JP4074467B2 - Method for improving combustibility of low volatile pulverized coal in blast furnace - Google Patents

Method for improving combustibility of low volatile pulverized coal in blast furnace Download PDF

Info

Publication number
JP4074467B2
JP4074467B2 JP2002093535A JP2002093535A JP4074467B2 JP 4074467 B2 JP4074467 B2 JP 4074467B2 JP 2002093535 A JP2002093535 A JP 2002093535A JP 2002093535 A JP2002093535 A JP 2002093535A JP 4074467 B2 JP4074467 B2 JP 4074467B2
Authority
JP
Japan
Prior art keywords
pulverized coal
blast furnace
coal
lance
vol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002093535A
Other languages
Japanese (ja)
Other versions
JP2003286511A (en
Inventor
和也 国友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002093535A priority Critical patent/JP4074467B2/en
Publication of JP2003286511A publication Critical patent/JP2003286511A/en
Application granted granted Critical
Publication of JP4074467B2 publication Critical patent/JP4074467B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、高炉の送風用羽口から吹き込む微粉炭として、低揮発分の微粉炭使用時における高炉での微粉炭の燃焼性向上方法に関するものである。
【0002】
【従来の技術】
近年、高炉への粉体吹き込み操業技術の一つとして微粉炭吹き込み操業が確立されるに至り、高炉でのコークス比低減に大きく寄与しており、微粉炭の吹き込み量が150kg/t−pig(以下kg/tと記す)を超える操業も指向されるようになっている。しかし、高炉への大量の微粉炭吹き込み操業を安定して実施させるには、吹き込んだ微粉炭を完全に燃焼させる必要がある。
【0003】
吹き込んだ微粉炭が未燃焼のままの状態で高炉内に存在すると、高炉下部や炉芯部に未燃焼のチャーとして蓄積し高炉内での通気・通液性を阻害する。
また、このような状態になると微粉炭の燃焼発熱が充分でないため、その効果が減少する結果、高炉での燃料比の上昇を招いてしまう。このような現象は特に低揮発分の石炭をの使用した時に起こり易く、微粉炭が未燃焼状態で存在し前記状況を増長する。
【0004】
通常、微粉炭においてその燃焼性を左右するのは、微粉炭の組成、特に、揮発分と固定炭素の含有割合によって決まってくる。低揮発分炭の燃焼効率が低いのは、燃焼性の低い固定炭素の割合が高揮発分炭に比べて多く、燃焼性の高い揮発物が少ないためであると思われる。
このため、比較的燃焼性の良い高揮発分の石炭が高炉の吹き込みには適していると考えられ、該高揮発分石炭がもっぱら用いられていた。
【0005】
例えば、高炉への吹き込み用微粉炭として石炭の揮発分に注目した発明として特許2675403号がある。該特許は微粉炭の揮発分が23mass%以上、流動度指数が0.80以下である石炭を使用し、微粉炭の粒径が3mm〜100μmであること、さらに、羽口先温度を1900℃以上2250℃以下とする高揮発分の石炭を対象とした技術が開示されている。
【0006】
また、微粉炭燃焼用酸素に注目した特許として特開昭62−263906号には、ランスを微粉炭吹き込みと酸素吹き込み用の二重構造とし、送風支管内に水平に設け、送風中の酸素濃度が30vol%以上となるように酸素富化を行う技術の開示がある。
同様に、特許2994141号には微粉炭吹き込みランスに導入される酸素の平均濃度を35〜65vol%に調整して吹き込むと共に、ランスへの富化酸素量を全送風中の酸素富化率の3vol%以下とする技術が開示されている。
【0007】
【発明が解決しようとする課題】
一般的に石炭としては燃焼面からみると、揮発分が高い程燃焼性がよく品質的に優れていると言える。このため揮発分が高い石炭程価格が高いという状況にある。これを裏返して云うならば揮発分が低い程石炭として低品位であり、廉価に入手できるため、石炭のコストを低減できる利点がある。
しかして、通常微粉炭として使用されている石炭は前述しやように、揮発分が比較的高い(30mass%以上)のものが多く用いられていた。
【0008】
前記特許2675403号に開示された技術のように、特定の高揮発分石炭の微粉炭だけしか高炉に吹き込めない状況では、石炭資源全体を考えた場合には好ましくなく、高揮発分、低揮発分に関係なく、できるだけ幅広い銘柄、種類の石炭が高炉への吹き込み微粉炭として使用できることが、エネルギーの安定供給や価格の安定化面からも望ましいことである。
【0009】
このような観点から従来高炉への微粉炭吹き込みの石炭としては返り見られなかった、低揮発分炭を高炉への吹き込み用微粉炭としていかにして使用するかが重要な課題となっていた。また使用に際してはその性状がもたらす燃焼性の劣るのをいかにして補い、燃焼効率を向上させるかが問題となっていた。
【0010】
しかして、微粉炭の燃焼効率を向上させるためには、ランスから微粉炭と共に吹き込むガス中の酸素濃度を大幅に上昇させることが効果的であると考えられていた。しかし、単に酸素富化率を上げるだけではランスの溶損の問題が生じる。そこで本発明は、低揮発分炭使用時においても安定した高炉操業を行うための微粉炭の燃焼性向上方法を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明は前記した従来方法における問題点を解決するためになされたものであって、その要旨とするところは、下記手段にある。
