JP4295291B2 - Fluidized bed gasifier and its fluidized bed monitoring and control method - Google Patents

Fluidized bed gasifier and its fluidized bed monitoring and control method Download PDF

Info

Publication number
JP4295291B2
JP4295291B2 JP2006099147A JP2006099147A JP4295291B2 JP 4295291 B2 JP4295291 B2 JP 4295291B2 JP 2006099147 A JP2006099147 A JP 2006099147A JP 2006099147 A JP2006099147 A JP 2006099147A JP 4295291 B2 JP4295291 B2 JP 4295291B2
Authority
JP
Japan
Prior art keywords
fluidized bed
temperature sensor
fluidized
temperature
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006099147A
Other languages
Japanese (ja)
Other versions
JP2007271203A (en
Inventor
保典 寺部
利昌 白井
裕二 中川
佐藤  淳
岳洋 橘田
Original Assignee
三菱重工環境エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工環境エンジニアリング株式会社 filed Critical 三菱重工環境エンジニアリング株式会社
Priority to JP2006099147A priority Critical patent/JP4295291B2/en
Publication of JP2007271203A publication Critical patent/JP2007271203A/en
Application granted granted Critical
Publication of JP4295291B2 publication Critical patent/JP4295291B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Description

本発明は、廃棄物を熱分解して熱分解ガスを発生させ、該熱分解ガスの燃焼熱で灰分を溶融するガス化溶融システムにおける流動床ガス化炉に関し、特に、流動層の流動不良や層高などの流動層状態を監視でき、且つ流動不良が発生した場合にも速やかにこれを解消して流動の安定化を図るようにした流動床ガス化炉及びその流動層監視・制御方法に関する。   The present invention relates to a fluidized bed gasification furnace in a gasification and melting system in which waste is pyrolyzed to generate pyrolysis gas and ash is melted by the combustion heat of the pyrolysis gas. The present invention relates to a fluidized bed gasification furnace capable of monitoring a fluidized bed state such as a bed height, and quickly eliminating the occurrence of a fluid failure so as to stabilize the flow, and a fluidized bed monitoring and control method thereof. .

従来より、都市ごみを始めとして不燃ごみ、焼却残渣、汚泥、埋立ごみ等の廃棄物まで幅広く処理できる技術としてガス化溶融システムが知られている。ガス化溶融システムは、廃棄物を熱分解してガス化するガス化炉と、該ガス化炉の下流側に設けられ、ガス化炉にて生成された熱分解ガスを高温燃焼し、ガス中の灰分を溶融スラグ化する溶融炉と、該溶融炉から排出される排ガスを燃焼する二次燃焼室とを備えており、廃棄物の資源化、減容化及び無害化を図るために、溶融炉からスラグを取り出して路盤材等の土木資材として再利用したり、二次燃焼室から排出される排ガスから廃熱を回収して発電を行うなどしている(特許文献1等)。   Conventionally, a gasification and melting system is known as a technology capable of processing a wide range of wastes such as municipal waste, non-combustible waste, incineration residue, sludge, landfill waste, and the like. The gasification and melting system includes a gasification furnace that thermally decomposes and gasifies waste, and a pyrolysis gas that is provided downstream of the gasification furnace and that is generated in the gasification furnace at high temperature. It has a melting furnace that melts ash content into slag and a secondary combustion chamber that combusts exhaust gas discharged from the melting furnace. In order to reduce the waste resources, reduce the volume and make them harmless, The slag is taken out from the furnace and reused as a civil engineering material such as a roadbed material, or the waste heat is recovered from the exhaust gas discharged from the secondary combustion chamber to generate electric power (Patent Document 1, etc.).

このようなガス化溶融システムのガス化炉には、流動床ガス化炉が多く用いられている。流動床ガス化炉は、炉底に燃焼空気の供給により流動媒体を流動化させた流動層が形成され、該流動層内に投入した廃棄物を部分燃焼させ、該燃焼熱により高温に維持される流動層内で廃棄物を熱分解する装置である。廃棄物中に混入した不燃物は、燃焼空気にて浮遊させ、炉底に設けられた不燃物排出口より排出するようになっている。
このように流動層は、炉下部からの燃焼空気の供給により流動媒体を流動させるとともに廃棄物の部分燃焼を促進し、流動層内の温度を維持する作用を担っており、均一な流動状態を安定的に維持することが重要である。
As a gasification furnace of such a gasification melting system, a fluidized bed gasification furnace is often used. In a fluidized bed gasification furnace, a fluidized bed is formed in which the fluidized medium is fluidized by supplying combustion air to the bottom of the furnace, and the waste thrown into the fluidized bed is partially combusted and maintained at a high temperature by the combustion heat. It is a device that thermally decomposes waste in a fluidized bed. The incombustible material mixed in the waste is floated by the combustion air and discharged from the incombustible material discharge port provided in the furnace bottom.
In this way, the fluidized bed is responsible for fluidizing the fluidized medium by supplying combustion air from the lower part of the furnace and promoting partial combustion of the waste to maintain the temperature in the fluidized bed. It is important to maintain it stably.

特許文献2(特開平10−9511号公報)では、異なる2つの領域を有する流動層において、この2つの領域における流動化ガス(燃焼空気)の質量速度及び酸素含有量を異ならせ、流動層内に流動媒体の循環流を形成する構成を提案している。このように流動媒体を良好な流動状態とすることにより、熱を拡散させて高負荷運転を可能とし、また可燃物が炉の底部へ沈みすぎるのを防止するとともに熱分解ガスの上昇を促進し、且つ不燃物の排出を促すようにしている。   In Patent Document 2 (Japanese Patent Laid-Open No. 10-9511), in a fluidized bed having two different regions, the mass velocity and oxygen content of fluidized gas (combustion air) in these two regions are made different so that the inside of the fluidized bed A configuration for forming a circulating flow of a fluid medium is proposed. By making the fluid medium in a good fluid state in this way, heat can be diffused to enable high-load operation, and combustibles are prevented from sinking too much to the bottom of the furnace, and the rise of pyrolysis gas is promoted. In addition, it encourages the discharge of non-combustible materials.

また、流動層内の温度を適切に維持する技術として、特許文献3(特開2003−343823号公報)には、流動層内に温度検出器を設置し、該温度検出器により検出される流動層温度が設定値に一致するように流動化空気(燃焼空気)の供給量を制御する構成が開示されている。
さらに、特許文献4(特開2004−132667号公報)では、安定流動を確保し、温度制御を可能とした流動床ガス化溶融炉システムが提案されており、空気を窒素濃度が高い空気と酸素濃度が高い空気とに分離し、窒素濃度が高い空気を流動床ガス化炉に供給する構成とし、ガス化炉の燃焼を抑制しつつ流動化を維持するようにしている。また、温度計により層温度を検出し、温度が低下傾向にある場合には酸素濃度が高い空気を供給するようにしている。
Further, as a technique for appropriately maintaining the temperature in the fluidized bed, Patent Document 3 (Japanese Patent Laid-Open No. 2003-343823) discloses a technique in which a temperature detector is installed in the fluidized bed, and the flow detected by the temperature detector. A configuration is disclosed in which the supply amount of fluidized air (combustion air) is controlled so that the bed temperature matches a set value.
Further, Patent Document 4 (Japanese Patent Application Laid-Open No. 2004-132667) proposes a fluidized bed gasification melting furnace system that ensures stable flow and enables temperature control, and air and oxygen with high nitrogen concentration are proposed. The air is separated into high-concentration air, and air having a high nitrogen concentration is supplied to the fluidized bed gasifier, so that fluidization is maintained while suppressing combustion in the gasifier. Further, the layer temperature is detected by a thermometer, and when the temperature tends to decrease, air having a high oxygen concentration is supplied.

