JP5547879B2 - Carbonaceous material-incorporated iron oxide agglomerate, method for producing the same, and method for producing reduced iron or metallic iron - Google Patents

Carbonaceous material-incorporated iron oxide agglomerate, method for producing the same, and method for producing reduced iron or metallic iron Download PDF

Info

Publication number
JP5547879B2
JP5547879B2 JP2008180500A JP2008180500A JP5547879B2 JP 5547879 B2 JP5547879 B2 JP 5547879B2 JP 2008180500 A JP2008180500 A JP 2008180500A JP 2008180500 A JP2008180500 A JP 2008180500A JP 5547879 B2 JP5547879 B2 JP 5547879B2
Authority
JP
Japan
Prior art keywords
iron oxide
carbonaceous material
iron
mass
incorporated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008180500A
Other languages
Japanese (ja)
Other versions
JP2009035820A (en
Inventor
昌平 吉田
勲 小林
英年 田中
健 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2008180500A priority Critical patent/JP5547879B2/en
Publication of JP2009035820A publication Critical patent/JP2009035820A/en
Application granted granted Critical
Publication of JP5547879B2 publication Critical patent/JP5547879B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0046Making spongy iron or liquid steel, by direct processes making metallised agglomerates or iron oxide
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/008Use of special additives or fluxing agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/10Making spongy iron or liquid steel, by direct processes in hearth-type furnaces
    • C21B13/105Rotary hearth-type furnaces
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/242Binding; Briquetting ; Granulating with binders
    • C22B1/244Binding; Briquetting ; Granulating with binders organic
    • C22B1/245Binding; Briquetting ; Granulating with binders organic with carbonaceous material for the production of coked agglomerates
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/10Dry methods smelting of sulfides or formation of mattes by solid carbonaceous reducing agents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/134Reduction of greenhouse gas [GHG] emissions by avoiding CO2, e.g. using hydrogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Iron (AREA)

Description

本発明は、還元鉄または金属鉄を製造する、回転炉床式還元炉など急速加熱還元炉用の原料として用いられる炭材内装酸化鉄塊成化物に関する。また、本発明は、この炭材内装酸化鉄塊成化物の製造方法およびこの炭材内装酸化鉄塊成化物から還元鉄または金属鉄を製造する方法に関する。   The present invention relates to a carbonaceous material-containing iron oxide agglomerate used as a raw material for a rapid heating reduction furnace such as a rotary hearth type reduction furnace for producing reduced iron or metallic iron. Moreover, this invention relates to the manufacturing method of this carbon material interior iron oxide agglomerate, and the method of manufacturing reduced iron or metallic iron from this carbon material interior iron oxide agglomerate.

従来の還元鉄製造プロセスには、還元剤として高価な天然ガスを必要とすること、プラントの立地が通常天然ガスの産地に限られることなどの制約がある。   The conventional reduced iron production process has limitations such as requiring expensive natural gas as a reducing agent and that the location of the plant is usually limited to the production area of natural gas.

このため、近年、還元剤として、比較的安価で、かつ、プラント立地の地理的制約も緩和される石炭を用いた還元鉄の製造プロセスが注目されている。   For this reason, in recent years, a process for producing reduced iron using coal, which is relatively inexpensive and has reduced geographical restrictions on plant location, has attracted attention as a reducing agent.

そして、この石炭を使用する方法として、鉄鉱石(酸化鉄原料)と石炭(炭材)との粉状混合物を塊成化した炭材内装酸化鉄塊成化物(以下、単に「塊成化物」ともいう。)を回転炉床炉(急速加熱還元炉)内に装入して高温雰囲気下で加熱し還元して、固体還元鉄を製造する方法が多数提案されている(例えば、特許文献1,2参照)。   As a method of using this coal, a carbonaceous material-containing iron oxide agglomerated material (hereinafter simply referred to as “agglomerated material”) obtained by agglomerating a powdery mixture of iron ore (iron oxide raw material) and coal (carbonaceous material). Many methods have been proposed for producing solid reduced iron by charging it in a rotary hearth furnace (rapid heating reduction furnace) and heating and reducing it in a high temperature atmosphere (for example, Patent Document 1). , 2).