(1) 高炉へ送風用羽口から150kg/t以上の微粉炭を吹き込む操業において、平均揮発分が25mass%以下の低揮発分炭を用いるに際し、微粉炭と同時に吹き込まれる気体中の酸素濃度を70vol%以上確保する高炉での低揮発分微粉炭の燃焼性向上方法。
(2) 前記微粉炭吹き込みランスとして、単管を用いた場合微粉炭搬送ガス中の酸素濃度を70vol%以上とした(1)記載の高炉での低揮発分微粉炭の燃焼性向上方法。
(3) 前記微粉炭吹き込みランスとして、2重管を用いた場合微粉炭搬送ガス中の酸素と、外管内のガス中の酸素とを合算して酸素濃度を70vol%以上とした(1)記載の高炉での低揮発分微粉炭の燃焼性向上方法。
【0012】
【発明の実施の形態】
本発明者は微粉炭において、数多くの実験を行い微粉炭の燃焼性を測定し、燃焼性に及ぼす微粉炭の揮発分の影響を追求し、ランスの溶損の問題を回避しつつ満足できる燃焼性を確保するためには、微粉炭の性状および微粉炭を燃焼するための酸素濃度を特定することにより、目的が達せられるとの知見を得た。
【0013】
ここで、微粉炭の燃焼反応は酸素富化率の増加により向上することは明白であるが、微粉炭吹き込みランス直前の急激な燃焼反応はランスの溶損を招く危険性があり、それを防ぐため水冷構造を必要とした。しかし、従来の微粉炭吹き込みレベルである100〜150kg/t程度の吹き込み量であれば酸素富化をそれ程要せず、このような問題に対して余り配慮しなくともよいが、吹き込みレベルが150kg/t以上になると、上記問題を考慮する必要がある。
【0014】
この点、低揮発微粉炭はランスの直前で急激な燃焼を起こす惧れはない。これは前記したように微粉炭の初期の燃焼は、微粉炭中の固定炭素が燃焼するのではなく熱分解によって生じた揮発分が燃焼するためであり、揮発分を規制することによりランス直前の急激な燃焼反応は回避できる。
【0015】
一方、一般的に低揮発分炭は燃焼が遅く燃焼効率が悪いという欠点があるが、酸素富化率を上昇させることによりこの欠点は解消できる。すなわち、送風中の酸素濃度を均一に増加させるのではなく、微粉炭中の揮発分に応じて酸素量を富化するならば、特に、微粉炭吹き込みランス先端部近傍周辺の酸素濃度を増加させることは燃焼性改善に効果がある。何故ならば、高炉内に吹き込まれた微粉炭やガスは直ちに周辺全体に拡散するわけではなく、吹き込まれたガス雰囲気内で昇温、燃焼する傾向が強いからである。
【0016】
そこで本発明者は、揮発分の異なる種々の石炭(微粉炭の混合を含む)について、微粉炭の燃焼効率を微粉炭の平均揮発分、微粉炭吹き込みランス先端部近傍周辺の酸素濃度、微粉炭原単位を変化させて微粉炭の燃焼試験炉で燃焼実験を行いその燃焼性を比較して図1に示した。
【0017】
この結果から微粉炭吹き込み時の吹き込みランスの溶損を考慮した場合、図1から明らかなようにランス先端部近傍周辺での気体中の酸素濃度が70vol%を超えるとランスの溶損が発生しており、このランス溶損は微粉炭中の平均揮発分に依存し、揮発分が25mass%を超えるとその現象が顕著に表れている。したがって、ランスの溶損を回避して低揮発分の微粉炭を使用するには平均揮発分が25mass%以下でなければならない。
【0018】
これら両者の兼ね合いを勘案した場合、本発明においては燃焼効率70%以上を確保して未燃焼微粉炭の量を極力防ぐためには、低揮発分の微粉炭としては平均25mass%以下の揮発分含有量のものを用い、また酸素濃度は70vol%以上を必要とする。勿論微粉炭中の平均揮発分が25mass%より低い場合は、その揮発分に応じて酸素濃度を70vol%より増大する措置を講ずるのが好ましい。
【0019】
本発明においては酸素濃度を70vol%以上に規制したが、前記した特許2994141号では、酸素濃度を50vol%で燃焼効率は飽和状態になっており、酸素濃度を65vol%以上にすると燃焼効率が低下してくる傾向にある。またランスの溶損の問題から、酸素濃度70vol%以上の増加は避けている。
【0020】
本発明では低揮発分の微粉炭を用いることにより、この事実とは反する実験結果を得ている。また、特開昭62−263906号では、実施例で酸素濃度37vol%max、図面で50vol%maxの例が示されているのみである。
【0021】
通常微粉炭吹き込み量が増大するになるにつれ燃焼効率が低下すると言われており、前記図1はこのことを裏付けている(図中○と●の差)。このことは、微粉炭吹き込み量が150kg/t未満の場合は、敢えてランスからの酸素濃度を70vol%以上にしなくとも燃焼効率は比較的高く維持できることを示唆している。
なお、本発明で使用する微粉炭は単一銘柄のものでもよく、または2種以上の銘柄のものを混合して用いてもよい。何れにしても平均揮発分が25mass%以下の微粉炭が対象となる。
【0022】
本発明では、高炉のブローパイプを貫通して送風羽口内に挿入される従来の単管ランスまたは2重管ランスを用いることが好ましい。単管ランスは微粉炭を搬送ガスと共に送入するものであり、2重管ランスは内管内が微粉炭を搬送ガスと共に送入する通路で、内管と外管との間(以下外管内と記す)が冷却ガスまたは微粉炭燃焼ガス(酸素富化ガス)を送入する通路となっている2重管のランスである。
【0023】
単管ランスの場合は微粉炭搬送用ガスとして酸素濃度70vol%以上のものを用い、また2重管ランスの場合は微粉炭搬送用ガス中の酸素と、外管内の酸素を合算した平均酸素濃度が微粉炭吹き込みランス先端部近傍周辺において、70vol%以上になるようにそれぞれの酸素量を調整する。
【0024】
なお、上記ではランスとして単管と2重管について説明したが、本発明はこれに限られるものではなく、3重管ランス(最外管内は冷却流体)または、微粉炭吹き込みランス先端部へ他のランスから酸素を供給してもよく、何れにしても微粉炭吹き込みランス先端部において、酸素濃度が70vol%以上あればよい。このような状態を保持することによりレースウエイ内での燃焼効率を70%以上に維持することが可能である。
【0025】
【実施例】
以下、本発明を実施例に基づいて詳細に説明する。
表1に内容積3273m3 の高炉において、本発明を適用した実施例の操業条件とその結果を比較例と共に示す。
【0026】
【表1】