特開2004−144402号公報JP 2004-144402 A 特開平10−9511号公報Japanese Patent Laid-Open No. 10-9511 特開2003−343823号公報JP 2003-343823 A 特開2004−132667号公報JP 2004-132667 A

上記したように、流動床ガス化炉では可燃分を含む熱分解ガスを安定的に発生させることが重要であり、そのため熱分解を行う流動層の状態を逐次監視し、これを良好な状態に保つ必要がある。即ち、ごみ質に応じた流動層の層高を保ち、流動不良が発生した場合にはこれを検出し、速やかに解消しなければならない。
特許文献1に記載されるガス化溶融システムにおいては、流動層の状態を検出する構成は備えておらず、また、特許文献2に記載される流動層ガス化方法では、流動不良や層高等の流動状態を検出する手段を備えていない。
As described above, in a fluidized bed gasifier, it is important to stably generate a pyrolysis gas containing a combustible component. Therefore, the state of the fluidized bed in which pyrolysis is performed is sequentially monitored, and this is improved. Need to keep. That is, it is necessary to maintain the bed height of the fluidized bed in accordance with the waste quality, and to detect and quickly eliminate the occurrence of a flow failure.
The gasification and melting system described in Patent Document 1 does not have a configuration for detecting the state of the fluidized bed, and the fluidized bed gasification method described in Patent Document 2 has a problem such as poor flow and bed height. There is no means for detecting the flow state.

さらに、特許文献3及び特許文献4に記載される構成は流動層の温度を検出・制御するものであり、流動不良や層高等の流動層状態を正確に把握することは困難である。また、流動不良の原因の一つとして、流動化ガス(燃焼空気)を供給する散気管が廃棄物や不燃物などにより閉塞し、流動化に必要とされる量の流動化ガスが供給されず、局所的な流動不良を発生させることが考えられる。しかしながら、上記従来技術においてはこの流動不良発生部位を特定することが困難であり、このような局所的流動不良には対応できないのが実状である。   Further, the configurations described in Patent Document 3 and Patent Document 4 detect and control the temperature of the fluidized bed, and it is difficult to accurately grasp the fluidized bed state such as fluidity failure and bed height. In addition, as one of the causes of poor flow, the diffuser pipe that supplies fluidized gas (combustion air) is blocked by waste or incombustibles, and the amount of fluidized gas required for fluidization is not supplied. It is conceivable to cause local flow failure. However, in the above prior art, it is difficult to specify the flow failure occurrence site, and it is actually impossible to deal with such a local flow failure.

従って、本発明は上記従来技術の問題点に鑑み、流動床ガス化炉における層高や流動不良などの流動層状態を簡単に且つリアルタイムで検出することができ、さらに局所的な流動不良の発生部位を特定することができる流動床ガス化炉及びその流動層監視・制御方法を提案することを目的とする。
また、流動層の局所的な流動不良が検出された場合には、この流動不良を速やかに解消して流動状態の安定化を図ることができる流動床ガス化炉及びその流動層監視・制御方法を提案することを目的とする。
Therefore, in view of the above-mentioned problems of the prior art, the present invention can easily and in real time detect the fluidized bed state such as the bed height and the fluidity failure in the fluidized bed gasification furnace, and the occurrence of the local fluidity failure. The purpose is to propose a fluidized bed gasifier capable of specifying the part and a fluidized bed monitoring / controlling method.
Further, when a local fluid failure in the fluidized bed is detected, a fluidized bed gasification furnace capable of quickly eliminating the fluid failure and stabilizing the fluidized state, and a fluidized bed monitoring and control method thereof The purpose is to propose.

そこで、本発明はかかる課題を解決するために、廃棄物を熱分解して熱分解ガスを発生させる流動床ガス化炉であって、炉下部に複数並設された風箱を有し、該風箱を介して炉内に供給される燃焼空気により流動媒体を流動化させて流動層を形成した流動床ガス化炉において、
前記流動床ガス化炉の立ち上げ時に前記流動層内に位置する少なくとも一の温度センサを含み、前記流動層の深さ方向に複数設置された温度センサからなる第1の温度センサ群と、
前記風箱の並び方向に複数設置された温度センサからなる第2の温度センサ群と、複数並設された夫々の風箱内の圧力を検出する圧力検出手段と
前記深さ方向と風箱の並び方向の二つの座標方向の夫々の温度センサ群が検出した温度分布に基づいて流動不良部位を特定し、該特定された流動不良部位下方に位置する前記風箱への燃焼空気供給量を一時的に増大させた後、前記風箱内の圧力を検出し、該圧力が定常運転範囲内となったら前記増大した燃焼空気供給量を元に戻す制御装置とを具えたことを特徴とする。
Accordingly, in order to solve such a problem, the present invention is a fluidized bed gasification furnace that thermally decomposes waste to generate pyrolysis gas, and has a plurality of wind boxes arranged in parallel at the lower part of the furnace, In a fluidized bed gasification furnace in which a fluidized bed is formed by fluidizing a fluidized medium by combustion air supplied into the furnace through an air box,
Wherein a fluidized bed gas comprises at least one temperature sensor located in the fluidized bed at the time of start-up of furnace, the first temperature sensor group consisting of a temperature sensor in which a plurality placed in the depth direction of the fluidized layer,
A second temperature sensor group comprising a plurality of temperature sensors installed in the direction in which the wind boxes are arranged; and a pressure detecting means for detecting a pressure in each of the plurality of juxtaposed wind boxes.
The wind box located below the identified flow failure part is specified based on the temperature distribution detected by the temperature sensor groups detected in the two coordinate directions of the depth direction and the wind box arrangement direction. A control device for detecting the pressure in the wind box after temporarily increasing the amount of combustion air supplied to the engine and returning the increased amount of combustion air supplied to the original when the pressure falls within a steady operating range; It is characterized by having.

本発明によれば、流動層の深さ方向に設置された第1の温度センサ群により流動層の層高が容易に把握でき、また、風箱の並び方向に設置された第2の温度センサ群により、流動不良の発生部位が容易に特定できるため、簡単な構成で且つリアルタイムで流動層状態を把握することが可能となる。
また、第1の温度センサ群のうち少なくとも一の温度センサは、流動床ガス化炉の立ち上げ時に充填される流動層内に位置するようにしたため、立ち上げ時の流動化開始が適確に判断できる。これは、流動化開始後は流動化開始前よりも流動層温度が上昇するため、この温度変化を検出することにより流動化の開始を判断できるものである。尚、立ち上げ時には燃焼空気を供給しないこともあるため、立ち上げ時の流動層は静止状態の場合も含む。
さらに、第1の温度センサ群は流動層の深さ方向に設置されるため、深さ方向の温度分布から流動層の層高、流動状態が容易に把握できる。
According to the present invention, the bed height of the fluidized bed can be easily grasped by the first temperature sensor group installed in the depth direction of the fluidized bed, and the second temperature sensor installed in the direction in which the wind boxes are arranged. Since the site where the flow failure occurs can be easily specified by the group, it is possible to grasp the fluidized bed state in real time with a simple configuration.
In addition, since at least one temperature sensor in the first temperature sensor group is located in the fluidized bed that is filled when the fluidized bed gasification furnace is started up, the fluidization start at the start-up is accurately performed. I can judge. This is because the fluidized bed temperature rises after the start of fluidization than before the start of fluidization, and therefore the start of fluidization can be determined by detecting this temperature change. Since the combustion air may not be supplied at startup, the fluidized bed at startup includes a stationary state.
Furthermore, since the first temperature sensor group is installed in the depth direction of the fluidized bed, the bed height and the fluidized state of the fluidized bed can be easily grasped from the temperature distribution in the depth direction.

