dust supply amount. The reference value P of the furnace pressure is the furnace pressure in an appropriate combustion state, and the set values P 1 to P 5 exceed the reference value P, and the furnace pressure indicates an abnormal combustion state, and P 1 <P 2 <P 3 < P 4 <P 5 . Further, P−P 6 is a value lower than the reference value P by P 6 .
In the same figure, at points A and B that have reached the first furnace pressure condition, the control content relating to the amount of combustion air corresponding to each furnace pressure condition is executed. In point A, since the furnace pressure exceeds the set value P 1, and controls the secondary FDF damper open. In point B for the pressure in the furnace exceeds the set value P 2, and controls the OFA damper open. At this time, since the control contents are added, the secondary FDF damper remains open. Thereafter, these damper controls are returned under the return condition. The point C, since the furnace pressure is higher than a setting P 1, performs the same control as the point A.

D点では、第2の炉内圧条件として、炉内圧の時系列変化が基準値より上方で反転しているため、給じん量(モータ回転数)を減少させる制御を行う。このとき、燃焼空気量の制御は続行する。
E点では、第1の炉内圧条件として炉内圧が設定値Pを超えたため、これに対応する制御内容として、OFAダンパを開に制御する。
F点では、第1の炉内条件として炉内圧がP−Pを超えて時間Tだけ継続したため、これに対応する制御内容として、2次FDFダンパとOFAダンパを開に制御する。このとき、E点における制御内容に加算する形で制御が行われる。
At point D, as the second furnace pressure condition, since the time-series change in the furnace pressure is reversed above the reference value, control is performed to reduce the feed amount (motor rotation speed). At this time, the control of the combustion air amount continues.
The point E, since the furnace pressure as the first furnace pressure conditions exceed the set value P 3, as the control content corresponding thereto, to control the OFA damper open.
At point F, as the first in-furnace condition, the in-furnace pressure exceeds P-P 6 and continues for time T 1. Therefore, the secondary FDF damper and OFA damper are controlled to be opened as the corresponding control content. At this time, control is performed by adding to the control content at point E.

G点では、第1の炉内圧条件及び第2の炉内条件として、炉内圧がP−Pを越えて時間Tだけ継続したため、これらに対応する制御内容として、2次FDFダンパとOFAダンパを開に制御するとともに、給じん量を減少させる制御を行う。
H点では、第1の炉内圧条件として炉内圧が設定値Pを超えたため、これに対応する制御内容として、FDFダンパを閉に制御する。
I点では、第2の炉内圧条件として炉内圧が設定値Pを超えたため、これに対応する制御内容として、給じん量を減少させる制御が行われる。
J点では、第1の炉内圧条件として、炉内圧が設定値Pを超えて時間Tだけ継続したため、これに対応する制御内容として、OFAダンパを開に制御している。
また、I点における給じん量制御を復帰させる際には、勾配Kに示されるように、所定の復帰速度で徐々に復帰させる。
尚、上記した炉内圧条件と制御内容の組み合わせは一例に過ぎず、これに限定されるものではない。
At point G, as the first furnace pressure condition and the second furnace condition, the furnace pressure exceeded P-P 6 and continued for a time T 2 , and as a control content corresponding to these, the secondary FDF damper and OFA The damper is controlled to be opened and the amount of dust supplied is reduced.
The point H, since the furnace pressure as the first furnace pressure conditions exceed the set value P 4, as control contents corresponding thereto, to control the FDF damper closed.
The point I, since the furnace pressure as a second furnace pressure conditions exceed the set value P 5, as the control content corresponding to this, the control to decrease the feed dust amount is carried out.
The J point, as a first furnace pressure conditions, since continued for a time T 3 the furnace internal pressure exceeds the set value P 3, as the control content corresponding thereto, and controls the OFA damper open.
Further, when returning the dust supply amount control at the point I, as indicated by the gradient K, it is gradually returned at a predetermined return speed.
The combination of the furnace pressure condition and the control content described above is merely an example, and the present invention is not limited to this.

