WO2024106251A1 - Carbon material for sintering, sintered ore, and production method for carbon material for sintering - Google Patents

Carbon material for sintering, sintered ore, and production method for carbon material for sintering Download PDF

Info

Publication number
WO2024106251A1
WO2024106251A1 PCT/JP2023/039900 JP2023039900W WO2024106251A1 WO 2024106251 A1 WO2024106251 A1 WO 2024106251A1 JP 2023039900 W JP2023039900 W JP 2023039900W WO 2024106251 A1 WO2024106251 A1 WO 2024106251A1
Authority
WO
WIPO (PCT)
Prior art keywords
sintering
mass
coal
carbonaceous material
biomass
Prior art date
Application number
PCT/JP2023/039900
Other languages
French (fr)
Japanese (ja)
Inventor
慎平 藤原
友司 岩見
孝徳 ▲高▼嶋
隆英 樋口
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2024501581A priority Critical patent/JP7456560B1/en
Publication of WO2024106251A1 publication Critical patent/WO2024106251A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • C10B57/04Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating

Definitions

  • the present invention relates to a carbonaceous material for sintering, sintered ore, and a method for producing the carbonaceous material for sintering, which are used in the iron ore sintering process.
  • the iron ore sintering process involves mixing the iron ore as the source material, auxiliary materials such as flux and limestone, and sintering carbon as solid fuel in a sintering machine, and using the heat of combustion from the sintering carbon to sinter the mixture.
  • powdered coke is generally used as the sintering carbon
  • anthracite and other materials may be used in addition to powdered coke, taking into consideration the risk of price fluctuations in raw coal and problems with coke manufacturing equipment.
  • biomass charcoal biomass-derived carbon materials
  • Biomass charcoal is made from plants that grow while absorbing carbon dioxide gas from the atmosphere.
  • fuels made from biomass charcoal are evaluated as not emitting any carbon dioxide gas when burned.
  • the use of biomass charcoal as a replacement for the coke powder that has traditionally been used as a sintering carbon material has also begun to be considered.
  • Patent Document 1 discloses a method of carbonizing subbituminous coal or lignite, which has been crushed so that 80% by mass of the coal charged for coke production is 10 mm or less, by charging the coal to the top or bottom of a coke oven carbonization chamber. The same document also discloses that it is possible to mix waste plastics and woody biomass as part of the subbituminous coal or lignite.
  • Biomass charcoal is characterized by its low combustion start temperature. Compared to the breeze coke derived from fossil fuels that is commonly used in sintering processes, biomass charcoal is porous and has a large surface area. Therefore, even when the combustion start temperature is low, the contact area with the air is large, resulting in a fast combustion speed.
  • the combustion reaction of carbonaceous materials for sintering is a gas-solid reaction.
  • Carbonaceous materials for sintering also react with oxygen in the surrounding gas and burn.
  • a thin layer called the gas film is generated on the surface of the carbonaceous materials for sintering.
  • the gas film maintains a laminar flow without being affected by the turbulent flow of the gas outside.
  • Carbonaceous materials for sintering burn when oxygen penetrates from the outside of the gas film into the gas film, diffuses, and reaches the surface of the carbonaceous materials for sintering.
  • the burning speed of the carbonaceous material for sintering is fast, even if the surrounding oxygen concentration is high, the rate of oxygen consumption on the surface due to the burning of the carbonaceous material for sintering is faster than the rate of oxygen supply due to oxygen diffusion within the gas boundary film, and the oxygen concentration within the gas boundary film decreases. As a result, the carbonaceous material for sintering undergoes incomplete combustion, and the amount of carbon monoxide generated increases.
  • biomass charcoal produces (volatilizes) a large amount of tar as a by-product due to thermal reactions.
  • the tar produced (volatilized) adheres to the inside of the piping, dust removal filters, blower impellers, etc. inside the sintering machine, which can cause equipment problems.
  • the present invention was made in consideration of these circumstances, and aims to provide a carbonaceous material for sintering, a sintered ore, and a method for producing the carbonaceous material for sintering that can reduce the environmental impact in the production of sintered ore and prevent a decrease in the yield of sintered ore and equipment troubles.
  • a carbonaceous material for sintering used in an iron ore sintering process comprising coal and biomass charcoal as blending materials, wherein the ratio (mass %) of fixed carbon of the biomass charcoal to the fixed carbon of the coal and the biomass charcoal after carbonization is greater than 0 and not more than 30 mass%, and the volatile matter content after carbonization is 5.0 mass% or less.
  • a method for producing a carbonaceous material for sintering used in an iron ore sintering process comprising forming an agglomerate containing coal and biomass charcoal as a blend material, and carbonizing the agglomerate by holding it at a temperature of 1000°C or higher for 6 hours or more under a nitrogen atmosphere.
  • the present invention reduces the environmental impact of sintered ore production and also prevents a decrease in sintered ore yield and equipment troubles.
  • the sintering carbon material used in the iron ore sintering process is a mixture of coal and biomass coal.
  • biomass coal By partially substituting (mixing) biomass coal for the conventional mixture, which is made up of only coal such as coke powder and anthracite, the relative use of coal can be reduced, making it possible to reduce the environmental impact.
  • the sintered carbonaceous material has a ratio (mass%) of fixed carbon in biomass charcoal to the fixed carbon in coal and biomass charcoal after carbonization that is greater than 0 and not greater than 30% by mass.
  • fixed carbon refers to the carbon component contained in the agglomerate after carbonization of the agglomerate containing coal and biomass charcoal as blending materials.
  • the ratio of biomass charcoal blended is increased, the relative ratio of coal blended is decreased, and the environmental load can be reduced, but the yield of sintered ore decreases due to the increase in biomass charcoal, which has a fast burning rate. Therefore, by setting the ratio (mass%) of fixed carbon in biomass charcoal to greater than 0 and not greater than 30% by mass, the decrease in the yield of sintered ore can be suppressed. Based on the suppression of the decrease in the yield of sintered ore, the ratio of fixed carbon in biomass charcoal can be maximized and the ratio of fixed carbon in coal can be minimized, thereby maximizing the reduction in carbon dioxide emissions.
  • biomass charcoal retains a large number of pores derived from the vascular bundles of the plant raw material, and moisture and other substances from the air are adsorbed into the pores.
  • the thermal reaction in the sintering process causes the moisture and other substances remaining in the pores to evaporate, and a large amount of tar, a by-product, also evaporates.
  • the agglomerate must be dry-distilled to completely remove the moisture and other volatile matter contained in the biomass charcoal.