Figure 0004074467
【0027】
微粉炭吹き込み量が150kg/tから250kg/tの範囲において、微粉炭吹き込みと同時に微粉炭吹き込みランス先端部近傍周辺の気体中の酸素濃度が70vol%以上で、微粉炭の平均揮発分が25mass%以下の本発明を適用した期間(実施例1、2、3、4)は、通気抵抗指数が低く高炉内の通気が安定しており、荷降下指数も低く装入物の降下状況も良好であり、操業が安定した結果として低燃料比、高出銑量が達成された。
【0028】
これに対して、本発明を適用しない期間(比較例1、2、3)はこれらの操業成績が悪く、吹き込まれた微粉炭の燃焼効率が低く未燃焼のチャーが炉芯部などに蓄積し操業に悪影響を与えていたものと推定される。
なお、比較例3については微粉炭の平均揮発分が31mass%と高く、酸素濃度が75vol%と高かったためランス先端部の溶損が起こり、そのためランス詰まりを起こし、微粉炭の吹き込み量が115kg/t(目標150kg/t)しか行えず、高炉操業結果は全て不良であった。
【0029】
【発明の効果】
本発明によれば従来、高炉への適用は困難視されていた低揮発分微粉炭についても、燃焼用酸素濃度を増して使用することにより、その燃焼効率を向上せしめることができ、使用可能としたものである。さらには微粉炭の揮発分程度に応じ酸素濃度を適正範囲に制御してやることにより、優れた燃焼効果を維持でき安定した高炉操業を行うことができ、微粉炭吹き込み操業における制約条件を解消することができる。
【図面の簡単な説明】
【図1】微粉炭燃焼効率に及ぼす平均揮発分と酸素濃度の影響を示した図[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for improving the combustibility of pulverized coal in a blast furnace when pulverized coal having a low volatile content is used as the pulverized coal blown from a blast furnace tuyeres.
[0002]
[Prior art]
In recent years, pulverized coal injection operation has been established as one of the powder injection operation technologies to the blast furnace, which has greatly contributed to reducing the coke ratio in the blast furnace, and the amount of pulverized coal injection is 150 kg / t-pig ( The operation exceeding (hereinafter referred to as kg / t) is also directed. However, in order to stably carry out a large amount of pulverized coal injection operation into the blast furnace, it is necessary to completely burn the injected pulverized coal.
[0003]
If the pulverized coal that has been blown in the blast furnace remains unburned, it accumulates as unburned char in the lower part of the blast furnace or in the core of the furnace and impedes ventilation and liquid permeability in the blast furnace.
Further, in such a state, since the heat of combustion of the pulverized coal is not sufficient, the effect is reduced, resulting in an increase in the fuel ratio in the blast furnace. Such a phenomenon is particularly likely to occur when low-volatile coal is used, and pulverized coal is present in an unburned state, which increases the situation.
[0004]
Usually, the flammability of pulverized coal depends on the composition of pulverized coal, particularly the content of volatile matter and fixed carbon. The reason why the combustion efficiency of low-volatile coal is low is considered to be because the ratio of fixed carbon having low combustibility is higher than that of high-volatile coal, and there is little volatile matter having high combustibility.
For this reason, it is considered that high volatility coal with relatively good combustibility is suitable for blast furnace injection, and the high volatility coal has been used exclusively.
[0005]
For example, Japanese Patent No. 2675403 is an invention that focuses on the volatile matter of coal as pulverized coal for blowing into a blast furnace. The patent uses coal having a volatile content of pulverized coal of 23 mass% or more and a fluidity index of 0.80 or less, the particle size of pulverized coal is 3 mm to 100 μm, and the tuyere temperature is 1900 ° C. or more. A technique for high volatile coal having a temperature of 2250 ° C. or lower is disclosed.
[0006]
Japanese Patent Application Laid-Open No. 62-263906, which focuses on oxygen for combustion of pulverized coal, has a lance having a double structure for blowing pulverized coal and blowing oxygen, and is provided horizontally in the blower branch pipe to provide oxygen concentration during blowing. There is a disclosure of a technique for performing oxygen enrichment so that is 30 vol% or more.
Similarly, in Japanese Patent No. 2994141, the average concentration of oxygen introduced into the pulverized coal blowing lance is adjusted to 35 to 65 vol%, and the oxygen enrichment amount to the lance is set to 3 vol. % Or less is disclosed.
[0007]
[Problems to be solved by the invention]
In general, it can be said that the higher the volatile matter, the better the combustibility and the better the quality of coal as a combustion surface. For this reason, the price of coal with higher volatile content is higher. In other words, the lower the volatile content, the lower the quality of the coal, and the lower the cost, the lower the cost, so there is an advantage that the cost of the coal can be reduced.
Thus, as described above, the coal that is usually used as pulverized coal is often used with a relatively high volatile content (30 mass% or more).
[0008]
Like the technique disclosed in the above-mentioned Japanese Patent No. 2675403, in a situation where only pulverized coal of a specific high volatile content coal can be blown into the blast furnace, it is not preferable when considering the entire coal resource. Regardless of the situation, it is desirable from the standpoint of stable energy supply and price stabilization that a wide range of brands and types of coal can be used as pulverized coal for blast furnaces.
[0009]
From this point of view, it has become an important issue how to use low-volatile coal as pulverized coal for blowing into the blast furnace, which has not been returned as pulverized coal-blown coal into the blast furnace. Further, in use, there has been a problem of how to compensate for the inferior flammability caused by the properties and to improve the combustion efficiency.
[0010]