一方、第2の温度センサ群は、深さ方向の設置高さは略同一とし、風箱の並び方向に所定間隔を隔てて複数設置される。該第2の温度センサ群により流動層の水平断面における温度分布が得られ、この温度分布と定常運転時の温度分布を比較することにより、流動層の異常部位を検出する。例えば、温度分布の中で部分的に低温を示す位置では局所的な流動不良が発生しているものとみなす。これにより、簡単に且つリアルタイムで流動不良部位を特定することが可能となる。
尚、本発明において、流動床ガス化炉にて発生する熱分解ガスには、チャー(未燃炭素)、灰分を含むものとする。
On the other hand, a plurality of second temperature sensor groups are installed at a predetermined interval in the arrangement direction of the wind boxes, with the installation height in the depth direction being substantially the same. A temperature distribution in a horizontal section of the fluidized bed is obtained by the second temperature sensor group, and an abnormal portion of the fluidized bed is detected by comparing this temperature distribution with the temperature distribution during steady operation. For example, it is considered that a local flow failure has occurred at a position where the temperature distribution partially shows a low temperature. As a result, it is possible to easily identify the poor flow region in real time.
In the present invention, the pyrolysis gas generated in the fluidized bed gasifier includes char (unburned carbon) and ash.

また、前記流動層を前記風箱の並び方向に3つの帯状領域に区分し、前記第2の温度センサ群は、夫々の帯状領域に少なくとも一の温度センサが配置されるようしたことを特徴とする。
このように、流動層を3つの帯状領域に区分し、夫々の領域の温度を検出する構成とすることにより、流動層全体の温度分布を効率良く把握することができるようになる。
The fluidized bed is divided into three strip regions in the direction in which the wind boxes are arranged, and in the second temperature sensor group, at least one temperature sensor is arranged in each strip region. To do.
In this way, by dividing the fluidized bed into three strip regions and detecting the temperature of each region, the temperature distribution of the entire fluidized bed can be efficiently grasped.

また、前記第2の温度センサ群により前記流動層の水平断面の温度分布を検出し、該検出した温度分布に基づき前記風箱への燃焼空気供給量を制御する風量制御手段を備えたことを特徴とする。
本発明によれば、第2の温度センサ群にて得られる温度分布から流動不良部位を特定することができ、燃焼空気供給量の制御により流動不良を速やかに解消し、流動の安定化を図ることができる。
The air temperature control means for detecting the temperature distribution of the horizontal section of the fluidized bed by the second temperature sensor group and controlling the amount of combustion air supplied to the wind box based on the detected temperature distribution. Features.
According to the present invention, it is possible to identify a flow failure portion from the temperature distribution obtained by the second temperature sensor group, and to quickly eliminate the flow failure by controlling the combustion air supply amount, thereby stabilizing the flow. be able to.

さらに、前記第2の温度センサ群のうち少なくとも一の温度センサが、前記流動層に流動媒体が供給される際の該流動媒体の落下位置若しくは該落下位置近傍に設置されることを特徴とする。
流動床ガス化炉の流動層において最も流動不良が発生し易い部位は、流動媒体の落下位置近傍であると考えられる。従って本発明のごとく、流動媒体の落下位置若しくはこの近傍に第2の温度センサ群を配置することにより、流動不良の発生を確実に検出することが可能となる。
Further, at least one temperature sensor in the second temperature sensor group is installed at or near the falling position of the fluidized medium when the fluidized medium is supplied to the fluidized bed. .
It is considered that the portion where fluid failure is most likely to occur in the fluidized bed of the fluidized bed gasification furnace is near the falling position of the fluidized medium. Therefore, as in the present invention, by arranging the second temperature sensor group at or near the falling position of the fluid medium, it is possible to reliably detect the occurrence of fluid failure.

さらにまた、前記流動層に流動媒体が供給される際の該流動媒体の落下位置を前記流動床ガス化炉の側壁に近接する位置とし、前記第1の温度センサ群が前記流動媒体の落下位置若しくは該落下位置近傍の深さ方向に設置されることを特徴とする。
このように、流動媒体の落下位置若しくはこの近傍に第1の温度センサ群を設置することにより、流動層の層高、流動不良を検出し易く、また流動層の中心付近は温度センサの設置が困難であるため、流動媒体の落下位置を側壁に近接する位置とすることにより温度センサの設置が容易となる。
Furthermore, the position of the fluidized medium when the fluidized medium is supplied to the fluidized bed is a position close to the side wall of the fluidized bed gasification furnace, and the first temperature sensor group is the position of the fluidized medium falling. Alternatively, it is installed in the depth direction near the dropping position.
In this way, by installing the first temperature sensor group at or near the falling position of the fluidized medium, it is easy to detect the bed height and flow failure of the fluidized bed, and the temperature sensor is installed near the center of the fluidized bed. Since it is difficult, the temperature sensor can be easily installed by setting the falling position of the fluid medium close to the side wall.

また、廃棄物を熱分解して熱分解ガスを発生させる流動床ガス化炉であって、該流動床ガス化炉の炉下部に複数並設された風箱を介して炉内に燃焼空気を供給し、該燃焼空気により流動媒体を流動化させて形成した流動層を監視・制御する方法において、
前記流動床ガス化炉の立ち上げ時に前記流動層内に位置する少なくとも一の温度センサを含み、前記流動層の深さ方向に複数設置された温度センサからなる第1の温度センサ群により主として流動層の層高を検出するとともに、前記風箱の並び方向に複数設置された温度センサからなる第2の温度センサ群により流動層の水平断面の風箱の並び方向の温度分布を検出し、
該検出した前記深さ方向と風箱の並び方向の二つの座標方向の夫々の温度センサ群が検出した温度分布に基づき流動不良部位を特定し、前記流動不良部位が特定された場合に、該流動不良部位の下方に位置する前記風箱への燃焼空気供給量を一時的に増大させた後、前記風箱内の圧力を検出し、該圧力が定常運転範囲内となったら前記増大した燃焼空気供給量を元に戻すことを特徴とする流動床ガス化炉の流動層監視・制御方法を提案する。
Also, a fluidized bed gasification furnace for pyrolyzing waste to generate pyrolysis gas, wherein combustion air is supplied into the furnace through a plurality of wind boxes arranged in parallel at the lower part of the fluidized bed gasification furnace. In a method for monitoring and controlling a fluidized bed formed by supplying and fluidizing a fluid medium with the combustion air,
Fluidized mainly by a first temperature sensor group comprising at least one temperature sensor located in the fluidized bed at the time of startup of the fluidized bed gasification furnace and comprising a plurality of temperature sensors installed in the depth direction of the fluidized bed. detects the bed height of the layer to detect the temperature distribution in the arrangement direction of the wind box of the horizontal cross section of the fluidized bed by the second temperature sensors consisting of a temperature sensor in which a plurality placed alignment direction of the wind box,
The defective flow region is specified based on the temperature distribution detected by each temperature sensor group in the two coordinate directions of the detected depth direction and the wind box arrangement direction, and when the defective flow region is specified, After temporarily increasing the amount of combustion air supplied to the wind box located below the poor flow region, the pressure in the wind box is detected, and the increased combustion is detected when the pressure falls within the steady operating range. This paper proposes a fluidized bed gasification furnace fluidized bed monitoring and control method characterized by returning the air supply amount to the original .