  • the pores inherent in biomass charcoal are complex and numerous, it is difficult to completely remove the volatile matter by dry-distillation.
  • carbonaceous material for sintering is made by carbonizing agglomerates made of a mixture of coal and biomass charcoal until the volatile matter content (mass%) of the carbonaceous material for sintering after carbonization is 5.0 mass% or less. This prevents the evaporation of moisture and other substances that accompanies thermal reactions, and also prevents the evaporation of tar, even when the carbonaceous material for sintering is used in a sintering process. As a result, equipment troubles caused by tar adhesion, etc. can be reduced.
  • the method for producing carbonaceous material for sintering used in the iron ore sintering process first forms an agglomerate using coal and biomass charcoal as a blending material.
  • the agglomerate is then carbonized by holding it at a temperature of 1000°C or higher for 6 hours or more in a nitrogen atmosphere. Carbonization may be carried out in a coke oven.
  • the iron ore sintering process is carried out using a sintering machine.
  • the raw materials for sintering which are the iron source (iron ore), auxiliary raw materials such as flux, and sintering carbonaceous material, are continuously loaded onto the sintering machine to form a sintering bed.
  • exhaust gas is sucked in from the bottom end, and the combustion of the sintering carbonaceous material spreads from the top end to the bottom end of the sintering bed, and the combustion heat causes a combustion reaction between the iron source and the auxiliary raw materials, burning and solidifying the raw materials for sintering.
  • the exhaust gas is sucked in from the bottom end of the sintering bed using a blower.
  • the sucked in exhaust gas flows through a duct via the blower, passes through a dust collector, desulfurization equipment, denitrification equipment, etc., and is discharged from a chimney.
  • Biomass material made of wood chips hereinafter referred to as "Biomass A”
  • biomass material made of coconut shells hereinafter referred to as “Biomass B”
  • Biomass A Biomass material made of wood chips
  • Biomass B biomass material made of coconut shells
  • Carbonization was carried out under conditions of maintaining a temperature of 1000°C or higher for 6 hours or more in a nitrogen atmosphere.
  • the ratio of fixed carbon in the biomass charcoal to the fixed carbon in the coal and biomass charcoal after carbonization (mass%) and the volatile matter content (mass%) of the carbon material for sintering were measured based on the JIS standard "Method of industrial analysis of coals and cokes" (JIS M8812).
  • the sintering pot test device has a sintering pot with a diameter of 300 mm and a height of 600 mm, an ignition furnace, and exhaust gas equipment such as a wind box and a blower.
  • the sintering pot test device allows tests to be performed simulating an actual sintering machine, in which the combustion reaction proceeds from the upper layer of the sintering raw material layer and ends when the combustion reaction reaches the lower layer of the raw material layer.
  • the loaded sintering raw material was sintered to produce sintered ore, and then a drop test was performed in which the sintered ore was dropped four times from a height of 2 m. After the drop, sintered ore that remained 5 mm or larger was considered to be the finished product, and the percentage of the finished product was evaluated as the product yield (%).
  • the product yield (%) was evaluated on a three-level scale (yield evaluation): if it was 70% or more, it was rated as “good ( ⁇ )", if it was between 65% and 70%, it was rated as “average ( ⁇ )", and if it was less than 65%, it was rated as “poor ( ⁇ )”.
  • yield evaluation if it was 70% or more, it was rated as “good ( ⁇ )”, if it was between 65% and 70%, it was rated as “average ( ⁇ )”, and if it was less than 65%, it was rated as “poor ( ⁇ )”.
  • the product yield (%) is often around 80%.
  • the sintering pot test equipment is also equipped with a blower, just like the actual sintering machine. For this reason, the state of tar adhesion on the blower was checked after the sintering test was completed, and a two-stage evaluation was conducted in which the exhaust gas equipment was evaluated as "bad (X)” if it required cleaning or was in a state that caused equipment trouble, and "no problem (O)” if it was in any other state.
  • Comparative examples 1 and 6 in Tables 1 and 2 show examples in which the sintering process was carried out using a sintering carbonaceous material without biomass charcoal blended therein.
  • Comparative examples 5 and 10 show examples in which the sintering process was carried out using only biomass charcoal as the sintering carbonaceous material. For this reason, the carbon dioxide emissions for Comparative Examples 5 and 10 are set to "0".
  • the blending ratio (mass %) of biomass A or biomass B in Tables 1 and 2 refers to the ratio (mass %) of the mass of biomass charcoal to the mass of the agglomerate before the sintering carbonaceous material is dry-distilled, that is, in the state in which the agglomerate is formed with coal and biomass charcoal blended therein.
  • Examples 1 to 3 of the present invention in which biomass A (wood chips) is used as biomass charcoal and the proportion of fixed carbon in biomass A after carbonization is greater than 0 and less than 30% by mass, the yield was confirmed to be "good ( ⁇ )".
  • the carbon dioxide emissions kg-CO 2 /t-Sinter
  • the volatile matter content mass% or less. Therefore, it was confirmed that Examples 1 to 3 of the present invention all had an exhaust gas equipment evaluation of "good ( ⁇ )".
  • biomass A Wood chip biomass material (biomass A) was prepared as biomass charcoal, and an agglomerate was formed with a mixture ratio (mass%) of biomass charcoal (biomass A) of 30% and a mixture ratio (mass%) of coal of 70%. Then, in a carbonization furnace (coke oven), carbonization was carried out under various conditions of temperature and carbonization time in a nitrogen atmosphere. During carbonization, the heating rate and cooling rate were 10°C/min.
  • the ratio (mass%) of fixed carbon in biomass charcoal to the fixed carbon in coal and biomass charcoal after carbonization, and the volatile matter content (mass%) of the sintered carbonaceous material were measured based on the JIS standard "Method of Industrial Analysis of Coals and Cokes” (JIS M8812), as in the previous examples.
  • JIS M8812 Method of Industrial Analysis of Coals and Cokes
  • the ratio (mass%) of fixed carbon in biomass charcoal to the fixed carbon in coal and biomass charcoal was 30 mass%.
  • the volatile matter content (mass%) was evaluated as "good ( ⁇ )” when it was 5.0 mass% or less, and “poor ( ⁇ )” when it exceeded 5.0 mass%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

Provided are: a carbon material for sintering with which it is possible to reduce the environmental impact of the production of sintered ore while also suppressing equipment trouble and decreases in the yield of sintered ore; sintered ore; and a production method for the carbon material for sintering. The carbon material for sintering is used in an iron ore sintering process and contains coal and biochar as compounding materials. Therein, the ratio (mass%) of the fixed carbon of the biochar with respect to the coal and fixed carbon of the biomass carbon after carbonization is greater than 0 but not greater than 30 mass%, and the volatile content after carbonization is less than or equal to 5.0 mass%.