また、上記方法と同様、炭材内装酸化鉄塊成化物を回転炉床式還元炉(急速加熱還元炉)内に装入し、上記固体還元鉄を製造する方法よりもさらに高温の雰囲気下で加熱し還元溶融してスラグ分を分離することにより、高品位の粒状金属鉄を製造する方法も提案されている(特許文献3参照)。   Further, as in the above method, the carbonaceous material-containing iron oxide agglomerate is charged into a rotary hearth type reduction furnace (rapid heating reduction furnace), and in a higher temperature atmosphere than the method of producing the above solid reduced iron. There has also been proposed a method for producing high-quality granular metallic iron by heating and reducing and melting to separate a slag component (see Patent Document 3).

これらの回転炉床式還元炉(急速加熱還元炉)の原料として用いられる炭材内装酸化鉄塊成化物には、通常、ペレットまたはブリケットが採用される。   Generally, pellets or briquettes are employed as the carbonized iron oxide agglomerates used as raw materials for these rotary hearth type reduction furnaces (rapid heating reduction furnaces).

ペレットとしては、例えば、粉砕機等にて、粒径1mm以下が80質量%以上含有するように粒度調整された鉄鉱石に、同様に粒度調整された石炭と、必要により石灰石等の塩基度調整剤を配合し、さらに、結合剤として澱粉等の有機質粘結剤と造粒水分を添加して、ペレタイザにて平均粒径13〜19mmの生ペレットに造粒した後、これを乾燥機にて、有機質粘結剤が燃焼しない80〜220℃の温度範囲で、付着水分含有量1質量%以下まで乾燥したものが用いられる(特許文献4参照)。   As pellets, for example, iron ore whose particle size is adjusted to contain 80% by mass or more with a pulverizer or the like, coal whose particle size is adjusted similarly, and basicity adjustment such as limestone if necessary In addition, an organic binder such as starch and granulated water are added as a binder, and granulated into raw pellets having an average particle size of 13 to 19 mm with a pelletizer, and this is dried with a dryer. In the temperature range of 80 to 220 ° C. at which the organic binder does not burn, a material dried to a moisture content of 1% by mass or less is used (see Patent Document 4).

また、ブリケットとしては、例えば、粉砕機等にて、粒径2mm以下が80質量%以上含有するように粒度調整された鉄鉱石に、同様に粒度調整された石炭と、必要により石灰石等の塩基度調整剤を配合し、さらに、澱粉等の有機質粘結剤と造粒水分を添加して、ブリケットマシンにて体積約10cmの生ブリケットに成形した後、これを乾燥機にて、上記ペレット同様の80〜220℃の温度範囲で、付着水分含有量1.0質量%以下まで乾燥したものが用いられる。 In addition, as briquettes, for example, iron ore whose particle size is adjusted to contain 80% by mass or more in a pulverizer or the like, similarly to coal whose particle size is adjusted, and base such as limestone if necessary. After adding an organic binder such as starch and granulating water, and forming into a raw briquette having a volume of about 10 cm 3 with a briquette machine, the pellet is mixed with the above pellets. In the same temperature range of 80 to 220 ° C., the one dried to a moisture content of 1.0% by mass or less is used.

このように、ペレットやブリケットなどの塊成化物を付着水分含有量1質量%以下まで乾燥するのは、塊成化物中に付着水分量が多いと、炉内雰囲気温度が通常1000℃以上の高温に保持された回転炉床式還元炉(急速加熱炉)内に装入した際、塊成化物が急速加熱されて、その内部の付着水分が急激に水蒸気となり、そのガス圧にて塊成化物が爆裂(バースティング)してしまうのを防止するためである。   In this way, the agglomerates such as pellets and briquettes are dried to an adhering moisture content of 1% by mass or less when the adhering moisture content in the agglomerates is high, the furnace atmosphere temperature is usually higher than 1000 ° C. The agglomerates are rapidly heated when charged in the rotary hearth type reduction furnace (rapid heating furnace) held in the chamber, and the water adhering to the inside suddenly becomes water vapor. This is to prevent the explosion from bursting.