Therefore, in order to improve the combustion efficiency of pulverized coal, it has been considered effective to significantly increase the oxygen concentration in the gas blown from the lance together with the pulverized coal. However, simply increasing the oxygen enrichment causes a problem of lance melting. Then, this invention aims at providing the combustibility improvement method of pulverized coal for performing the stable blast furnace operation even at the time of low volatile matter coal use.
[0011]
[Means for Solving the Problems]
The present invention has been made in order to solve the problems in the above-described conventional methods, and the gist thereof is the following means.
(1) In the operation of blowing pulverized coal of 150 kg / t or more into the blast furnace from the blower tuyere, when using low volatile coal having an average volatile content of 25 mass% or less, the oxygen concentration in the gas blown simultaneously with the pulverized coal is 7 A method for improving the combustibility of low-volatile matter pulverized coal in a blast furnace to ensure 70 vol% or more.
(2) The method for improving combustibility of low-volatile matter pulverized coal in a blast furnace according to (1), wherein the oxygen concentration in the pulverized coal carrier gas is 70 vol% or more when a single pipe is used as the pulverized coal blowing lance.
(3) In the case of using a double pipe as the pulverized coal blowing lance, oxygen in the pulverized coal carrier gas and oxygen in the gas in the outer pipe are combined to make the oxygen concentration 70 vol% or more. To improve the flammability of low volatile pulverized coal in blast furnaces.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The present inventor conducted numerous experiments on pulverized coal, measured the flammability of pulverized coal, pursued the influence of volatile matter of pulverized coal on the flammability, and satisfied combustion while avoiding the problem of lance melting In order to ensure the properties, the inventors have found that the purpose can be achieved by specifying the properties of pulverized coal and the oxygen concentration for burning the pulverized coal.
[0013]
Here, it is clear that the combustion reaction of pulverized coal is improved by increasing the oxygen enrichment rate, but the rapid combustion reaction immediately before the pulverized coal injecting lance has the risk of causing lance melting and preventing it. Therefore, a water cooling structure was required. However, if the blowing amount is about 100 to 150 kg / t, which is the conventional pulverized coal blowing level, oxygen enrichment is not so much required, and there is no need to consider such a problem, but the blowing level is 150 kg. When it becomes more than / t, it is necessary to consider the above problem.
[0014]
In this regard, low volatility pulverized coal is unlikely to burn rapidly immediately before the lance. This is because, as described above, the initial combustion of pulverized coal is not due to combustion of fixed carbon in the pulverized coal, but volatile matter generated by thermal decomposition is combusted. Rapid combustion reactions can be avoided.
[0015]
On the other hand, in general, low volatile coal has a disadvantage that combustion is slow and combustion efficiency is poor, but this disadvantage can be solved by increasing the oxygen enrichment rate. In other words, if the oxygen amount is enriched according to the volatile matter in the pulverized coal, rather than increasing the oxygen concentration during blowing, the oxygen concentration around the tip of the pulverized coal blowing lance is increased. This is effective in improving combustibility. This is because the pulverized coal or gas blown into the blast furnace does not immediately diffuse to the entire periphery, but tends to rise in temperature and burn in the blown gas atmosphere.
[0016]
Therefore, the present inventor has determined the combustion efficiency of pulverized coal, the average volatile content of pulverized coal, the oxygen concentration in the vicinity of the pulverized coal blowing lance, A combustion experiment was conducted in a pulverized coal combustion test furnace while changing the basic unit, and the combustibility was compared and shown in FIG.
[0017]
From this result, when considering the melting loss of the blowing lance at the time of blowing pulverized coal, if the oxygen concentration in the gas in the vicinity of the tip of the lance exceeds 70 vol%, as shown in FIG. This lance erosion depends on the average volatile content in the pulverized coal, and the phenomenon appears remarkably when the volatile content exceeds 25 mass%. Therefore, in order to avoid lance melting and use pulverized coal with low volatility, the average volatile content must be 25 mass% or less.
[0018]
In consideration of the balance between the two, in the present invention, in order to ensure the combustion efficiency of 70% or more and prevent the amount of unburned pulverized coal as much as possible, the volatile content of 25 vol% or less on average is included as the low volatile pulverized coal. The amount of oxygen is used, and the oxygen concentration needs to be 70 vol% or more. Of course, when the average volatile content in the pulverized coal is lower than 25 mass%, it is preferable to take measures to increase the oxygen concentration from 70 vol% according to the volatile content.