Description

焼結用炭材、焼結鉱及び焼結用炭材の製造方法Carbonaceous material for sintering, sintered ore, and method for producing carbonaceous material for sintering
 本発明は、鉄鉱石の焼結プロセスに使用される焼結用炭材、焼結鉱及び焼結用炭材の製造方法に関する。 The present invention relates to a carbonaceous material for sintering, sintered ore, and a method for producing the carbonaceous material for sintering, which are used in the iron ore sintering process.
 鉄鉱石の焼結プロセスは、焼結機内において、鉄鉱石である鉄源と、フラックスや石灰石等の副原料と、固体燃料としての焼結用炭材とを混合した焼結用原料を、焼結用炭材の燃焼熱を用いて焼き固めるプロセスである。焼結用炭材としては、粉コークスが一般的に使用されるものの、原料炭の価格変動やコークス製造設備のトラブル等の発生のリスクを考慮し、粉コークス以外の無煙炭等を使用することもある。 The iron ore sintering process involves mixing the iron ore as the source material, auxiliary materials such as flux and limestone, and sintering carbon as solid fuel in a sintering machine, and using the heat of combustion from the sintering carbon to sinter the mixture. Although powdered coke is generally used as the sintering carbon, anthracite and other materials may be used in addition to powdered coke, taking into consideration the risk of price fluctuations in raw coal and problems with coke manufacturing equipment.
 他方、近年の環境保全の意識の高まりを受け、環境負荷の低減を踏まえ焼結用炭材の多様化が進んでおり、焼結用炭材としてバイオマス由来の炭材(以下、「バイオマス炭」という。)の利用が注目され始めている。バイオマス炭は、大気中の炭酸ガスを吸収しながら成長した植物を原料とする。即ち、カーボンニュートラルの考え方から、バイオマス炭を用いた燃料は、燃焼による炭酸ガスの排出量は無いものとして評価される。このため、焼結用炭材として従来から使用されている粉コークスの代替として、バイオマス炭の使用も検討され始めている。 On the other hand, in response to the growing awareness of environmental conservation in recent years, diversification of carbon materials for sintering has progressed in light of the need to reduce the environmental impact, and the use of biomass-derived carbon materials (hereinafter referred to as "biomass charcoal") as a sintering carbon material has begun to attract attention. Biomass charcoal is made from plants that grow while absorbing carbon dioxide gas from the atmosphere. In other words, from the perspective of carbon neutrality, fuels made from biomass charcoal are evaluated as not emitting any carbon dioxide gas when burned. For this reason, the use of biomass charcoal as a replacement for the coke powder that has traditionally been used as a sintering carbon material has also begun to be considered.
 ここで、特許文献1には、コークス炉炭化室において、コークス製造用装入炭の上部又は底部に、10mm以下が80質量%となるように粉砕された亜瀝青炭あるいは褐炭を装入して乾留する方法が開示されている。そして、同文献に、亜瀝青炭や褐炭の一部として廃プラスチックや木質系バイオマスを混入させることが可能との事項も開示されている。 Patent Document 1 discloses a method of carbonizing subbituminous coal or lignite, which has been crushed so that 80% by mass of the coal charged for coke production is 10 mm or less, by charging the coal to the top or bottom of a coke oven carbonization chamber. The same document also discloses that it is possible to mix waste plastics and woody biomass as part of the subbituminous coal or lignite.
特許第5532574号公報Patent No. 5532574
 バイオマス炭は、燃焼開始温度の低さに特徴を有している。バイオマス炭は、焼結プロセスで一般的に使用されている化石燃料由来の粉コークスと比較して、多孔質であることから表面積が広い。そのため、燃焼開始温度が低い状態であっても、大気との接触面積が広く、速い燃焼速度が得られる。 Biomass charcoal is characterized by its low combustion start temperature. Compared to the breeze coke derived from fossil fuels that is commonly used in sintering processes, biomass charcoal is porous and has a large surface area. Therefore, even when the combustion start temperature is low, the contact area with the air is large, resulting in a fast combustion speed.
 焼結用炭材の燃焼反応は、気固反応となる。また、焼結用炭材は、周囲の気体中の酸素と反応して燃焼する。そして、焼結プロセスのように気体が流れている条件での気固反応においては、焼結用炭材の表面に薄い層であるガス境膜と呼ばれる領域が発生する。ガス境膜は、外側の気体の乱流の影響を受けることなく、層流が維持される。焼結用炭材は、ガス境膜の外側からガス境膜内へ酸素が侵入して拡散し、焼結用炭材の表面に達することで燃焼する。 The combustion reaction of carbonaceous materials for sintering is a gas-solid reaction. Carbonaceous materials for sintering also react with oxygen in the surrounding gas and burn. In gas-solid reactions under conditions of gas flow, such as the sintering process, a thin layer called the gas film is generated on the surface of the carbonaceous materials for sintering. The gas film maintains a laminar flow without being affected by the turbulent flow of the gas outside. Carbonaceous materials for sintering burn when oxygen penetrates from the outside of the gas film into the gas film, diffuses, and reaches the surface of the carbonaceous materials for sintering.
 ここで、焼結用炭材の燃焼速度が速い場合、周囲の酸素濃度が高い場合であっても、ガス境膜内の酸素の拡散による酸素供給速度に対し、焼結用炭材の燃焼による表面での酸素消費速度が速くなり、ガス境膜内における酸素濃度が低下する。この結果、焼結用炭材は不完全燃焼を起こし、一酸化炭素の発生量が増加する。 Here, if the burning speed of the carbonaceous material for sintering is fast, even if the surrounding oxygen concentration is high, the rate of oxygen consumption on the surface due to the burning of the carbonaceous material for sintering is faster than the rate of oxygen supply due to oxygen diffusion within the gas boundary film, and the oxygen concentration within the gas boundary film decreases. As a result, the carbonaceous material for sintering undergoes incomplete combustion, and the amount of carbon monoxide generated increases.