このように、本実施例では、炉内圧の異常レベルが低い第1の炉内圧条件では、燃焼空気供給量の制御を行い、ガス化炉の後段側にて熱分解ガスの燃焼を促進若しくは熱分解ガスの発生量を抑制することにより燃焼状態の安定化を図り、異常レベルが高い第2の炉内圧条件では、燃焼空気供給量の制御に加えて給じん量を制御し、熱分解ガスの発生量の安定化を図っている。例えば、炉内圧が高い場合には、燃焼空気供給量を増大してガス化炉後段側における燃焼を促進するとともに、給じん量を下げて廃棄物の供給量を低減することにより熱分解ガスの発生を抑制している。
本発明のように、炉内圧の大幅な変動があった場合に、燃焼空気供給量のみでなく給じん量も制御することにより、大量の燃焼空気を供給することによる炉内温度の低下を防ぐことができ、燃焼排ガス中のCO濃度を抑制するだけでなく、溶融炉における溶融スラグの安定出滓が可能となる。
これにより、大幅な炉内圧変動にも対応できるシステムとすることができ、また制御時においてもシステムの運転に支障をきたすことなく安定運転が可能となる。
As described above, in this embodiment, under the first furnace pressure condition where the abnormal level of the furnace pressure is low, the combustion air supply amount is controlled, and the combustion of the pyrolysis gas is promoted on the rear side of the gasification furnace or the heat By suppressing the generation amount of cracked gas, the combustion state is stabilized, and in the second furnace pressure condition where the abnormal level is high, in addition to controlling the supply amount of combustion air, the amount of dust supplied is controlled, The amount of generation is stabilized. For example, when the pressure in the furnace is high, the combustion air supply amount is increased to promote combustion at the latter stage of the gasification furnace, and the amount of pyrolysis gas is reduced by lowering the supply amount and reducing the waste supply amount. Occurrence is suppressed.
As in the present invention, when there is a significant fluctuation in the furnace pressure, the furnace temperature is prevented from being lowered by supplying a large amount of combustion air by controlling not only the combustion air supply amount but also the dust supply amount. In addition to suppressing the CO concentration in the combustion exhaust gas, it is possible to stably produce molten slag in the melting furnace.
As a result, it is possible to provide a system that can cope with large fluctuations in the internal pressure of the furnace, and even during control, stable operation is possible without hindering the operation of the system.

本発明の実施例に係るガス化溶融システムの全体構成図である。1 is an overall configuration diagram of a gasification melting system according to an embodiment of the present invention. 図1のシステムにおける制御方法の基本フローを示す図である。It is a figure which shows the basic flow of the control method in the system of FIG. 図1のシステムにおける制御方法の具体例を示す図である。It is a figure which shows the specific example of the control method in the system of FIG. 従来のガス化溶融システムの全体構成図である。It is a whole block diagram of the conventional gasification melting system.

符号の説明Explanation of symbols

2 給じん機
2a モータ
3 流動床ガス化炉
6 旋回溶融炉
12 二次燃焼室
13 ボイラ部
22 炉内圧センサ
24 FDFダンパ
30 2次FDFダンパ
31 OFAダンパ
35 制御装置
DESCRIPTION OF SYMBOLS 2 Dust feeder 2a Motor 3 Fluidized bed gasifier 6 Swivel melting furnace 12 Secondary combustion chamber 13 Boiler part 22 Furnace pressure sensor 24 FDF damper 30 Secondary FDF damper 31 OFA damper 35 Control apparatus

Claims (9)