一方、近年、世界的に鉄鉱石の品位が劣質化する傾向にあり、特に、結晶水を多量に含有する、いわゆる高結晶水鉱石の産出割合が増加している。このため、高炉原料である焼結鉱やペレットへの高結晶水鉱石の多量使用技術の開発が活発に行われているものの、高炉原料としての品質維持の観点から、焼結鉱やペレットへの高結晶水鉱石の使用には限界がある。そこで、還元鉄等の原料である炭材内装酸化鉄塊成化物に高結晶水鉱石を積極的に使用したいというニーズが存在する。   On the other hand, in recent years, the quality of iron ore tends to deteriorate globally, and in particular, the production rate of so-called high crystal water ore containing a large amount of crystal water is increasing. For this reason, although the development of a large amount of technology for using high-crystal water ore to sinter or pellets, which are blast furnace raw materials, has been actively conducted, from the viewpoint of maintaining quality as blast furnace raw materials, There is a limit to the use of high crystal water ore. Therefore, there is a need to actively use high crystal water ore for the carbonized iron oxide agglomerates that are raw materials such as reduced iron.

しかしながら、酸化鉄原料として高結晶水鉱石を用いて上述の方法により塊成化物を製造すると、乾燥機にて付着水分は除去できるものの、結晶水はその解離温度が通常250℃以上と、上記乾燥温度(80〜220℃)より高いため、ほとんど事前に除去することができない。したがって、結晶水を含有したまま塊成化物が回転炉床炉(急速加熱還元炉)内に装入され急速加熱されると、塊成化物内部で結晶水が解離して水蒸気圧が急上昇し、塊成化物を構成する粒子の隙間より水蒸気が溢出できなくなり塊成化物が爆裂(バースティング)してしまうことが考えられる。また、炭材として通常用いられる石炭は揮発分を有するため、この揮発分も急速加熱により脱揮してガス化し、上記結晶水由来の水蒸気と合わさってさらに塊成化内部のガス圧を上昇させることが懸念される。   However, when the agglomerated material is produced by the above-mentioned method using high-crystal water ore as the iron oxide raw material, the adhering water can be removed with a dryer, but the dissociation temperature of crystal water is usually 250 ° C. or higher. Since it is higher than the temperature (80-220 ° C.), it can hardly be removed in advance. Therefore, when the agglomerate is charged into the rotary hearth furnace (rapid heating reduction furnace) and rapidly heated while containing crystal water, the crystal water dissociates inside the agglomerate and the water vapor pressure rises rapidly. It is conceivable that water vapor cannot overflow from the gaps between the particles constituting the agglomerated material and the agglomerated material bursts (bursting). Moreover, since coal normally used as a carbon material has a volatile component, this volatile component is also devolatilized by rapid heating and gasified, and combined with the water vapor derived from the crystal water further increases the gas pressure inside the agglomeration. There is concern.

このようなバースティングの問題を回避するための一手段として、特許文献5に開示されているように、回転炉床式還元炉の加熱帯の前段に予熱帯を設けて、例えば、予熱帯にて300〜500℃程度の比較的低い温度域で予熱してバースティングを防止しつつ結晶水と揮発分を除去した後に、加熱帯にて1000℃以上の高温域で加熱して還元を行うことが考えられるが、還元炉のサイズを維持した場合には還元鉄等の生産性が大幅に低下する一方、還元鉄等の生産性を確保した場合には還元炉が著しく大型化する問題がある。   As a means for avoiding such a bursting problem, as disclosed in Patent Document 5, a pre-tropical zone is provided in the front stage of the heating zone of the rotary hearth type reducing furnace, for example, in the pre-tropical zone. After preheating in a relatively low temperature range of about 300 to 500 ° C. to remove crystallization water and volatile matter while preventing bursting, reduction is performed by heating in a heating zone at a high temperature range of 1000 ° C. or higher. However, if the size of the reduction furnace is maintained, the productivity of reduced iron, etc. will be greatly reduced, while if the productivity of reduced iron, etc. is ensured, there will be a problem that the reduction furnace will be significantly enlarged. .