 つまり、焼結用炭材の燃焼速度が速い場合には、焼結用炭材の燃焼熱の一部が一酸化炭素として排出されるため、焼結プロセスに供される反応熱が減少する。即ち、焼結原料(鉄源及び副原料)を焼き固める燃焼熱が不足し、焼結鉱の製造における歩留まりの低下を招く。このため、燃焼速度の速いバイオマス炭を焼結用炭材として使用する際には、焼結原料を焼き固める燃焼熱の不足に伴い、焼結鉱の歩留まりが低下するといった問題がある。 In other words, when the burning rate of the sintering carbonaceous material is high, part of the combustion heat of the sintering carbonaceous material is emitted as carbon monoxide, and the reaction heat used in the sintering process decreases. In other words, there is insufficient combustion heat to burn the sintering raw materials (iron source and auxiliary raw materials), which leads to a decrease in the yield in the production of sintered ore. For this reason, when using biomass charcoal, which has a high burning rate, as the sintering carbonaceous material, there is a problem that the yield of sintered ore decreases due to a lack of combustion heat to burn the sintering raw materials.
 更に、バイオマス炭は、熱反応によって副生成物である多量のタールを生成(揮発)する。生成(揮発)したタールは、焼結機内において、配管内や除塵用に備えたフィルター、ブロワーのインペラ等に付着するため、設備トラブルを招くといった問題もある。 Furthermore, biomass charcoal produces (volatilizes) a large amount of tar as a by-product due to thermal reactions. The tar produced (volatilized) adheres to the inside of the piping, dust removal filters, blower impellers, etc. inside the sintering machine, which can cause equipment problems.
 本発明は、かかる事情を鑑みてなされたもので、焼結鉱の製造において、環境負荷の低減を図ると共に、焼結鉱の歩留まりの低下及び設備トラブルを抑制できる焼結用炭材、焼結鉱及び焼結用炭材の製造方法を提供することを目的とする。 The present invention was made in consideration of these circumstances, and aims to provide a carbonaceous material for sintering, a sintered ore, and a method for producing the carbonaceous material for sintering that can reduce the environmental impact in the production of sintered ore and prevent a decrease in the yield of sintered ore and equipment troubles.
 上記課題を解決する本発明の要旨構成は以下のとおりである。
[1]鉄鉱石の焼結プロセスに使用される焼結用炭材であって、配合材として石炭及びバイオマス炭を有し、乾留後の前記石炭及び前記バイオマス炭の固定炭素に対する前記バイオマス炭の固定炭素の割合(質量%)は0より大きく30質量%以下であり、乾留後の揮発分含有量が5.0質量%以下である、焼結用炭材。
[2][1]に記載の焼結用炭材を用いて製造された、焼結鉱。
[3]鉄鉱石の焼結プロセスに使用される焼結用炭材の製造方法であって、石炭及びバイオマス炭を配合材とする塊成物を形成し、前記塊成物について、窒素雰囲気下において1000℃以上の温度にて6時間以上保持して乾留する、焼結用炭材の製造方法。
[4]前記乾留はコークス炉にて実施される、[3]に記載の焼結用炭材の製造方法。
The gist and configuration of the present invention to solve the above problems are as follows.
[1] A carbonaceous material for sintering used in an iron ore sintering process, comprising coal and biomass charcoal as blending materials, wherein the ratio (mass %) of fixed carbon of the biomass charcoal to the fixed carbon of the coal and the biomass charcoal after carbonization is greater than 0 and not more than 30 mass%, and the volatile matter content after carbonization is 5.0 mass% or less.
[2] Sintered ore produced using the carbonaceous material for sintering described in [1].
[3] A method for producing a carbonaceous material for sintering used in an iron ore sintering process, comprising forming an agglomerate containing coal and biomass charcoal as a blend material, and carbonizing the agglomerate by holding it at a temperature of 1000°C or higher for 6 hours or more under a nitrogen atmosphere.
[4] The method for producing a carbonaceous material for sintering according to [3], wherein the carbonization is carried out in a coke oven.
 本発明によれば、焼結鉱の製造において、環境負荷の低減が図れると共に、焼結鉱の歩留まりの低下及び設備トラブルを抑制できる。 The present invention reduces the environmental impact of sintered ore production and also prevents a decrease in sintered ore yield and equipment troubles.
 以下、本発明の実施形態を通じて本発明を説明する。 The present invention will be explained below through an embodiment of the present invention.
 鉄鉱石の焼結プロセスに使用される焼結用炭材は、石炭及びバイオマス炭を配合材とする。粉コークスや無煙炭等からなる石炭のみとする従来の配合に対し、部分的にバイオマス炭による代替(配合)を行うことで、石炭の相対的な使用を削減し、環境負荷の低減が可能となる。 The sintering carbon material used in the iron ore sintering process is a mixture of coal and biomass coal. By partially substituting (mixing) biomass coal for the conventional mixture, which is made up of only coal such as coke powder and anthracite, the relative use of coal can be reduced, making it possible to reduce the environmental impact.
 そして、焼結用炭材は、乾留後の石炭及びバイオマス炭の固定炭素に対するバイオマス炭の固定炭素の割合(質量%)を0より大きく30質量%以下とする。ここで、「固定炭素」は、石炭及びバイオマス炭を配合材とする塊成物を乾留した後において、当該塊成物に含まれる炭素の成分を意味する。バイオマス炭の配合の割合を多くするほど石炭の相対的な配合の割合が減少して、環境負荷の低減を図ることができるものの、燃焼速度の速いバイオマス炭が多くなることで、焼結鉱の歩留まりが低下する。このため、バイオマス炭の固定炭素の割合(質量%)を0より大きく30質量%以下とすることで、焼結鉱の歩留まりの低下を抑制できる。そして、焼結鉱の歩留まりの低下の抑制を踏まえ、バイオマス炭の固定炭素の割合の最大化を図ると共に、石炭の固定炭素の割合の最小化を図り、二酸化炭素の排出量の削減を最大化できる。 The sintered carbonaceous material has a ratio (mass%) of fixed carbon in biomass charcoal to the fixed carbon in coal and biomass charcoal after carbonization that is greater than 0 and not greater than 30% by mass. Here, "fixed carbon" refers to the carbon component contained in the agglomerate after carbonization of the agglomerate containing coal and biomass charcoal as blending materials. As the ratio of biomass charcoal blended is increased, the relative ratio of coal blended is decreased, and the environmental load can be reduced, but the yield of sintered ore decreases due to the increase in biomass charcoal, which has a fast burning rate. Therefore, by setting the ratio (mass%) of fixed carbon in biomass charcoal to greater than 0 and not greater than 30% by mass, the decrease in the yield of sintered ore can be suppressed. Based on the suppression of the decrease in the yield of sintered ore, the ratio of fixed carbon in biomass charcoal can be maximized and the ratio of fixed carbon in coal can be minimized, thereby maximizing the reduction in carbon dioxide emissions.