以上記載のごとく本発明によれば、流動層内に第1の温度センサ群及び第2のセンサ群を設置することにより、立ち上げ時の流動化開始、流動層の層高、及び局所的な流動不良部位の特定が可能となり、流動床ガス化炉における流動層の状態を簡単に且つリアルタイムで検出することができる。さらに、流動不良部位が特定された場合には、風箱への燃焼空気供給量を制御することにより速やかに流動不良を解消し、流動状態の安定化を図ることが可能である。   As described above, according to the present invention, by installing the first temperature sensor group and the second sensor group in the fluidized bed, fluidization at the time of start-up, fluidized bed height, and local It is possible to specify the flow failure portion, and it is possible to easily and in real time detect the state of the fluidized bed in the fluidized bed gasification furnace. Furthermore, when a poor flow region is specified, it is possible to quickly eliminate the defective flow and stabilize the flow state by controlling the amount of combustion air supplied to the wind box.

以下、図面を参照して本発明の好適な実施例を例示的に詳しく説明する。但しこの実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。
図1は本発明の実施例に係る流動床ガス化炉の構成を示し、(a)は側断面図、(b)は(a)のX−X線断面図、図2はガス化溶融システムの概略を示す全体構成図である。
Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, but are merely illustrative examples. Not too much.
FIG. 1 shows the configuration of a fluidized bed gasification furnace according to an embodiment of the present invention, where (a) is a side sectional view, (b) is a sectional view taken along line XX of (a), and FIG. 2 is a gasification melting system. It is a whole block diagram which shows the outline of this.

まず、図2を参照して、本実施例に係るガス化溶融システムの概略構成を説明する。
廃棄物投入ホッパ30から投入された廃棄物50は、必要に応じて破砕、乾燥された後に給じん機31を介して流動床式ガス化炉1へ定量供給される。流動床ガス化炉1では、温度約120〜230℃、空気比0.2〜0.7程度の燃焼空気51が炉下部から風箱10を介して炉内に吹き込まれ、流動層温度が500〜650℃程度に維持されている。
廃棄物50は流動床ガス化炉1で熱分解ガス化され、ガス、タール、チャー(炭化物)に分解される。タールは、常温では液体となる成分であるが、ガス化炉内ではガス状で存在する。
チャーは流動層内で徐々に微粉化され、ガス及びタールに同伴して溶融設備32の旋回溶融炉33へ導入される。以下、旋回溶融炉33へ導入されるこれらの成分を総称して熱分解ガス53と呼ぶ。また、溶融設備32は、旋回溶融炉33と、旋回溶融炉33の上方に連結された二次燃焼室34と、該二次燃焼室34の下流側に連結されるボイラ部35と、から構成される。
First, the schematic configuration of the gasification and melting system according to the present embodiment will be described with reference to FIG.
The waste 50 input from the waste input hopper 30 is crushed and dried as necessary, and then quantitatively supplied to the fluidized bed gasifier 1 through the dust feeder 31. In the fluidized bed gasification furnace 1, combustion air 51 having a temperature of about 120 to 230 ° C. and an air ratio of about 0.2 to 0.7 is blown into the furnace through the wind box 10 from the lower part of the furnace, and the fluidized bed temperature is 500. It is maintained at about ˜650 ° C.
The waste 50 is pyrolyzed and gasified in the fluidized bed gasification furnace 1 and decomposed into gas, tar and char (carbide). Tar is a component that becomes liquid at room temperature, but is present in a gaseous state in the gasification furnace.
The char is gradually pulverized in the fluidized bed and is introduced into the swirl melting furnace 33 of the melting facility 32 along with the gas and tar. Hereinafter, these components introduced into the swirl melting furnace 33 are collectively referred to as a pyrolysis gas 53. The melting facility 32 includes a swirl melting furnace 33, a secondary combustion chamber 34 connected above the swirl melting furnace 33, and a boiler unit 35 connected to the downstream side of the secondary combustion chamber 34. Is done.

前記流動床ガス化炉1の炉頂部より排出された熱分解ガス53は、ライニングダクトを経て旋回溶融炉33の熱分解ガスバーナへ導入される。該熱分解ガスバーナで、熱分解ガス53は燃焼空気54と混合されて炉内に導入され、旋回流を形成する。このとき、燃焼空気は空気比0.9〜1.1、好ましくは1.0程度であると良い。
前記旋回溶融炉33では、熱分解ガス53と燃焼空気54の混合ガスが燃焼することにより炉内温度が1300〜1500℃に維持され、熱分解ガス53中の灰分が溶融、スラグ化される。溶融したスラグは、旋回溶融炉33の内壁面に付着、流下し、炉底部のスラグ出滓口から排出される。旋回溶融炉33から排出されたスラグは、水砕水槽36で急冷され、スラグコンベア37により搬出されて水砕スラグとして回収される。回収された水砕スラグは、路盤材等に有効利用することが可能である。
The pyrolysis gas 53 discharged from the top of the fluidized bed gasification furnace 1 is introduced into the pyrolysis gas burner of the swirl melting furnace 33 through a lining duct. In the pyrolysis gas burner, pyrolysis gas 53 is mixed with combustion air 54 and introduced into the furnace to form a swirling flow. At this time, the combustion air may have an air ratio of 0.9 to 1.1, preferably about 1.0.
In the swirl melting furnace 33, the mixed gas of the pyrolysis gas 53 and the combustion air 54 is combusted so that the furnace temperature is maintained at 1300 to 1500 ° C., and the ash content in the pyrolysis gas 53 is melted and slagged. The molten slag adheres and flows down on the inner wall surface of the swirl melting furnace 33 and is discharged from the slag outlet at the bottom of the furnace. The slag discharged from the slewing melting furnace 33 is rapidly cooled in the granulated water tank 36, carried out by the slag conveyor 37, and collected as granulated slag. The recovered granulated slag can be effectively used for roadbed materials and the like.

一方、旋回溶融炉33から排出された燃焼排ガスは二次燃焼室34へ導入される。二次燃焼室34では、燃焼空気55が空気比1.2〜1.5となるように供給され、前記燃焼排ガス中の未燃分はここで完全燃焼される。
燃焼排ガスは、ボイラ部35で熱回収されて、200〜250℃程度まで冷却される。ボイラ部35から排出された燃焼排ガスは、減温塔38へ導入され、直接水噴霧により150℃程度まで冷却される。減温塔38から排出された燃焼排ガスは、必要に応じて煙道で消石灰、活性炭が噴霧され、反応集塵装置39に導入される。反応集塵装置39では、燃焼排ガス中の煤塵、酸性ガス、DXN類等が除去される。反応集塵装置39から排出された集塵灰は薬剤処理して埋立処分され、燃焼排ガスは蒸気式加熱器40で再加熱され、触媒反応装置41でNOが除去された後、誘引ファン42を介して煙突43より大気放出される。
On the other hand, the combustion exhaust gas discharged from the swirl melting furnace 33 is introduced into the secondary combustion chamber 34. In the secondary combustion chamber 34, the combustion air 55 is supplied so as to have an air ratio of 1.2 to 1.5, and the unburned component in the combustion exhaust gas is completely burned here.
The combustion exhaust gas is heat-recovered by the boiler unit 35 and cooled to about 200 to 250 ° C. The combustion exhaust gas discharged from the boiler unit 35 is introduced into the temperature reducing tower 38 and is cooled to about 150 ° C. by direct water spray. The combustion exhaust gas discharged from the temperature reducing tower 38 is sprayed with slaked lime and activated carbon in the flue as necessary, and introduced into the reaction dust collector 39. The reaction dust collector 39 removes soot, acid gas, DXNs and the like in the combustion exhaust gas. The dust ash discharged from the reaction dust collector 39 is treated with chemicals and disposed of in landfill. The combustion exhaust gas is reheated by the steam heater 40 and NO x is removed by the catalyst reactor 41, and then the attracting fan 42. It is emitted from the chimney 43 through the atmosphere.