また、上記バースティングの問題を回避するための別の手段として、有機質粘結剤を増量して、塊成化物の強度を高めることも考えられるが、高価な有機質粘結剤を多量に使用する必要があることから、塊成化物の製造コストが上昇し、その結果、還元鉄等の製造コストが上昇する問題がある。
特開2004−269978号公報 特開平9−192896号公報 特開2002−339009号公報 特許第3040978号公報 特開平11−337264号公報
Further, as another means for avoiding the above bursting problem, it is conceivable to increase the strength of the agglomerate by increasing the amount of the organic binder, but a large amount of expensive organic binder is used. Since it is necessary, the production cost of the agglomerated product increases, and as a result, there is a problem that the production cost of reduced iron and the like increases.
JP 2004-269978 A JP-A-9-192896 JP 2002-339909 A Japanese Patent No. 3040978 JP 11-337264 A

そこで、本発明は、酸化鉄原料として高結晶水鉱石を用いても、還元鉄等の生産性の低下や還元炉の大型化、還元鉄等の製造コストの上昇を招くことなく、急速加熱還元炉内でのバースティングを確実に防止しうる、炭材内装酸化鉄塊成化物を提供することを目的とする。また、この炭材内装酸化鉄塊成化物を製造する方法およびこの炭材内装酸化鉄塊成化物から還元鉄または金属鉄を製造する方法を提供することを目的とする。   Accordingly, the present invention provides a rapid heating reduction without causing a decrease in productivity of reduced iron or the like, an increase in the size of a reduction furnace, or an increase in production cost of reduced iron or the like even when a high crystal water ore is used as an iron oxide raw material. An object of the present invention is to provide a carbonaceous material-containing iron oxide agglomerate that can reliably prevent bursting in the furnace. Another object of the present invention is to provide a method for producing this carbonaceous material-incorporated iron oxide agglomerate and a method for producing reduced iron or metallic iron from this carbonaceous material-incorporated iron oxide agglomerate.

本発明者は、高結晶水鉱石を使用した炭材内装酸化鉄塊成化物を急速加熱還元炉に装入したときに懸念されるバースティングは、上述したように、上記結晶水の解離と、石炭などの内装炭材中の揮発分の脱揮とで生じたガスによる塊成化物内部の圧力上昇が原因と考え、種々の結晶水含有量の鉄鉱石と、種々の揮発分含有量の石炭とを組み合わせて塊成化物を作製し、これを高温雰囲気の小型加熱炉中に装入することにより、バースティング発生の有無を調査した。その結果、バースティング発生の有無は、塊成化物中の結晶水と揮発分との合計含有量で整理することができることを見出した。   The inventor is concerned about the bursting when the carbonaceous material-containing iron oxide agglomerate using the high crystal water ore is charged into the rapid heating reduction furnace, as described above, the dissociation of the crystal water, The iron ore with various crystal water contents and coal with various volatile contents are considered to be caused by the pressure increase inside the agglomerate due to the gas generated by the devolatilization of volatile components in the interior carbon materials such as coal. The agglomerated material was produced by combining with the above, and this was charged into a small heating furnace in a high temperature atmosphere to investigate the presence or absence of bursting. As a result, it was found that the presence or absence of the occurrence of bursting can be arranged by the total content of crystal water and volatile matter in the agglomerated product.

上記知見に基づき、さらに検討を加え、以下の発明を完成するに至った。   Based on the above findings, further studies have been made and the following invention has been completed.

請求項1に記載の発明は、急速加熱還元炉用の原料として用いられる炭材内装酸化鉄塊成化物であって、当該炭材内装酸化鉄塊成化物中における、結晶水と炭材の揮発分との合計含有量が10.5質量%以下(乾量基準、以下同じ。)、付着水分の含有量が1.0質量%以下であることを特徴とする炭材内装酸化鉄塊成化物である。ここに、「付着水分」とは、炭材内装酸化鉄塊成化物を構成する粒子の表面に物理的に付着した水分をいう。 The invention according to claim 1 is a carbonaceous material-containing iron oxide agglomerate used as a raw material for a rapid heating reduction furnace, and the volatilization of crystal water and carbonaceous material in the carbonaceous material- incorporated iron oxide agglomerated product. A carbonaceous material-containing iron oxide agglomerate having a total content of 10.5% by mass or less (dry basis, the same shall apply hereinafter) and a moisture content of 1.0% by mass or less It is. Here, “attached moisture” refers to moisture that physically adheres to the surface of the particles constituting the carbonaceous material-containing iron oxide agglomerated material.