[0019]
In the present invention, the oxygen concentration is regulated to 70 vol% or more. However, in the above-mentioned Japanese Patent No. 2994141, the combustion efficiency is saturated when the oxygen concentration is 50 vol%, and the combustion efficiency decreases when the oxygen concentration is 65 vol% or more. It tends to come. Also, an increase in oxygen concentration of 70 vol% or more is avoided due to the problem of lance melting.
[0020]
In the present invention, an experimental result contrary to this fact has been obtained by using pulverized coal having a low volatile content. Japanese Patent Application Laid-Open No. Sho 62-263906 only shows an example of an oxygen concentration of 37 vol% max in the example and 50 vol% max in the drawing.
[0021]
Usually, it is said that the combustion efficiency decreases as the amount of pulverized coal increases, and FIG. 1 confirms this (difference between ○ and ● in the figure). This suggests that when the pulverized coal injection amount is less than 150 kg / t, the combustion efficiency can be maintained relatively high even if the oxygen concentration from the lance is not increased to 70 vol% or more.
The pulverized coal used in the present invention may be a single brand, or a mixture of two or more brands. In any case, pulverized coal having an average volatile content of 25 mass% or less is targeted.
[0022]
In the present invention, it is preferable to use a conventional single pipe lance or double pipe lance that is inserted into the blower tuyere through the blast furnace blow pipe. The single-pipe lance feeds pulverized coal together with the carrier gas, and the double-pipe lance is a passage through which the inner tube feeds pulverized coal together with the carrier gas. 2) is a double pipe lance serving as a passage for feeding cooling gas or pulverized coal combustion gas (oxygen-enriched gas).
[0023]
In the case of a single pipe lance, an oxygen concentration of 70 vol% or more is used as the pulverized coal transfer gas. In the case of a double pipe lance, the average oxygen concentration is the sum of oxygen in the pulverized coal transfer gas and oxygen in the outer pipe. However, in the vicinity of the tip of the pulverized coal blowing lance, the respective oxygen amounts are adjusted so as to be 70 vol% or more.
[0024]
In the above description, a single pipe and a double pipe have been described as lances. However, the present invention is not limited to this, and a triple pipe lance (the cooling fluid in the outermost pipe) or a pulverized coal blowing lance tip can be used. Oxygen may be supplied from this lance, and in any case, the oxygen concentration may be 70 vol% or more at the tip of the pulverized coal blowing lance. By maintaining such a state, the combustion efficiency in the raceway can be maintained at 70% or more.
[0025]
【Example】
Hereinafter, the present invention will be described in detail based on examples.
Table 1 shows the operating conditions and results of an embodiment to which the present invention is applied in a blast furnace having an internal volume of 3273 m 3 , together with a comparative example.
[0026]
[Table 1]
Figure 0004074467
[0027]
When the amount of pulverized coal injection is in the range of 150 kg / t to 250 kg / t, the oxygen concentration in the gas near the tip of the pulverized coal injection lance at the same time as the pulverized coal injection is 70 vol% or more, and the average volatile content of the pulverized coal is 25 mass%. During the following period of application of the present invention (Examples 1, 2, 3, and 4), the ventilation resistance index is low, the ventilation in the blast furnace is stable, the load drop index is low, and the charge descent is good. Yes, as a result of stable operation, low fuel ratio and high output were achieved.
[0028]
On the other hand, during the period when the present invention is not applied (Comparative Examples 1, 2, and 3), these operation results are poor, and the combustion efficiency of the injected pulverized coal is low and unburned char accumulates in the furnace core and the like. It is presumed that the operation was adversely affected.
In Comparative Example 3, the average volatile content of the pulverized coal was as high as 31 mass%, and the oxygen concentration was as high as 75 vol%, so that the lance tip was melted, causing lance clogging, and the amount of pulverized coal blown was 115 kg / Only t (target 150 kg / t) could be performed, and all blast furnace operation results were poor.
[0029]
【The invention's effect】
According to the present invention, low volatile pulverized coal, which has conventionally been considered difficult to apply to a blast furnace, can be used by increasing its combustion efficiency by increasing the oxygen concentration for combustion. It is a thing. Furthermore, by controlling the oxygen concentration to an appropriate range according to the volatile content of pulverized coal, it is possible to maintain excellent combustion effects and perform stable blast furnace operation, and to eliminate the restrictions on pulverized coal injection operation it can.
[Brief description of the drawings]
FIG. 1 shows the effect of average volatile content and oxygen concentration on pulverized coal combustion efficiency.