次に、本実施例の主要構成となる流動床ガス化炉につき、図1を参照して説明する。
図1(a)、(b)に示されるように、流動床ガス化炉1は、角筒状のガス化炉本体2を有し、該本体2の一側壁に廃棄物投入口3が設けられるとともに、該廃棄物投入口3と対面する側壁に配置された流動砂供給口6と、該流動砂供給口6に隣接して配置された助燃バーナ7とが設けられ、該側壁の下部には不燃物排出口5が設けられている。尚、ガス化炉本体2の形状、及び廃棄物供給口3、流動砂供給口6、助燃バーナ7の取り付け位置は上記した構成に限定されるものではない。
Next, a fluidized bed gasification furnace which is a main configuration of the present embodiment will be described with reference to FIG.
As shown in FIGS. 1A and 1B, a fluidized bed gasification furnace 1 has a gasification furnace main body 2 having a rectangular tube shape, and a waste inlet 3 is provided on one side wall of the main body 2. In addition, a fluidized sand supply port 6 disposed on the side wall facing the waste input port 3 and an auxiliary combustion burner 7 disposed adjacent to the fluidized sand supply port 6 are provided at the bottom of the side wall. Is provided with an incombustible discharge port 5. In addition, the shape of the gasification furnace main body 2, and the attachment position of the waste supply port 3, the fluidized sand supply port 6, and the auxiliary combustion burner 7 are not limited to the above-described configuration.

ガス化炉本体2の底部8は、廃棄物供給口3側から不燃物排出口5側へ向けて下方に傾斜しており、該底部8には複数の散気管(不図示)が設けられている。
底部8の下方には複数の風箱10(10a、10b)が設けられている。該風箱10は、炉底8の傾斜方向に複数並設されている。本実施例では2つの風箱10a、10bが配置された構成を示す。各風箱10a、10bには、押し込みファン12により燃焼空気51が供給される。燃焼空気51は、好適には温度約120〜230℃、空気比0.2〜0.7程度とし、必要に応じて水蒸気を加えてもよい。
The bottom portion 8 of the gasification furnace main body 2 is inclined downward from the waste supply port 3 side toward the incombustible discharge port 5 side, and a plurality of air diffusers (not shown) are provided on the bottom portion 8. Yes.
A plurality of wind boxes 10 (10a, 10b) are provided below the bottom 8. A plurality of wind boxes 10 are arranged in parallel in the inclination direction of the furnace bottom 8. In this embodiment, a configuration in which two wind boxes 10a and 10b are arranged is shown. Combustion air 51 is supplied to each of the wind boxes 10a and 10b by the pushing fan 12. The combustion air 51 is preferably set to a temperature of about 120 to 230 ° C. and an air ratio of about 0.2 to 0.7, and steam may be added as necessary.

風箱10a、10bへの燃焼空気流路上にはダンパ11a、11bが設置され、夫々のダンパ11a、11bの開度を調整することにより風箱10a、10bへの燃焼空気供給量(風量)を制御するようになっている。風箱10a、10bに供給された燃焼空気51は、炉底8の散気管から炉内に噴出するようになっている。ダンパ11a、11bにより設定される風箱10a、10bへの風量をF、Fとする。
風箱10a、10bには夫々風箱内圧力を検出する圧力センサ(不図示)が設けられている。風箱10aの圧力をP、風箱10bの圧力をPとする。
Dampers 11a and 11b are installed on the combustion air flow path to the wind boxes 10a and 10b, and the amount of combustion air supplied to the wind boxes 10a and 10b (air volume) is adjusted by adjusting the opening of the dampers 11a and 11b. It comes to control. The combustion air 51 supplied to the wind boxes 10a and 10b is jetted from the diffuser tube at the furnace bottom 8 into the furnace. The airflows to the wind boxes 10a and 10b set by the dampers 11a and 11b are defined as F 1 and F 2 .
The wind boxes 10a and 10b are each provided with a pressure sensor (not shown) for detecting the pressure in the wind box. The pressure of the wind box 10a P 1, the the P 2 pressure windbox 10b.

ガス化炉本体2には、流動砂供給口6から供給された流動砂が充填され、風箱10を介して底部2から供給される燃焼空気51により該流動砂が流動化した流動層9が形成されている。稼動時の流動層9は、500〜650℃程度の温度に維持される。また、流動層の層高は、廃棄物の水分蒸発負荷に応じて設定される。尚、本実施例にて、流動床ガス化炉1の立ち上げ時には燃焼空気51を供給しないこともあるため、立ち上げ時の流動層9は静止状態の場合も含む。図1(a)において、立ち上げ時の流動層9の層高をH、稼動時の流動層9の層高をHで示す。 The gasification furnace main body 2 is filled with fluidized sand supplied from the fluidized sand supply port 6, and a fluidized bed 9 in which the fluidized sand is fluidized by the combustion air 51 supplied from the bottom portion 2 through the wind box 10. Is formed. The fluidized bed 9 during operation is maintained at a temperature of about 500 to 650 ° C. The bed height of the fluidized bed is set according to the moisture evaporation load of the waste. In this embodiment, since the combustion air 51 may not be supplied when the fluidized bed gasification furnace 1 is started up, the fluidized bed 9 at the time of startup includes a case where the fluidized bed 9 is stationary. In FIG. 1A, the bed height of the fluidized bed 9 at the time of start-up is indicated by H 0 , and the bed height of the fluidized bed 9 at the time of operation is indicated by H 1 .

流動床ガス化炉1の立ち上げ時には、予め流動砂供給口6から炉内に流動砂を供給し、少なくとも層高Hまで充填する。そして、起動バーナ7を着火して昇温を開始し、昇温しながら流動砂を追加供給していく。このとき、風箱10へ燃焼空気51の供給も開始する。最終的に、流動状態において所定の層高Hとなるまで流動砂を供給する。
稼動時の流動層9は流動状態にあり、投入した廃棄物50を該流動層9内で乾燥、熱分解する。流動層9の層高は、風箱10の圧力P、Pにより求められる。運転に伴い、流動砂が不燃物52とともに排出されたり、熱分解ガス53に同伴されて溶融設備側へ抜けたりすることがあるため層高が低下する場合がある。従って、風箱10の圧力値が所定値以下となったら流動砂を追加供給する。
Fluidized bed at the time of start-up of the gasification furnace 1, supplying the fluidized sand from previously fluidized sand supply port 6 into the furnace, filling at least until the bed height H 0. Then, the start burner 7 is ignited to start the temperature increase, and the fluidized sand is additionally supplied while the temperature is increased. At this time, supply of the combustion air 51 to the wind box 10 is also started. Finally, supplies fluidized sand until a predetermined bed height H 1 in a fluidized state.
The fluidized bed 9 at the time of operation is in a fluidized state, and the input waste 50 is dried and thermally decomposed in the fluidized bed 9. The bed height of the fluidized bed 9 is determined by the pressures P 1 and P 2 of the wind box 10. During operation, the fluidized sand may be discharged together with the incombustible material 52, or may be accompanied by the pyrolysis gas 53 and escape to the melting equipment side, which may reduce the bed height. Therefore, when the pressure value of the wind box 10 becomes a predetermined value or less, additional fluidized sand is supplied.