 ここで、バイオマス炭は、原料である植物の維管束に由来する多量の細孔が残存し、細孔には空気中の水分等が吸着している。そして、焼結プロセスにおける熱反応により、細孔に残された水分等の揮発に伴い、副生成物である多量のタールも揮発する。このため、予め、焼結用炭材として石炭及びバイオマス炭を配合して塊成物を形成した後、塊成物を乾留して、バイオマス炭に含まれる水分等の揮発分を完全に除去しておく必要がある。しかし、バイオマス炭に内在する細孔は複雑かつ多量に構成されていることから、乾留により完全に揮発分を除去することは困難である。 Here, biomass charcoal retains a large number of pores derived from the vascular bundles of the plant raw material, and moisture and other substances from the air are adsorbed into the pores. The thermal reaction in the sintering process causes the moisture and other substances remaining in the pores to evaporate, and a large amount of tar, a by-product, also evaporates. For this reason, after coal and biomass charcoal are mixed to form an agglomerate as the sintering carbonaceous material, the agglomerate must be dry-distilled to completely remove the moisture and other volatile matter contained in the biomass charcoal. However, because the pores inherent in biomass charcoal are complex and numerous, it is difficult to completely remove the volatile matter by dry-distillation.
 このため、焼結用炭材は、石炭及びバイオマス炭を配合した塊成物の乾留を、乾留後の焼結用炭材の揮発分含有量(質量%)が5.0質量%以下となるまで実施する。これにより、焼結用炭材を焼結プロセスに使用したとしても、熱反応に伴う水分等の揮発が抑えられ、タールの揮発も抑えることができる。この結果、タールの付着等に起因する設備トラブルを抑制できる。 For this reason, carbonaceous material for sintering is made by carbonizing agglomerates made of a mixture of coal and biomass charcoal until the volatile matter content (mass%) of the carbonaceous material for sintering after carbonization is 5.0 mass% or less. This prevents the evaporation of moisture and other substances that accompanies thermal reactions, and also prevents the evaporation of tar, even when the carbonaceous material for sintering is used in a sintering process. As a result, equipment troubles caused by tar adhesion, etc. can be reduced.
 鉄鉱石の焼結プロセスに使用される焼結用炭材の製造方法は、先ず、石炭及びバイオマス炭を配合材とする塊成物を形成する。そして、塊成物について、窒素雰囲気下において1000℃以上の温度にて6時間以上保持して乾留する。乾留は、コークス炉にて実施してもよい。焼結用炭材の乾留をコークス炉にて実施することで、焼結用炭材の乾留を実施する特別な設備を設ける必要が無くなり、設備コスト低減の効果が得られる。 The method for producing carbonaceous material for sintering used in the iron ore sintering process first forms an agglomerate using coal and biomass charcoal as a blending material. The agglomerate is then carbonized by holding it at a temperature of 1000°C or higher for 6 hours or more in a nitrogen atmosphere. Carbonization may be carried out in a coke oven. By carbonizing the carbonaceous material for sintering in a coke oven, there is no need to install special equipment for carbonizing the carbonaceous material for sintering, which has the effect of reducing equipment costs.
 鉄鉱石の焼結プロセスは、焼結機を用いて行う。焼結プロセスは、先ず、鉄鉱石である鉄源にフラックス等の副原料及び焼結用炭材を加えた焼結用原料を、焼結機上に連続的に装入して焼結ベッドを形成する。そして、焼結ベッドの上端の焼結用炭材を点火した後、下端から排ガスを吸引することで、焼結用炭材の燃焼が焼結ベッドの上端から下端へ伝播し、その燃焼熱によって鉄源と副原料との燃焼反応が発生し、焼結用原料が焼き固められる。焼結ベッドの下端からの排ガスの吸引は、ブロワーを用いて行われる。吸引された排ガスは、ブロワーを介してダクト内を流通し、集塵機や、脱硫設備、脱硝設備等を経て、煙突から排出される。 The iron ore sintering process is carried out using a sintering machine. In the sintering process, the raw materials for sintering, which are the iron source (iron ore), auxiliary raw materials such as flux, and sintering carbonaceous material, are continuously loaded onto the sintering machine to form a sintering bed. Then, after igniting the sintering carbonaceous material at the top end of the sintering bed, exhaust gas is sucked in from the bottom end, and the combustion of the sintering carbonaceous material spreads from the top end to the bottom end of the sintering bed, and the combustion heat causes a combustion reaction between the iron source and the auxiliary raw materials, burning and solidifying the raw materials for sintering. The exhaust gas is sucked in from the bottom end of the sintering bed using a blower. The sucked in exhaust gas flows through a duct via the blower, passes through a dust collector, desulfurization equipment, denitrification equipment, etc., and is discharged from a chimney.
 以下、本実施形態に係る焼結用炭材及び焼結用炭材の製造方法を用いて行った実施例を説明する。 Below, we will explain examples that were carried out using the carbonaceous material for sintering and the method for producing carbonaceous material for sintering according to this embodiment.
 <実施例1>バイオマス炭として、ウッドチップのバイオマス材(以下、「バイオマスA」という。)、及び、ヤシ種殻のバイオマス材(以下、「バイオマスB」という。)を用意し、各々石炭と所定の割合で配合して乾留炉(コークス炉)にて乾留を行い、焼結用炭材を製造した。乾留は、窒素雰囲気下において、1000℃以上の温度にて6時間以上保持する条件で実施した。乾留後の石炭及びバイオマス炭の固定炭素に対するバイオマス炭の固定炭素の割合(質量%)、及び、焼結用炭材の揮発分含有量(質量%)は、JIS規格「石炭類及びコークス類の工業分析法」(JIS M8812)に基づいて測定した。 <Example 1> Biomass material made of wood chips (hereinafter referred to as "Biomass A") and biomass material made of coconut shells (hereinafter referred to as "Biomass B") were prepared as biomass charcoal, and each was mixed with coal in a specified ratio and carbonized in a carbonization furnace (coke oven) to produce carbon material for sintering. Carbonization was carried out under conditions of maintaining a temperature of 1000°C or higher for 6 hours or more in a nitrogen atmosphere. The ratio of fixed carbon in the biomass charcoal to the fixed carbon in the coal and biomass charcoal after carbonization (mass%) and the volatile matter content (mass%) of the carbon material for sintering were measured based on the JIS standard "Method of industrial analysis of coals and cokes" (JIS M8812).