給じん機を介してガス化炉内に供給された廃棄物を熱分解し、該ガス化炉にて発生した熱分解ガスを溶融炉に導入し、該溶融炉にて熱分解ガスの燃焼熱により灰分を溶融した後、前記溶融炉に連結された二次燃焼室にて燃焼排ガス中の未燃分を燃焼させるガス化溶融システムの燃焼制御方法において、
前記ガス化炉での異常燃焼を示す炉内圧の状態として、異常レベルに対応して複数段階の炉内圧条件が予め設定されており、
前記ガス化炉の炉内圧を検出し、該検出した炉内圧が、第1の炉内圧条件に達した場合に、前記ガス化炉、前記溶融炉、前記二次燃焼室の少なくとも何れかに供給する燃焼空気供給量を制御し、前記第1の炉内圧条件よりも異常レベルの高い第2の炉内圧条件に達した場合に、前記燃焼空気供給量の制御に加えて前記ガス化炉への給じん量を制御することを特徴とするス化溶融システムの燃焼制御方法。
The waste supplied into the gasification furnace through the dust feeder is pyrolyzed, the pyrolysis gas generated in the gasification furnace is introduced into the melting furnace, and the heat of combustion of the pyrolysis gas in the melting furnace In the combustion control method of the gasification and melting system, after the ash is melted by the above, the unburned content in the combustion exhaust gas is burned in the secondary combustion chamber connected to the melting furnace.
As a state of the furnace pressure indicating abnormal combustion in the gasification furnace, a plurality of stages of furnace pressure conditions are set in advance corresponding to the abnormal level,
The internal pressure of the gasification furnace is detected, and when the detected internal pressure reaches the first internal pressure condition, the gasification furnace is supplied to at least one of the gasification furnace, the melting furnace, and the secondary combustion chamber. The amount of combustion air supplied to the gasifier is controlled in addition to the control of the amount of combustion air supplied when the second furnace pressure condition, which is higher than the first furnace pressure condition, is reached. A combustion control method for a smelting and melting system, characterized by controlling a dust supply amount.
前記第1の炉内圧条件及び前記第2の炉内圧条件が夫々複数設定されており、
前記複数の第1の炉内圧条件に対応して燃焼空気供給量の制御内容が夫々設定され、該第1の炉内圧条件が複数重複した場合には、前記制御内容を加算するようにし、
前記複数の第2の炉内圧条件に対応して給じん量の制御内容が夫々設定され、該第2の炉内圧条件が複数重複した場合には、前記制御内容のうち制御量の大きい方を採用するようにしたことを特徴とする請求項1記載のガス化溶融システムの燃焼制御方法。
A plurality of the first furnace pressure conditions and the second furnace pressure conditions are respectively set,
The control contents of the combustion air supply amount are respectively set corresponding to the plurality of first furnace pressure conditions, and when the first furnace pressure conditions are duplicated, the control contents are added,
When the contents of control of the supply amount are respectively set corresponding to the plurality of second furnace pressure conditions, and when the plurality of second furnace pressure conditions overlap, the larger one of the control contents is controlled. The combustion control method for a gasification and melting system according to claim 1, wherein the combustion control method is employed.
前記第1の炉内圧条件が、予め設定された適性な炉内圧を基準値とすると、該基準値を超える所定の設定値に達した場合、該基準値を超える所定の設定値が所定時間継続した場合のうち少なくとも何れか一方の条件を含むことを特徴とする請求項1若しくは2記載のガス化溶融システムの燃焼制御方法。   Assuming that the first furnace pressure condition is a preset appropriate furnace pressure as a reference value, when the first furnace pressure condition reaches a predetermined set value exceeding the reference value, the predetermined set value exceeding the reference value continues for a predetermined time. The combustion control method for a gasification and melting system according to claim 1, wherein at least one of the conditions is included. 前記第2の炉内圧条件が、予め設定された適性な炉内圧を基準値とすると、該基準値を超える所定の設定値に達した場合、該基準値を超える所定の設定値が所定時間継続した場合、炉内圧の時系列変化の反転が基準値から外れた位置にて行われる場合、炉内圧の変化率が所定の値を超えた場合のうち少なくとも何れか一つの条件を含むことを特徴とする請求項1若しくは2記載のガス化溶融システムの燃焼制御方法。   Assuming that the second furnace pressure condition is a predetermined preset furnace pressure as a reference value, when a predetermined set value exceeding the reference value is reached, the predetermined set value exceeding the reference value continues for a predetermined time. When the reversal of the time series change of the furnace pressure is performed at a position deviating from the reference value, it includes at least one of the conditions when the rate of change of the furnace pressure exceeds a predetermined value. A combustion control method for a gasification and melting system according to claim 1 or 2. 前記第2の炉内圧条件に対応した給じん量制御を行った後、該給じん量を復帰させる際に、所定速度で徐々に復帰させるようにしたことを特徴とする請求項1若しくは2記載のガス化溶融システムの燃焼制御方法。   3. The method according to claim 1, wherein after the dust supply amount control corresponding to the second in-furnace pressure condition is performed, the dust supply amount is gradually returned at a predetermined speed when returning. Control method for gasification and melting system 給じん機を介して供給された廃棄物を熱分解して熱分解ガスを発生させるガス化炉と、該熱分解ガスの燃焼熱により灰分を溶融する溶融炉と、該溶融炉で発生した燃焼排ガス中の未燃分を燃焼させる二次燃焼室とからなるガス化溶融システムにおいて、