さらに本実施例の特徴的な構成として、立ち上げ時に流動層内に位置する少なくとも一の温度センサ23を含み、流動層9の深さ方向に設置された複数の温度センサ23、24、25からなる第1の温度センサ群と、風箱10の並び方向に設置された複数の温度センサ21、24、22からなる第2の温度センサ群と、を備えた構成となっている。温度センサとしては、熱電対等を用いることが好ましい。夫々の温度センサ21〜25により検出される温度をT〜Tで表す。好適には、第2の温度センサ群は、流動層9を風箱10の並び方向に3つの帯状領域に区分し、夫々の帯状領域に少なくとも一の温度センサが存在するように配設する。 Further, as a characteristic configuration of the present embodiment, at least one temperature sensor 23 located in the fluidized bed at the time of start-up is included, and a plurality of temperature sensors 23, 24, 25 installed in the depth direction of the fluidized bed 9 are used. And a second temperature sensor group including a plurality of temperature sensors 21, 24, and 22 installed in the direction in which the wind boxes 10 are arranged. It is preferable to use a thermocouple or the like as the temperature sensor. The temperatures detected by the respective temperature sensors 21 to 25 are represented by T 1 to T 5 . Preferably, the second temperature sensor group divides the fluidized bed 9 into three strip regions in the direction in which the wind boxes 10 are arranged, and is arranged so that at least one temperature sensor exists in each strip region.

第1の温度センサ群のうち、立ち上げ時の流動層内に存在する温度センサ23は、主として立ち上げ時の流動化開始を検出する。これは、流動化開始後は流動化開始前よりも流動層温度が上昇するため、この温度変化を検出することにより流動化の開始を判断できるものである。
また、第1の温度センサ群23、24、25では、主として流動層9の層高及び深さ方向の流動状態を検出する。流動層9の層高は、上述したように風箱内圧でも検出可能であるが、散気管の閉塞等の流動化不良が生じた場合には風箱内圧から層高を求めることができない。従って、第1の温度センサ群でも同時に層高を検出することにより、正確な層高が得られるようになる。
Of the first temperature sensor group, the temperature sensor 23 present in the fluidized bed at the time of startup mainly detects the start of fluidization at the time of startup. This is because the fluidized bed temperature rises after the start of fluidization than before the start of fluidization, and therefore the start of fluidization can be determined by detecting this temperature change.
Further, the first temperature sensor groups 23, 24, and 25 mainly detect the fluidized state of the fluidized bed 9 in the height direction and the depth direction. As described above, the bed height of the fluidized bed 9 can also be detected by the air box internal pressure. However, when fluidization failure such as blockage of the air diffuser occurs, the bed height cannot be obtained from the air box internal pressure. Therefore, an accurate layer height can be obtained by simultaneously detecting the layer height even in the first temperature sensor group.

第2の温度センサ群21、24、22は、流動層9の深さ方向の設置高さは略同一とし、風箱10の並び方向に所定間隔を隔てて複数設置される。該第2の温度センサ群により流動層9の水平断面における温度分布が得られる。そして、この温度分布と定常運転時の温度分布を比較することにより局所的な流動不良を検出できる。例えば、得られた温度分布に部分的な低温箇所が存在する場合、この低温箇所に位置する流動層9が流動不良であると判断される。例えば、温度センサ24にて検出された温度Tが他の温度センサにて検出された温度T、Tより低い値を示した場合には、温度センサ24の近傍が局所的に流動不良を起こしていることがわかる。また、同様に第1の温度センサ群23、24、25においても、流動層の深さ方向の温度分布が得られるため、深さ方向の流動不良を検出することができる。
従って、第2の温度センサ群21、24、22を設置することにより、簡単に且つリアルタイムで流動不良部位を特定することが可能となる。
A plurality of second temperature sensor groups 21, 24, and 22 are installed at a predetermined interval in the arrangement direction of the wind boxes 10, with the installation height in the depth direction of the fluidized bed 9 being substantially the same. A temperature distribution in the horizontal cross section of the fluidized bed 9 is obtained by the second temperature sensor group. A local flow failure can be detected by comparing this temperature distribution with the temperature distribution during steady operation. For example, when a partial low-temperature location exists in the obtained temperature distribution, it is determined that the fluidized bed 9 located at this low-temperature location has poor flow. For example, when the temperature T 4 detected by the temperature sensor 24 shows a value lower than the temperatures T 1 and T 2 detected by other temperature sensors, the vicinity of the temperature sensor 24 is locally defective. You can see that Similarly, in the first temperature sensor groups 23, 24, and 25, since the temperature distribution in the depth direction of the fluidized bed is obtained, a flow failure in the depth direction can be detected.
Therefore, by installing the second temperature sensor groups 21, 24, and 22, it is possible to easily identify the defective flow region in real time.

このように、本実施例の構成によれば、流動層9の深さ方向に設置された第1の温度センサ群23、24、25により流動層9の層高及び流動状態を容易に把握でき、また、風箱10の並び方向に設置された第2の温度センサ群21、24、22により、流動不良の発生部位を容易に特定できるため、簡単な構成で且つリアルタイムで流動層状態を把握することが可能となる。   As described above, according to the configuration of the present embodiment, the bed height and the fluid state of the fluidized bed 9 can be easily grasped by the first temperature sensor groups 23, 24, 25 installed in the depth direction of the fluidized bed 9. In addition, the second temperature sensor group 21, 24, 22 installed in the direction in which the wind boxes 10 are arranged can easily identify the location where the flow failure has occurred, so the fluidized bed state can be grasped in real time with a simple configuration. It becomes possible to do.

さらに本実施例では、流動床ガス化炉1の定常運転時に局所的な流動不良が発生したことを検出した場合に、流動不良を解消する構成を有する。
流動不良の原因の一つとして、散気管の閉塞などにより圧力損失が大となり、流動化に必要とされる燃焼空気51が供給されないことが考えられる。
上記したごとく第2の温度センサにより流動不良部位が特定されたら、その下方に位置する風箱10の風量を定常運転時より増大させ、積極的に流動を生じさせる。図示されるように押し込みファン12とダンパ11a、11bにより燃焼空気供給機構を構成している場合には、ダンパ11a、11bの風量バランスを変える操作を行う。このように流動不良部位の風量を増大させることにより、閉塞物が吹き飛ばされて流動が回復する。
Furthermore, in this embodiment, when it is detected that a local flow failure has occurred during the steady operation of the fluidized bed gasifier 1, the flow failure is eliminated.
As one of the causes of the poor flow, it is conceivable that the pressure loss becomes large due to the obstruction of the diffuser pipe and the combustion air 51 required for fluidization is not supplied.
As described above, when the flow failure portion is specified by the second temperature sensor, the air volume of the wind box 10 located below the flow rate is increased from that in the steady operation, and the flow is positively generated. As shown in the figure, when the combustion air supply mechanism is configured by the pushing fan 12 and the dampers 11a and 11b, an operation for changing the air volume balance of the dampers 11a and 11b is performed. In this way, by increasing the air volume at the poorly flowable portion, the obstruction is blown off and the flow is recovered.