請求項2に記載の発明は、前記炭材内装酸化鉄塊成化物中における前記結晶水の含有量が4質量%以上である請求項1に記載の炭材内装酸化鉄塊成化物である。   The invention according to claim 2 is the carbonaceous material-incorporated iron oxide agglomerated product according to claim 1, wherein the content of the crystal water in the carbonaceous material-incorporated iron oxide agglomerated product is 4% by mass or more.

請求項3に記載の発明は、前記炭材内装酸化鉄塊成化物の塩基度(CaO/SiO)が質量比で0.5以上1.5以下である請求項1または2に記載の炭材内装酸化鉄塊成化物である。 The invention according to claim 3, charcoal according to claim 1 or 2 basicity of the carbonaceous material furnished oxide TetsukatamariNaru product (CaO / SiO 2) is 0.5 to 1.5 in mass ratio It is an iron oxide agglomerated material.

請求項4に記載の発明は、急速加熱還元炉用の原料として用いられる炭材内装酸化鉄塊成化物を製造する方法であって、当該炭材内装酸化鉄塊成化物中における、結晶水と炭材の揮発分との合計含有量が10.5質量%以下となるように、酸化鉄原料および炭材を配合するステップと、前記酸化鉄原料および前記炭材を塊成化物に造粒するステップと、前記塊成化物の付着水分の含有量が1.0質量%以下になるまで、当該塊成化物を乾燥するステップとを有することを特徴とする炭材内装酸化鉄塊成化物の製造方法である。 The invention according to claim 4 is a method for producing a carbonaceous material-containing iron oxide agglomerate used as a raw material for a rapid heating and reduction furnace, wherein The step of blending the iron oxide raw material and the carbonaceous material so that the total content with the volatile matter of the carbonaceous material is 10.5% by mass or less, and granulating the iron oxide raw material and the carbonaceous material into an agglomerated product And a step of drying the agglomerated product until the content of adhering moisture in the agglomerated product is 1.0% by mass or less. Is the method.

請求項5に記載の発明は、前記酸化鉄原料および炭材を配合するステップにおいて、前記炭材内装酸化鉄塊成化物中における前記結晶水の含有量が4質量%以上となるように、前記酸化鉄原料および前記炭材を配合する請求項4に記載の炭材内装酸化鉄塊成化物の製造方法である。   The invention according to claim 5 is characterized in that, in the step of blending the iron oxide raw material and the carbonaceous material, the crystallization water content in the carbonaceous material-incorporated iron oxide agglomerated product is 4% by mass or more. It is a manufacturing method of the carbonaceous material interior iron oxide agglomerate of Claim 4 which mix | blends an iron oxide raw material and the said carbonaceous material.

請求項6に記載の発明は、前記酸化鉄原料および炭材を配合するステップにおいて、前記炭材内装酸化鉄塊成化物の塩基度(CaO/SiO)が質量比で0.5以上1.5以下となるように、前記酸化鉄原料および前記炭材を配合する請求項4または5に記載の炭材内装酸化鉄塊成化物の製造方法である。 According to a sixth aspect of the present invention, in the step of blending the iron oxide raw material and the carbonaceous material, the basicity (CaO / SiO 2 ) of the carbonaceous material-incorporated iron oxide agglomerated product is 0.5 to 1. It is a manufacturing method of the carbonaceous material interior iron oxide agglomerate of Claim 4 or 5 which mix | blends the said iron oxide raw material and the said carbonaceous material so that it may become 5 or less.

請求項7に記載の発明は、前記酸化鉄原料および炭材を配合するステップにおいて、さらに酸化カルシウム供給物質を配合する請求項4〜6のいずれかに記載の炭材内装酸化鉄塊成化物の製造方法である。   The invention according to claim 7 is the carbonaceous material-incorporated iron oxide agglomerated product according to any one of claims 4 to 6, wherein a calcium oxide supply substance is further blended in the step of blending the iron oxide raw material and the carbonaceous material. It is a manufacturing method.