前記ガス化炉での異常燃焼を示す炉内圧の状態として、異常レベルに対応して複数段階の炉内圧条件が予め設定されており、
前記ガス化炉の炉内圧を検出する炉内圧検出手段と、
前記炉内圧検出手段にて検出された炉内圧が、第1の炉内圧条件に達した場合に、前記ガス化炉、前記溶融炉、前記二次燃焼室の少なくとも何れかに供給する燃焼空気供給量を制御し、前記第1の炉内圧条件よりも異常レベルの高い第2の炉内圧条件に達した場合に、前記燃焼空気供給量の制御に加えて前記ガス化炉への給じん量を制御する制御手段とを備えたことを特徴とするガス化溶融システム。
A gasification furnace that generates pyrolysis gas by pyrolyzing waste supplied via a dust feeder, a melting furnace that melts ash by the combustion heat of the pyrolysis gas, and combustion generated in the melting furnace In a gasification and melting system consisting of a secondary combustion chamber that burns unburned components in exhaust gas,
As a state of the furnace pressure indicating abnormal combustion in the gasification furnace, a plurality of stages of furnace pressure conditions are set in advance corresponding to the abnormal level,
A furnace pressure detecting means for detecting a furnace pressure of the gasification furnace;
Combustion air supply that is supplied to at least one of the gasification furnace, the melting furnace, and the secondary combustion chamber when the furnace pressure detected by the furnace pressure detection means reaches a first furnace pressure condition. The amount of dust supplied to the gasification furnace is controlled in addition to the control of the combustion air supply amount when the second furnace pressure condition that is abnormally higher than the first furnace pressure condition is reached. A gasification and melting system comprising a control means for controlling.
前記制御手段には、前記第1の炉内圧条件及び前記第2の炉内圧条件が夫々複数設定されており、該制御手段にて、前記複数の第1の炉内圧条件に対応して燃焼空気供給量の制御内容が夫々設定され、該第1の炉内圧条件が複数重複した場合には、前記制御内容を加算するようにし、
前記複数の第2の炉内圧条件に対応して給じん量の制御内容が夫々設定され、該第2の炉内圧条件が複数重複した場合には、前記制御内容のうち制御量の大きい方を採用するようにしたことを特徴とする請求項6記載のガス化溶融システム。
A plurality of the first furnace pressure conditions and the second furnace pressure conditions are set in the control means, and combustion air corresponding to the plurality of first furnace pressure conditions is set by the control means. When the contents of control of the supply amount are respectively set and the first furnace pressure condition is duplicated, the control contents are added,
When the contents of control of the feed amount are set corresponding to the plurality of second furnace pressure conditions, respectively, and when the plurality of second furnace pressure conditions overlap, the larger of the control contents of the control contents is selected. The gasification and melting system according to claim 6, wherein the gasification and melting system is adopted.
前記制御手段に設定される前記第1の炉内圧条件が、予め設定された適性な炉内圧を基準値とすると、該基準値を超える所定の設定値に達した場合、該基準値を超える所定の設定値が所定時間継続した場合のうち少なくとも何れか一方の条件を含むことを特徴とする請求項6若しくは7記載のガス化溶融システム。   Assuming that the first furnace pressure condition set in the control means is a suitable preset furnace pressure set as a reference value, and reaches a predetermined set value exceeding the reference value, a predetermined value exceeding the reference value is reached. 8. The gasification and melting system according to claim 6, wherein at least one of the conditions is included when the set value continues for a predetermined time. 前記制御手段に設定される前記第2の炉内圧条件が、予め設定された適性な炉内圧を基準値とすると、該基準値を超える所定の設定値に達した場合、該基準値を超える所定の設定値が所定時間継続した場合、炉内圧の時系列変化の反転が基準値から外れた位置にて行われる場合、炉内圧の変化率が所定の値を超えた場合のうち少なくとも何れか一つの条件を含むことを特徴とする請求項6若しくは7記載のガス化溶融システム。   Assuming that the second furnace pressure condition set in the control means is a pre-set appropriate furnace pressure as a reference value, when it reaches a predetermined set value exceeding the reference value, a predetermined value exceeding the reference value is reached. When the set value of the furnace pressure continues for a predetermined time, when the reversal of the time series change of the furnace pressure is performed at a position deviating from the reference value, or at least one of the cases where the rate of change of the furnace pressure exceeds the predetermined value The gasification melting system according to claim 6 or 7, characterized in that it includes two conditions.
JP2007044751A 2007-02-23 2007-02-23 Combustion control method for gasification melting system and system Active JP5154094B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007044751A JP5154094B2 (en) 2007-02-23 2007-02-23 Combustion control method for gasification melting system and system
KR1020070109475A KR100910427B1 (en) 2007-02-23 2007-10-30 Method and system for controlling combustion of gasfication melting system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007044751A JP5154094B2 (en) 2007-02-23 2007-02-23 Combustion control method for gasification melting system and system