Claims (3)

高炉へ送風用羽口から150kg/t以上の微粉炭を吹き込む操業において、平均揮発分が25mass%以下の低揮発分炭を用いるに際し、微粉炭と同時に吹き込まれる気体中の酸素濃度を70vol%以上確保することを特徴とする高炉での低揮発分微粉炭の燃焼性向上方法。In the operation of blowing pulverized coal of 150 kg / t or more into the blast furnace from the blowing tuyere, when using low volatile coal having an average volatile content of 25 mass% or less, the oxygen concentration in the gas blown simultaneously with the pulverized coal is set to 70 vol%. A method for improving the combustibility of low volatile pulverized coal in a blast furnace characterized by ensuring the above. 前記微粉炭吹き込みランスとして、単管を用いた場合微粉炭搬送ガス中の酸素濃度を70vol%以上としたことを特徴とする請求項1記載の高炉での低揮発分微粉炭の燃焼性向上方法。The method for improving combustibility of low-volatile matter pulverized coal in a blast furnace according to claim 1, characterized in that when a single pipe is used as the pulverized coal blowing lance, the oxygen concentration in the pulverized coal carrier gas is 70 vol% or more. . 前記微粉炭吹き込みランスとして、2重管を用いた場合微粉炭搬送ガス中の酸素と、外管内のガス中の酸素とを合算して酸素濃度を70vol%以上としたことを特徴とする請求項1記載の高炉での低揮発分微粉炭の燃焼性向上方法。When a double pipe is used as the pulverized coal blowing lance, oxygen in the pulverized coal carrier gas and oxygen in the gas in the outer pipe are combined to make the oxygen concentration 70 vol% or more. A method for improving combustibility of low-volatile matter pulverized coal in a blast furnace according to 1.
JP2002093535A 2002-03-29 2002-03-29 Method for improving combustibility of low volatile pulverized coal in blast furnace Expired - Lifetime JP4074467B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002093535A JP4074467B2 (en) 2002-03-29 2002-03-29 Method for improving combustibility of low volatile pulverized coal in blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002093535A JP4074467B2 (en) 2002-03-29 2002-03-29 Method for improving combustibility of low volatile pulverized coal in blast furnace