 次に、焼結プロセスとして、鉄鉱石(鉄源)及び石灰石(副原料)と、製造した焼結用炭材及び返鉱とを混合し、一定の水分を添加して造粒した。そして、造粒して得られた焼結用原料について、焼結鍋試験装置に装入して焼結試験を行った。焼結鍋試験装置は、直径を300mmとし高さが600mmである焼結鍋と、点火炉と、風箱やブロワー等の排ガス設備とを有する。焼結鍋試験装置では、焼結用原料の原料層の上層から燃焼反応を進行させ、燃焼反応が原料層の下層に到達して焼成を終了させるように、焼結機実機を模擬した試験が可能である。そして、焼結試験では、装入された焼結用原料を焼結して焼結鉱とした後、当該焼結鉱を2mの高さから4回落下させる落下試験を実施した。落下後の焼結鉱については、5mm以上の大きさを留めている焼結鉱を成品とし、当該成品の割合を成品歩留(%)として評価した。更に、成品歩留(%)の評価について、70%以上である場合に「良(○)」とし、65%以上70%未満である場合に「普通(△)」とし、65%未満である場合に「悪(×)」とする三段階の評価(歩留評価)を行った。なお、焼結用炭材にバイオマス炭を配合しない場合、成品歩留(%)は、多くの場合80%前後の値を示す。 Next, as the sintering process, iron ore (iron source) and limestone (auxiliary raw material) were mixed with the produced sintering carbonaceous material and return ore, and a certain amount of moisture was added to granulate. The granulated sintering raw material was then loaded into a sintering pot test device and subjected to a sintering test. The sintering pot test device has a sintering pot with a diameter of 300 mm and a height of 600 mm, an ignition furnace, and exhaust gas equipment such as a wind box and a blower. The sintering pot test device allows tests to be performed simulating an actual sintering machine, in which the combustion reaction proceeds from the upper layer of the sintering raw material layer and ends when the combustion reaction reaches the lower layer of the raw material layer. In the sintering test, the loaded sintering raw material was sintered to produce sintered ore, and then a drop test was performed in which the sintered ore was dropped four times from a height of 2 m. After the drop, sintered ore that remained 5 mm or larger was considered to be the finished product, and the percentage of the finished product was evaluated as the product yield (%). Furthermore, the product yield (%) was evaluated on a three-level scale (yield evaluation): if it was 70% or more, it was rated as "good (○)", if it was between 65% and 70%, it was rated as "average (△)", and if it was less than 65%, it was rated as "poor (×)". When biomass charcoal is not mixed into the sintering carbonaceous material, the product yield (%) is often around 80%.
 また、焼結鍋試験装置は、実機焼結機と同様にブロワーを備えている。このため、焼結試験終了後にブロワーにおけるタールの付着状態を確認し、排ガス設備評価として、清掃が必要又は設備トラブルを引き起こす状態となった場合に「悪(×)」とし、それ以外の状態である場合は「問題無し(○)」とする二段階の評価も行った。 The sintering pot test equipment is also equipped with a blower, just like the actual sintering machine. For this reason, the state of tar adhesion on the blower was checked after the sintering test was completed, and a two-stage evaluation was conducted in which the exhaust gas equipment was evaluated as "bad (X)" if it required cleaning or was in a state that caused equipment trouble, and "no problem (O)" if it was in any other state.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1及び2における比較例1及び6は、バイオマス炭を配合しない焼結用炭材を用いて焼結プロセスを行った実施例を示す。比較例5及び10は、焼結用炭材としてバイオマス炭のみを用いて焼結プロセスを行った実施例を示す。このため、比較例5及び10については、二酸化炭素の排出量を「0」としている。表1及び2におけるバイオマスA又はバイオマスBの配合率(質量%)は、焼結用炭材が乾留される前の状態、つまり、石炭及びバイオマス炭を配合材とする塊成物を形成した状態における、塊成物の質量に対するバイオマス炭の質量の割合(質量%)を意味する。 Comparative examples 1 and 6 in Tables 1 and 2 show examples in which the sintering process was carried out using a sintering carbonaceous material without biomass charcoal blended therein. Comparative examples 5 and 10 show examples in which the sintering process was carried out using only biomass charcoal as the sintering carbonaceous material. For this reason, the carbon dioxide emissions for Comparative Examples 5 and 10 are set to "0". The blending ratio (mass %) of biomass A or biomass B in Tables 1 and 2 refers to the ratio (mass %) of the mass of biomass charcoal to the mass of the agglomerate before the sintering carbonaceous material is dry-distilled, that is, in the state in which the agglomerate is formed with coal and biomass charcoal blended therein.
 表1に示す通り、バイオマス炭としてバイオマスA(ウッドチップ)を用いて、乾留後のバイオマスAの固定炭素の割合を0より大きく30質量%以下とする発明例1~3においては、歩留評価が「良(○)」となることが確認できた。この場合(発明例1~3)、二酸化炭素の排出量(kg-CO/t-Sinter)は、最大で20%程度抑制できることが確認できた。また、発明例1~3においては、乾留後の揮発分含有量(質量%)が5.0質量%以下となることが確認できた。このため、発明例1~3は、何れも排ガス設備評価が「良(○)」となることが確認できた。 As shown in Table 1, in Examples 1 to 3 of the present invention, in which biomass A (wood chips) is used as biomass charcoal and the proportion of fixed carbon in biomass A after carbonization is greater than 0 and less than 30% by mass, the yield was confirmed to be "good (○)". In this case (Examples 1 to 3 of the present invention), it was confirmed that the carbon dioxide emissions (kg-CO 2 /t-Sinter) could be suppressed by up to about 20%. In addition, in Examples 1 to 3 of the present invention, it was confirmed that the volatile matter content (mass%) after carbonization was 5.0 mass% or less. Therefore, it was confirmed that Examples 1 to 3 of the present invention all had an exhaust gas equipment evaluation of "good (○)".