Publications (2)

Publication Number Publication Date
JP2008209041A true JP2008209041A (en) 2008-09-11
JP5154094B2 JP5154094B2 (en) 2013-02-27

Family

ID=39785490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007044751A Active JP5154094B2 (en) 2007-02-23 2007-02-23 Combustion control method for gasification melting system and system

Country Status (2)

Country Link
JP (1) JP5154094B2 (en)
KR (1) KR100910427B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010133660A (en) * 2008-12-05 2010-06-17 Nippon Steel Engineering Co Ltd Combustion control method of combustion chamber of waste melting treatment facility
CN105588131A (en) * 2015-12-31 2016-05-18 重庆科技学院 Mechanical fire grate type rubbish gasification incinerator and dual-boiler energy-saving power generation system thereof
CN108009343A (en) * 2017-11-29 2018-05-08 中国地质大学(武汉) A kind of blast furnace CO Influence factors of utilization rate analysis method and system
CN112240553A (en) * 2020-10-20 2021-01-19 江苏天楹等离子体科技有限公司 Plasma gasification melting furnace system and control method thereof
CN117308094A (en) * 2023-10-25 2023-12-29 深圳市环境科学研究院 Automatic combustion control method and system for gasification melting furnace based on laser oxygen meter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT2848192T (en) 2007-10-15 2022-03-02 Univ Maryland Apparatus and method for use in analyzing a patient's bowel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57117013A (en) * 1981-01-12 1982-07-21 Agency Of Ind Science & Technol Temperature controlling method of fluidized bed furnace
JP2003269712A (en) * 2002-03-13 2003-09-25 Mitsubishi Heavy Ind Ltd Combustion control device and combustion control method for thermal decomposition gasification melting furnace