流動が回復したか否かは、風箱10の圧力P若しくはPを見て確認することが好ましい。流動不良が発生している時には、その下方に位置する風箱10の圧力が定常運転時より高い値を示す。従って、回復動作を行いながら風箱圧力を検出し、該風箱圧力が低下したら流動が回復したものと判断する。流動が回復したら、風箱20への風量を定常運転時の値に戻すようにする。
また、流動の回復を検出せずに、風箱10の風量増大から所定時間経過後に風量を定常運転時の値に戻すようにしてもよい。
本構成によれば、流動不良が検出された場合であっても、風箱10への風量を制御することにより速やかに流動不良を解消し、流動状態の安定化を図ることが可能である。
It is preferable to confirm whether or not the flow has recovered by looking at the pressure P 1 or P 2 of the wind box 10. When the flow failure occurs, the pressure of the wind box 10 located below the value is higher than that in the steady operation. Accordingly, the air box pressure is detected while performing the recovery operation, and it is determined that the flow has been recovered when the air box pressure decreases. When the flow is restored, the air volume to the wind box 20 is returned to the value at the time of steady operation.
Alternatively, the flow rate may be returned to the value at the time of steady operation after a predetermined time has elapsed from the increase in the flow rate of the wind box 10 without detecting the recovery of the flow.
According to this configuration, even if a flow failure is detected, it is possible to quickly eliminate the flow failure by controlling the air volume to the wind box 10 and stabilize the flow state.

さらに、第1、第2の温度センサの配置例として、図1(b)に示されるように該第1の温度センサ23、24、25、若しくは第2の温度センサのうち少なくとも一の温度センサ24を、流動層9の流動不良多発域9bに設置するようにしてもよい。流動不良多発域9bは流動床ガス化炉1の構造等に起因するが、特に流動不良が発生し易い部位として、流動砂供給口6から供給される流動砂の落下位置9a若しくはその近傍が考えられる。従って、この範囲を流動不良多発域9bとして温度センサを配置することが好ましい。
さらにこのとき、流動砂供給口6をガス化炉本体2の一側壁に近接する位置に設けることが好ましく、これにより流動砂の落下位置9aが側壁に近い位置となり、温度センサの設置が容易になる。
Furthermore, as an example of the arrangement of the first and second temperature sensors, as shown in FIG. 1B, at least one temperature sensor of the first temperature sensors 23, 24, 25, or the second temperature sensor. 24 may be installed in the flow failure frequent occurrence region 9b of the fluidized bed 9. The flow failure frequent occurrence region 9b is caused by the structure of the fluidized bed gasification furnace 1, but the falling position 9a of the fluid sand supplied from the fluid sand supply port 6 or its vicinity is considered as a part where the fluid failure is particularly likely to occur. It is done. Therefore, it is preferable to arrange the temperature sensor with this range as the poor flow occurrence region 9b.
Further, at this time, it is preferable to provide the fluid sand supply port 6 at a position close to one side wall of the gasification furnace main body 2, whereby the falling position 9 a of the fluid sand becomes a position near the side wall and the temperature sensor can be easily installed. Become.

本発明の実施例に係る流動床ガス化炉の構成を示し、(a)は側断面図、(b)は(a)のX−X線断面図である。The structure of the fluidized bed gasification furnace which concerns on the Example of this invention is shown, (a) is a sectional side view, (b) is the XX sectional drawing of (a). ガス化溶融システムの概略を示す全体構成図である。It is a whole lineblock diagram showing the outline of a gasification fusion system.

符号の説明Explanation of symbols

1 流動床ガス化炉
2 ガス化炉本体
3 廃棄物供給口
6 流動砂供給口
8 炉底
9 流動層
9a 流動砂落下位置
9b 流動不良多発域
10、10a、10b 風箱
11a、11b ダンパ
12 押し込みファン
21〜25 温度センサ
32 溶融設備
33 旋回溶融炉
34 二次燃焼室
35 ボイラ
立ち上げ時層高
稼動時層高
DESCRIPTION OF SYMBOLS 1 Fluidized bed gasification furnace 2 Gasification furnace main body 3 Waste supply port 6 Fluidized sand supply port 8 Furnace bottom 9 Fluidized bed 9a Fluidized sand fall position 9b Flow failure frequent occurrence area 10, 10a, 10b Wind box 11a, 11b Damper 12 Push Fans 21 to 25 Temperature sensor 32 Melting facility 33 Swivel melting furnace 34 Secondary combustion chamber 35 Boiler H 0 Start up bed height H 1 Run up bed height

Claims (6)

廃棄物を熱分解して熱分解ガスを発生させる流動床ガス化炉であって、炉下部に複数並設された風箱を有し、該風箱を介して炉内に供給される燃焼空気により流動媒体を流動化させて流動層を形成した流動床ガス化炉において、
前記流動床ガス化炉の立ち上げ時に前記流動層内に位置する少なくとも一の温度センサを含み、前記流動層の深さ方向に複数設置された温度センサからなる第1の温度センサ群と、
前記風箱の並び方向に複数設置された温度センサからなる第2の温度センサ群と、複数並設された夫々の風箱内の圧力を検出する圧力検出手段と
前記深さ方向と風箱の並び方向の二つの座標方向の夫々の温度センサ群が検出した温度分布に基づいて流動不良部位を特定し、該特定された流動不良部位下方に位置する前記風箱への燃焼空気供給量を一時的に増大させた後、前記風箱内の圧力を検出し、該圧力が定常運転範囲内となったら前記増大した燃焼空気供給量を元に戻す制御装置とを具えたことを特徴とする流動床ガス化炉。
A fluidized bed gasification furnace for thermally decomposing waste to generate pyrolysis gas, having a plurality of juxtaposed air boxes at the lower part of the furnace, and combustion air supplied into the furnace through the air box In a fluidized bed gasification furnace in which a fluidized medium is fluidized to form a fluidized bed,
Wherein a fluidized bed gas comprises at least one temperature sensor located in the fluidized bed at the time of start-up of furnace, the first temperature sensor group consisting of a temperature sensor in which a plurality placed in the depth direction of the fluidized layer,
A second temperature sensor group comprising a plurality of temperature sensors installed in the direction in which the wind boxes are arranged; and a pressure detecting means for detecting a pressure in each of the plurality of juxtaposed wind boxes.
The wind box located below the identified flow failure part is specified based on the temperature distribution detected by the temperature sensor groups detected in the two coordinate directions of the depth direction and the wind box arrangement direction. A control device for detecting the pressure in the wind box after temporarily increasing the amount of combustion air supplied to the engine and returning the increased amount of combustion air supplied to the original when the pressure falls within a steady operating range; A fluidized bed gasifier characterized by comprising .
前記流動層を前記風箱の並び方向に3つの帯状領域に区分し、前記第2の温度センサ群は、夫々の帯状領域に少なくとも一の温度センサが配置されるようしたことを特徴とする請求項1記載の流動床ガス化炉。   The fluidized bed is divided into three strip regions in the direction in which the wind boxes are arranged, and in the second temperature sensor group, at least one temperature sensor is arranged in each strip region. Item 2. A fluidized bed gasifier according to item 1. 前記第2の温度センサ群により前記流動層の水平断面の温度分布を検出し、該検出した温度分布に基づき前記風箱への燃焼空気供給量を制御する風量制御手段を備えたことを特徴とする請求項1記載の流動床ガス化炉。   The air temperature control means for detecting the temperature distribution of the horizontal section of the fluidized bed by the second temperature sensor group and controlling the amount of combustion air supplied to the wind box based on the detected temperature distribution. The fluidized bed gasifier according to claim 1. 前記第2の温度センサ群のうち少なくとも一の温度センサが、前記流動層に流動媒体が供給される際の該流動媒体の落下位置若しくは該落下位置近傍に設置されることを特徴とする請求項1記載の流動床ガス化炉。   The at least one temperature sensor in the second temperature sensor group is installed at or near the dropping position of the fluidized medium when the fluidized medium is supplied to the fluidized bed. The fluidized bed gasifier according to claim 1. 前記流動層に流動媒体が供給される際の該流動媒体の落下位置を前記流動床ガス化炉の側壁に近接する位置とし、前記第1の温度センサ群が前記流動媒体の落下位置若しくは該落下位置近傍の深さ方向に設置されることを特徴とする請求項1記載の流動床ガス化炉。   The falling position of the fluidized medium when the fluidized medium is supplied to the fluidized bed is a position close to the side wall of the fluidized bed gasification furnace, and the first temperature sensor group is the position where the fluidized medium is dropped or dropped. 2. The fluidized bed gasifier according to claim 1, wherein the fluidized bed gasifier is installed in a depth direction near the position. 廃棄物を熱分解して熱分解ガスを発生させる流動床ガス化炉であって、該流動床ガス化炉の炉下部に複数並設された風箱を介して炉内に燃焼空気を供給し、該燃焼空気により流動媒体を流動化させて形成した流動層を監視・制御する方法において、
前記流動床ガス化炉の立ち上げ時に前記流動層内に位置する少なくとも一の温度センサを含み、前記流動層の深さ方向に複数設置された温度センサからなる第1の温度センサ群により主として流動層の層高を検出するとともに、前記風箱の並び方向に複数設置された温度センサからなる第2の温度センサ群により流動層の水平断面の風箱の並び方向の温度分布を検出し、
該検出した前記深さ方向と風箱の並び方向の二つの座標方向の夫々の温度センサ群が検出した温度分布に基づき流動不良部位を特定し、前記流動不良部位が特定された場合に、該流動不良部位の下方に位置する前記風箱への燃焼空気供給量を一時的に増大させた後、前記風箱内の圧力を検出し、該圧力が定常運転範囲内となったら前記増大した燃焼空気供給量を元に戻すことを特徴とする流動床ガス化炉の流動層監視・制御方法。
A fluidized bed gasification furnace for thermally decomposing waste to generate pyrolysis gas, and supplying combustion air into the furnace through a plurality of wind boxes arranged in parallel at the lower part of the fluidized bed gasification furnace In a method for monitoring and controlling a fluidized bed formed by fluidizing a fluid medium with the combustion air,
Fluidized mainly by a first temperature sensor group comprising at least one temperature sensor located in the fluidized bed at the time of startup of the fluidized bed gasification furnace and comprising a plurality of temperature sensors installed in the depth direction of the fluidized bed. detects the bed height of the layer to detect the temperature distribution in the arrangement direction of the wind box of the horizontal cross section of the fluidized bed by the second temperature sensors consisting of a temperature sensor in which a plurality placed alignment direction of the wind box,
The defective flow region is specified based on the temperature distribution detected by each temperature sensor group in the two coordinate directions of the detected depth direction and the wind box arrangement direction, and when the defective flow region is specified, After temporarily increasing the amount of combustion air supplied to the wind box located below the poor flow region, the pressure in the wind box is detected, and the increased combustion is detected when the pressure falls within the steady operating range. A fluidized bed gasification furnace fluidized bed monitoring and control method, wherein the air supply amount is restored .
JP2006099147A 2006-03-31 2006-03-31 Fluidized bed gasifier and its fluidized bed monitoring and control method Active JP4295291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006099147A JP4295291B2 (en) 2006-03-31 2006-03-31 Fluidized bed gasifier and its fluidized bed monitoring and control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006099147A JP4295291B2 (en) 2006-03-31 2006-03-31 Fluidized bed gasifier and its fluidized bed monitoring and control method