 なお、乾留後のバイオマスAの固定炭素の割合を40質量%以上とする比較例2~5においては、歩留評価が「悪(×)」となることが確認できた。比較例2~4においては、歩留評価を「悪(×)」とする状態としつつも、焼結鉱の生産量を維持したため、二酸化炭素の排出量は増加した。そして、比較例2~5においては、乾留後の揮発分含有量(質量%)が5.0質量%を超えた値となっており、排ガス設備評価が「悪(×)」となることが確認できた。 In addition, in Comparative Examples 2 to 5, where the percentage of fixed carbon in biomass A after carbonization is 40 mass% or more, it was confirmed that the yield evaluation was "bad (X)". In Comparative Examples 2 to 4, the yield evaluation was "bad (X)", but the production volume of sintered ore was maintained, so the carbon dioxide emissions increased. And in Comparative Examples 2 to 5, the volatile matter content (mass%) after carbonization exceeded 5.0 mass%, and it was confirmed that the exhaust gas equipment evaluation was "bad (X)".
 また、表2に示す通り、バイオマス炭としてバイオマスB(ヤシ種殻)を用いて、乾留後のバイオマスBの固定炭素の割合を0より大きく30質量%以下とする発明例4~6においては、歩留評価が「良(○)」又は「普通(△)」となることが確認できた。この場合(発明例4~6)、二酸化炭素の排出量(kg-CO/t-Sinter)は、最大で15%程度抑制できることが確認できた。また、発明例4~6においては、乾留後の揮発分含有量(質量%)が5.0質量%以下となることが確認できた。このため、発明例4~6は、何れも排ガス設備評価が「良(○)」となった。 Also, as shown in Table 2, in Examples 4 to 6, in which biomass B (coconut seed shells) is used as biomass charcoal and the proportion of fixed carbon in biomass B after carbonization is greater than 0 and less than 30 mass%, the yield was evaluated as "good (○)" or "average (△)". In this case (Examples 4 to 6), it was confirmed that the carbon dioxide emissions (kg-CO 2 /t-Sinter) could be suppressed by up to about 15%. Also, in Examples 4 to 6, it was confirmed that the volatile matter content (mass%) after carbonization was 5.0 mass% or less. Therefore, the exhaust gas equipment evaluation for all of Examples 4 to 6 was "good (○)".
 なお、乾留後のバイオマスBの固定炭素の割合を40質量%以上とする比較例7~10においては、二酸化炭素の排出量は減少したものの、歩留評価が「悪(×)」となることが確認できた。そして、乾留後の揮発分含有量(質量%)が5.0質量%を超えた値となっており、何れも排ガス設備評価が「悪(×)」となることが確認できた。 In addition, in Comparative Examples 7 to 10, in which the percentage of fixed carbon in biomass B after carbonization was 40 mass% or more, it was confirmed that although the amount of carbon dioxide emissions was reduced, the yield evaluation was "bad (X)." In addition, it was confirmed that the volatile matter content (mass%) after carbonization exceeded 5.0 mass%, and the exhaust gas equipment evaluation was "bad (X)" in all cases.
 以上から、焼結プロセスに使用される焼結用炭材として、石炭及びバイオマス炭を配合材とする場合には、乾留後の石炭及びバイオマス炭の固定炭素に対するバイオマス炭の固定炭素の割合(質量%)を0より大きく30質量%以下とし、かつ、乾留後の揮発分含有量(質量%)を5.0質量%以下とすることで、環境負荷の低減を図ると共に、焼結鉱の歩留まりの低下及び設備トラブルを抑制できることが確認できた。 From the above, it has been confirmed that when coal and biomass charcoal are used as a blending material in the sintering process, by setting the ratio of fixed carbon in biomass charcoal to the fixed carbon in coal and biomass charcoal after carbonization (mass%) to be greater than 0 and not greater than 30 mass%, and by setting the volatile matter content (mass%) after carbonization to be 5.0 mass% or less, it is possible to reduce the environmental impact and suppress the decline in sintered ore yield and equipment troubles.
 <実施例2>バイオマス炭として、ウッドチップのバイオマス材(バイオマスA)を用意し、バイオマス炭(バイオマスA)の配合率(質量%)を30%、石炭の配合率(質量%)を70%として、塊成物を形成した。そして、乾留炉(コークス炉)において、窒素雰囲気下にて、温度及び乾留時間を変更する各条件で乾留を行った。乾留の際に、昇温速度及び降温速度は、10℃/分とした。 <Example 2> Wood chip biomass material (biomass A) was prepared as biomass charcoal, and an agglomerate was formed with a mixture ratio (mass%) of biomass charcoal (biomass A) of 30% and a mixture ratio (mass%) of coal of 70%. Then, in a carbonization furnace (coke oven), carbonization was carried out under various conditions of temperature and carbonization time in a nitrogen atmosphere. During carbonization, the heating rate and cooling rate were 10°C/min.
 乾留後の石炭及びバイオマス炭の固定炭素に対するバイオマス炭の固定炭素の割合(質量%)、及び、焼結用炭材の揮発分含有量(質量%)は、先の実施例と同じく、JIS規格「石炭類及びコークス類の工業分析法」(JIS M8812)に基づいて測定した。乾留後の焼結用炭材について、石炭及びバイオマス炭の固定炭素に対するバイオマス炭の固定炭素の割合(質量%)は、30質量%であった。揮発分含有量(質量%)の評価について、5.0質量%以下である場合に「良(○)」とし、5.0質量%を超える場合に「悪(×)」とした。 The ratio (mass%) of fixed carbon in biomass charcoal to the fixed carbon in coal and biomass charcoal after carbonization, and the volatile matter content (mass%) of the sintered carbonaceous material were measured based on the JIS standard "Method of Industrial Analysis of Coals and Cokes" (JIS M8812), as in the previous examples. For the sintered carbonaceous material after carbonization, the ratio (mass%) of fixed carbon in biomass charcoal to the fixed carbon in coal and biomass charcoal was 30 mass%. The volatile matter content (mass%) was evaluated as "good (○)" when it was 5.0 mass% or less, and "poor (×)" when it exceeded 5.0 mass%.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 バイオマスAを用いた実施結果である表3に示す通り、バイオマス炭としてバイオマスAを用いた場合(発明例7~8)、何れの実施例においても、1000℃以上の温度にて6時間以上保持する条件で乾留を行うことで、乾留後の揮発分含有量(質量%)を5.0質量%以下にすることができた。 As shown in Table 3, which shows the results of using biomass A, when biomass A was used as biomass charcoal (Invention Examples 7-8), in all examples, the volatile matter content (mass%) after distillation could be reduced to 5.0 mass% or less by performing the distillation under conditions of maintaining the temperature at 1000°C or higher for 6 hours or more.
 なお、乾留の条件として、温度を1000℃未満とした場合、又は、乾留の保持時間を6時間未満とした場合(比較例11~14)には、乾留後の揮発分含有量(質量%)を5.0質量%以下にすることはできないことが確認された。
 