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100249349B1 (en) 1998-03-26 2000-04-01 김학로 Combustion control method and dioxin removing method of fluid bed incinerator
JP2002115833A (en) 2000-10-11 2002-04-19 Babcock Hitachi Kk Refuse incineration installation
JP2005308259A (en) 2004-04-19 2005-11-04 Kawasaki Heavy Ind Ltd Fluidized bed partial combustion furnace operating method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57117013A (en) * 1981-01-12 1982-07-21 Agency Of Ind Science & Technol Temperature controlling method of fluidized bed furnace
JP2003269712A (en) * 2002-03-13 2003-09-25 Mitsubishi Heavy Ind Ltd Combustion control device and combustion control method for thermal decomposition gasification melting furnace

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010133660A (en) * 2008-12-05 2010-06-17 Nippon Steel Engineering Co Ltd Combustion control method of combustion chamber of waste melting treatment facility
CN105588131A (en) * 2015-12-31 2016-05-18 重庆科技学院 Mechanical fire grate type rubbish gasification incinerator and dual-boiler energy-saving power generation system thereof
CN108009343A (en) * 2017-11-29 2018-05-08 中国地质大学(武汉) A kind of blast furnace CO Influence factors of utilization rate analysis method and system
CN112240553A (en) * 2020-10-20 2021-01-19 江苏天楹等离子体科技有限公司 Plasma gasification melting furnace system and control method thereof
CN112240553B (en) * 2020-10-20 2023-02-24 江苏天楹等离子体科技有限公司 Plasma gasification melting furnace system and control method thereof
CN117308094A (en) * 2023-10-25 2023-12-29 深圳市环境科学研究院 Automatic combustion control method and system for gasification melting furnace based on laser oxygen meter

Also Published As

Publication number Publication date
KR20080078520A (en) 2008-08-27
JP5154094B2 (en) 2013-02-27
KR100910427B1 (en) 2009-08-04

Similar Documents

Publication Publication Date Title
JP2002081624A (en) Waste gasification melting furnace and operation method of the melting furnace
JP4295291B2 (en) Fluidized bed gasifier and its fluidized bed monitoring and control method
JP5154094B2 (en) Combustion control method for gasification melting system and system
JP4126316B2 (en) Operation control method of gasification and melting system and system
KR101921225B1 (en) Waste material melting furnace
JP5611418B2 (en) Combustion control method for gasification melting system and system
JP2010255890A (en) Waste melting treatment method and waste melting treatment device
JP4542417B2 (en) Method of treating combustible gas in waste melting furnace
JP3868315B2 (en) Combustion control device and combustion control method for pyrolysis gasification melting furnace
JP4126317B2 (en) Operation control method of gasification and melting system and system
JP2017180922A (en) Waste tire gasification melting device and waste tire gasification melting method
JP2010065932A (en) Device and method for controlling combustion in secondary combustion furnace for pyrolysis gas
JP4918834B2 (en) Waste melting furnace and waste melting furnace operating method
JP6016196B2 (en) Waste gasification and melting apparatus and waste gasification and melting method
JP3902454B2 (en) Combustion control method and waste treatment apparatus
JP4154371B2 (en) Thermal insulation method at the time of waste supply stop of fluidized bed type gasification melting furnace
JP5162285B2 (en) Gasification melting method and gasification melting apparatus
JP4108624B2 (en) Combustion control method and waste treatment apparatus
JP3902123B2 (en) Melting furnace temperature compensation apparatus and melting furnace temperature compensation method for gasification melting apparatus
JP2019190730A (en) Waste gasification melting device and waste gasification melting method
JP2002181319A (en) Gasification melting system and process therefor
JP4233212B2 (en) High-temperature swirl combustion method and waste treatment apparatus
JP2004271039A (en) Thermal decomposition gasifying melting system
JP3759791B2 (en) Operation method of combustion melting furnace in waste treatment equipment
JP3840322B2 (en) Gasification ash melting method and equipment

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080716

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20100210

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120501

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5154094

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150