Publications (2)

Publication Number Publication Date
JP2003286511A JP2003286511A (en) 2003-10-10
JP4074467B2 true JP4074467B2 (en) 2008-04-09

Family

ID=29237952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002093535A Expired - Lifetime JP4074467B2 (en) 2002-03-29 2002-03-29 Method for improving combustibility of low volatile pulverized coal in blast furnace

Country Status (1)

Country Link
JP (1) JP4074467B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013094230A1 (en) 2011-12-21 2013-06-27 Jfeスチール株式会社 Blast furnace operation method
WO2013094229A1 (en) 2011-12-21 2013-06-27 Jfeスチール株式会社 Blast furnace operation method
WO2014007152A1 (en) 2012-07-03 2014-01-09 Jfeスチール株式会社 Method for operating blast furnace
JP2014210964A (en) * 2013-04-19 2014-11-13 Jfeスチール株式会社 Blast furnace operation method
JP2014210965A (en) * 2013-04-19 2014-11-13 Jfeスチール株式会社 Blast furnace operation method
JP2014210961A (en) * 2013-04-19 2014-11-13 Jfeスチール株式会社 Blast furnace operation method
JP2014210963A (en) * 2013-04-19 2014-11-13 Jfeスチール株式会社 Blast furnace operation method
JP2014210962A (en) * 2013-04-19 2014-11-13 Jfeスチール株式会社 Blast furnace operation method
US9945001B2 (en) 2013-04-03 2018-04-17 Jfe Steel Corporation Blast furnace operation method and lance