 
In addition, it was confirmed that when the distillation temperature was set to less than 1000°C or the distillation holding time was set to less than 6 hours (Comparative Examples 11 to 14), the volatile matter content (mass%) after distillation could not be reduced to 5.0 mass% or less.


Claims (4)

  1.  鉄鉱石の焼結プロセスに使用される焼結用炭材であって、
     配合材として石炭及びバイオマス炭を有し、
     乾留後の前記石炭及び前記バイオマス炭の固定炭素に対する前記バイオマス炭の固定炭素の割合(質量%)は0より大きく30質量%以下であり、
     乾留後の揮発分含有量が5.0質量%以下である、
     焼結用炭材。
    A sintering carbonaceous material used in an iron ore sintering process, comprising:
    The mixture contains coal and biomass charcoal,
    The ratio (mass%) of fixed carbon of the biomass charcoal to fixed carbon of the coal and the biomass charcoal after carbonization is greater than 0 and less than 30 mass%,
    The volatile content after dry distillation is 5.0% by mass or less.
    Carbon material for sintering.
  2.  請求項1に記載の焼結用炭材を用いて製造された、焼結鉱。  Sintered ore produced using the carbonaceous material for sintering described in claim 1.
  3.  鉄鉱石の焼結プロセスに使用される焼結用炭材の製造方法であって、
     石炭及びバイオマス炭を配合材とする塊成物を形成し、
     前記塊成物について、窒素雰囲気下において1000℃以上の温度にて6時間以上保持して乾留する、
     焼結用炭材の製造方法。
    A method for producing a carbonaceous material for sintering used in an iron ore sintering process, comprising the steps of:
    Forming an agglomerate using coal and biomass coal as a blend material;
    The agglomerate is carbonized in a nitrogen atmosphere at a temperature of 1000° C. or higher for 6 hours or more.
    A method for producing carbonaceous material for sintering.
  4.  前記乾留はコークス炉にて実施される、請求項3に記載の焼結用炭材の製造方法。
     

     
    The method for producing a carbonaceous material for sintering according to claim 3, wherein the carbonization is carried out in a coke oven.


PCT/JP2023/039900 2022-11-14 2023-11-06 Carbon material for sintering, sintered ore, and production method for carbon material for sintering WO2024106251A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024501581A JP7456560B1 (en) 2022-11-14 2023-11-06 Method for producing carbonaceous material for sintering, sintered ore, and carbonaceous material for sintering

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022181479 2022-11-14
JP2022-181479 2022-11-14

Publications (1)

Publication Number Publication Date
WO2024106251A1 true WO2024106251A1 (en) 2024-05-23

Family

ID=91084653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/039900 WO2024106251A1 (en) 2022-11-14 2023-11-06 Carbon material for sintering, sintered ore, and production method for carbon material for sintering

Country Status (1)

Country Link
WO (1) WO2024106251A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010174203A (en) * 2009-02-02 2010-08-12 Nippon Steel Corp Method for manufacturing fuel charcoal material for sintering
JP2013237876A (en) * 2012-05-11 2013-11-28 Nippon Steel & Sumitomo Metal Corp Method for producing sintered ore using fatty palm kernel shell coal
JP2013237717A (en) * 2012-05-11 2013-11-28 Nippon Steel & Sumitomo Metal Corp Method for effectively utilizing palm kernel shell
JP2014218713A (en) * 2013-05-09 2014-11-20 新日鐵住金株式会社 Method of producing sintered ore
JP2015052159A (en) * 2013-09-09 2015-03-19 新日鐵住金株式会社 Production method of biomass charcoal
JP2015078397A (en) * 2013-10-15 2015-04-23 新日鐵住金株式会社 Method for manufacturing sintered ore
JP2015086418A (en) * 2013-10-29 2015-05-07 新日鐵住金株式会社 Palm-kernel shell charcoal production method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010174203A (en) * 2009-02-02 2010-08-12 Nippon Steel Corp Method for manufacturing fuel charcoal material for sintering
JP2013237876A (en) * 2012-05-11 2013-11-28 Nippon Steel & Sumitomo Metal Corp Method for producing sintered ore using fatty palm kernel shell coal
JP2013237717A (en) * 2012-05-11 2013-11-28 Nippon Steel & Sumitomo Metal Corp Method for effectively utilizing palm kernel shell
JP2014218713A (en) * 2013-05-09 2014-11-20 新日鐵住金株式会社 Method of producing sintered ore
JP2015052159A (en) * 2013-09-09 2015-03-19 新日鐵住金株式会社 Production method of biomass charcoal
JP2015078397A (en) * 2013-10-15 2015-04-23 新日鐵住金株式会社 Method for manufacturing sintered ore
JP2015086418A (en) * 2013-10-29 2015-05-07 新日鐵住金株式会社 Palm-kernel shell charcoal production method

Similar Documents

Publication Publication Date Title
US4111755A (en) Method of producing pelletized fixed sulfur fuel
KR101311575B1 (en) Process for production of sintered mineral
CN103666620A (en) Biomass fuel with good formability
CN108003960B (en) Biomass fuel for iron ore sintering and preparation method and application thereof
JP2005274122A (en) Waste melting method using biomass
Zhu et al. Effect of phosphorus-based additives on the sintering characteristics of cornstalk ash
Mohammad et al. Reductants in iron ore sintering: A critical review
CN101935568B (en) High-temperature biomass micron fuel
JP4837799B2 (en) Method for producing sintered ore
WO2024106251A1 (en) Carbon material for sintering, sintered ore, and production method for carbon material for sintering
JP7456560B1 (en) Method for producing carbonaceous material for sintering, sintered ore, and carbonaceous material for sintering
CN108659908B (en) Energy-saving environment-friendly biomass fuel
KR101296887B1 (en) Carbonaceous material for sintering iron ore
CN114635035B (en) Sintering method of solid-free fossil fuel based on coupling heat supply of multicomponent gas medium and waste biomass
JP4842410B2 (en) Method for producing solid fuel for sintering, solid fuel for sintering, and method for producing sintered ore using the same
CN108865316A (en) The preparation method of biomass fuel applied to agglomeration for iron mine
KR101269391B1 (en) Pulverized fuel and method for production of the same
KR20170103503A (en) Sintering method and apparatus
WO2024116778A1 (en) Method for producing sintered ore
JP2003328044A (en) Process for manufacturing sintered ore using biomass- derived carbide and downward suction machine for manufacturing sintered ore
CN108998145A (en) A kind of additive for fire coal and its application
WO2024084749A1 (en) Method for producing sintered ore
CN115676824B (en) Modified semi-coke powder for blast furnace injection and preparation method thereof
TW202417648A (en) Sintered ore production method
JPH04335092A (en) Solid fuel