Publications (2)

Publication Number Publication Date
JP2007271203A JP2007271203A (en) 2007-10-18
JP4295291B2 true JP4295291B2 (en) 2009-07-15

Family

ID=38674191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006099147A Active JP4295291B2 (en) 2006-03-31 2006-03-31 Fluidized bed gasifier and its fluidized bed monitoring and control method

Country Status (1)

Country Link
JP (1) JP4295291B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012124019A1 (en) * 2011-03-11 2012-09-20 三菱重工環境・化学エンジニアリング株式会社 Fluidized bed gasification furnace

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5694690B2 (en) * 2010-06-22 2015-04-01 株式会社神鋼環境ソリューション Fluidized bed furnace and waste treatment method
CN102338385B (en) * 2010-07-21 2014-03-12 安徽海螺川崎工程有限公司 Garbage gasification furnace with detection device
CN102338386B (en) * 2010-07-21 2013-06-05 安徽海螺集团有限责任公司 Garbage gasification furnace
JP5694700B2 (en) * 2010-07-22 2015-04-01 株式会社神鋼環境ソリューション Fluidized bed furnace and waste treatment method
WO2012066802A1 (en) * 2010-11-19 2012-05-24 荏原環境プラント株式会社 Fluidized bed furnace and method for processing waste
JP5462214B2 (en) * 2011-03-31 2014-04-02 株式会社神鋼環境ソリューション Fluidized bed furnace
JP2015045422A (en) * 2013-08-27 2015-03-12 株式会社Ihi Fluidized-bed boiler
JP6183068B2 (en) * 2013-08-29 2017-08-23 株式会社Ihi Fluidized bed boiler and its operation method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012124019A1 (en) * 2011-03-11 2012-09-20 三菱重工環境・化学エンジニアリング株式会社 Fluidized bed gasification furnace
JP5615426B2 (en) * 2011-03-11 2014-10-29 三菱重工環境・化学エンジニアリング株式会社 Fluidized bed gasifier
EA026315B1 (en) * 2011-03-11 2017-03-31 Мицубиси Хэви Индастриз Инвайронментал Энд Кемикал Инджиниринг Ко., Лтд. Fluidized bed gasification furnace
US9709270B2 (en) 2011-03-11 2017-07-18 Mitsubishi Heavy Industries Environmental & Chemical Engineering Co., Ltd. Fluidized bed gasification furnace

Also Published As

Publication number Publication date
JP2007271203A (en) 2007-10-18

Similar Documents

Publication Publication Date Title
JP4295291B2 (en) Fluidized bed gasifier and its fluidized bed monitoring and control method
JP2002081624A (en) Waste gasification melting furnace and operation method of the melting furnace
JP5615426B2 (en) Fluidized bed gasifier
JP4126316B2 (en) Operation control method of gasification and melting system and system
JP2007078239A (en) Melting furnace of waste gasifying melting device, and control method and device for the same
KR101921225B1 (en) Waste material melting furnace
JP5154094B2 (en) Combustion control method for gasification melting system and system
JP5611418B2 (en) Combustion control method for gasification melting system and system
JP4126317B2 (en) Operation control method of gasification and melting system and system
JP2010065932A (en) Device and method for controlling combustion in secondary combustion furnace for pyrolysis gas
JP2007078197A (en) Incinerator and incinerating method of waste
JP2008082564A (en) Waste melting furnace and its operation method
JP5162285B2 (en) Gasification melting method and gasification melting apparatus
JP4285760B2 (en) Operation control method of gasification and melting system and system
JP4234727B2 (en) In-furnace condition monitoring / control method and apparatus for melting furnace
JP6016196B2 (en) Waste gasification and melting apparatus and waste gasification and melting method
JP2005282910A (en) Combustion control method of waste gasifying melting furnace
JP2006194516A (en) Secondary combustion control device for waste gasification melting furnace
JP2006071215A (en) Thermal decomposition gasification melting system and its temperature raising method
JP2007255844A (en) Fusing equipment and fusing method of gasification fusing system
JP2006097916A (en) Combustion control method of incinerator
JP2003074819A (en) Waste melting equipment, and its operation method
JP2017180922A (en) Waste tire gasification melting device and waste tire gasification melting method
JP3902123B2 (en) Melting furnace temperature compensation apparatus and melting furnace temperature compensation method for gasification melting apparatus
JP4791157B2 (en) Waste gasification melting equipment melting furnace

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090409

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4295291

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140417

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250