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5011702B2 (en) * 2004-10-28 2012-08-29 Jfeスチール株式会社 Blast furnace operation method
JP5843968B2 (en) 2012-08-03 2016-01-13 三菱重工業株式会社 Blast furnace blown coal and method for producing the same
JP2014031548A (en) 2012-08-03 2014-02-20 Mitsubishi Heavy Ind Ltd Pig iron production method and blast furnace equipment used for the same
JP6036156B2 (en) * 2012-10-19 2016-11-30 Jfeスチール株式会社 Blast furnace operation method
AU2014250567C1 (en) 2013-04-03 2017-06-29 Jfe Steel Corporation Blast furnace operation method
CN103235101B (en) * 2013-04-19 2014-10-15 国家电网公司 Method for detecting coal property characteristics
CN105121668B (en) * 2013-04-19 2017-05-10 杰富意钢铁株式会社 Blast furnace operation method
CN104060008A (en) * 2013-06-14 2014-09-24 攀钢集团攀枝花钢铁研究院有限公司 Blast furnace smelting method
DE102014216336A1 (en) * 2014-08-18 2016-02-18 Küttner Holding GmbH & Co. KG Process for injecting replacement reductants into a blast furnace

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013094229A1 (en) 2011-12-21 2013-06-27 Jfeスチール株式会社 Blast furnace operation method
KR20140109963A (en) 2011-12-21 2014-09-16 제이에프이 스틸 가부시키가이샤 Blast furnace operation method
KR20140109964A (en) 2011-12-21 2014-09-16 제이에프이 스틸 가부시키가이샤 Blast furnace operation method
EP4283233A1 (en) 2011-12-21 2023-11-29 JFE Steel Corporation Double wall lance
WO2013094230A1 (en) 2011-12-21 2013-06-27 Jfeスチール株式会社 Blast furnace operation method
EP3421618A1 (en) 2011-12-21 2019-01-02 JFE Steel Corporation Double wall lance
WO2014007152A1 (en) 2012-07-03 2014-01-09 Jfeスチール株式会社 Method for operating blast furnace
US9945001B2 (en) 2013-04-03 2018-04-17 Jfe Steel Corporation Blast furnace operation method and lance
RU2674454C2 (en) * 2013-04-03 2018-12-10 ДжФЕ СТИЛ КОРПОРЕЙШН Blast furnace operation method and lance
JP2014210965A (en) * 2013-04-19 2014-11-13 Jfeスチール株式会社 Blast furnace operation method
JP2014210962A (en) * 2013-04-19 2014-11-13 Jfeスチール株式会社 Blast furnace operation method
JP2014210963A (en) * 2013-04-19 2014-11-13 Jfeスチール株式会社 Blast furnace operation method
JP2014210961A (en) * 2013-04-19 2014-11-13 Jfeスチール株式会社 Blast furnace operation method
JP2014210964A (en) * 2013-04-19 2014-11-13 Jfeスチール株式会社 Blast furnace operation method

Also Published As

Publication number Publication date
JP2003286511A (en) 2003-10-10

Similar Documents

Publication Publication Date Title
JP4074467B2 (en) Method for improving combustibility of low volatile pulverized coal in blast furnace
JP6354962B2 (en) Oxygen blast furnace operation method
WO2014007152A1 (en) Method for operating blast furnace
JP4650226B2 (en) Melting reduction method
CA2917759C (en) Method for operating a blast furnace
KR101629123B1 (en) Blast furnace operation method
JP5614517B1 (en) Blast furnace operation method
WO2016139913A1 (en) Blast furnace operating method
JP5910567B2 (en) Blast furnace operation method
JP5987773B2 (en) Blast furnace operation method
JP4044711B2 (en) Heating method of core at the time of pulverized coal injection into blast furnace
JP5987772B2 (en) Blast furnace operation method
JP6176361B2 (en) Blast furnace operation method
JP2020020012A (en) Pig-iron manufacturing facility and method for manufacturing pig-iron using the same
JP2007239019A (en) Method for operating blast furnace while injecting preheated carbonaceous material
JP6064933B2 (en) Blast furnace operation method
JP6191731B2 (en) Blast furnace operation method
JP6176362B2 (en) Blast furnace operation method
JP6064934B2 (en) Blast furnace operation method
JP6183498B2 (en) Blast furnace operation method
JP4555666B2 (en) Method for promoting combustion of blast furnace-blown pulverized coal
JP6056794B2 (en) Blast furnace operation method
JP5987771B2 (en) Blast furnace operation method
KR101655213B1 (en) Device for activiting furnace center in blasst furnace, and thr method
KR101629122B1 (en) Blast furnace operation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060609

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4074467

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140201

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term