請求項8に記載の発明は、還元鉄を製造する方法であって、炭材内装酸化鉄塊成化物を急速加熱還元炉に装入するステップと、前記炭材内装酸化鉄塊成化物を前記急速加熱還元炉の炉内温度が200℃以下の領域から1000℃以上の領域までを20秒以下の時間で移動させることで、当該炭材内装酸化鉄塊成化物を加熱するステップと、前記炭材内装酸化鉄塊成化物の酸化鉄を当該炭材内装酸化鉄塊成化物中の炭素質還元剤で還元鉄に還元するステップと、前記還元鉄を冷却凝固させるステップとを有し、前記炭材内装酸化鉄塊成化物は、当該炭材内装酸化鉄塊成化物中における結晶水と炭材の揮発分との合計含有量が10.5質量%以下、付着水分の含有量が1.0質量%以下であることを特徴とする還元鉄の製造方法である。 The invention according to claim 8 is a method for producing reduced iron, the step of charging a carbonaceous material-containing iron oxide agglomerate into a rapid heating reduction furnace, A step of heating the carbonaceous material-containing iron oxide agglomerate by moving the temperature inside the rapid heating reduction furnace from a region of 200 ° C. or less to a region of 1000 ° C. or more in a time of 20 seconds or less; A step of reducing the iron oxide of the material-incorporated iron oxide agglomerate to reduced iron with a carbonaceous reducing agent in the carbonaceous material-incorporated iron oxide agglomerate, and a step of cooling and solidifying the reduced iron, The material-incorporated iron oxide agglomerated product has a total content of crystallization water and a volatile content of the carbon material in the carbonized material-incorporated iron oxide agglomerated material of 10.5% by mass or less, and a content of adhering moisture of 1.0. It is a manufacturing method of reduced iron characterized by being below mass%.

請求項9に記載の発明は、前記炭材内装酸化鉄塊成化物は、その中における前記結晶水の含有量が4質量%以上である請求項8に記載の還元鉄の製造方法である。   The invention according to claim 9 is the method for producing reduced iron according to claim 8, wherein the carbonaceous material-incorporated iron oxide agglomerate has a content of the crystal water of 4% by mass or more.

請求項10に記載の発明は、前記炭材内装酸化鉄塊成化物は、その塩基度(CaO/SiO)が質量比で1.5以下である請求項8または9に記載の還元鉄の製造方法である。 The invention according to claim 10 is characterized in that the carbonaceous material-containing iron oxide agglomerate has a basicity (CaO / SiO 2 ) of 1.5 or less in mass ratio. It is a manufacturing method.

請求項11に記載の発明は、金属鉄を製造する方法であって、炭材内装酸化鉄塊成化物を急速加熱還元炉に装入するステップと、前記炭材内装酸化鉄塊成化物を前記急速加熱還元炉の炉内温度が200℃以下の領域から1000℃以上の領域までを20秒以下の時間で移動させることで、当該炭材内装酸化鉄塊成化物を加熱するステップと、前記炭材内装酸化鉄塊成化物の酸化鉄を当該炭材内装酸化鉄塊成化物中の炭素質還元剤で還元することで、金属鉄を生成してスラグを副生するステップと、前記金属鉄を前記スラグと分離しつつ粒状に凝集させるステップと、前記金属鉄を冷却凝固させるステップとを有し、前記炭材内装酸化鉄塊成化物は、当該炭材内装酸化鉄塊成化物中における結晶水と炭材の揮発分との合計含有量が10.5質量%以下、付着水分の含有量が1.0質量%以下であることを特徴とする金属鉄の製造方法である。 The invention according to claim 11 is a method for producing metallic iron, the step of charging a carbonaceous material-containing iron oxide agglomerate into a rapid heating reduction furnace, A step of heating the carbonaceous material-containing iron oxide agglomerate by moving the temperature inside the rapid heating reduction furnace from a region of 200 ° C. or less to a region of 1000 ° C. or more in a time of 20 seconds or less; Reducing the iron oxide of the material-incorporated iron oxide agglomerate with a carbonaceous reducing agent in the carbonaceous material-incorporated iron oxide agglomerate to produce metallic iron and by-produce slag; and The carbonaceous material-incorporated iron oxide agglomerated product is a crystal water in the carbonized material-incorporated iron oxide agglomerated product, comprising the steps of agglomerating in granular form while separating from the slag, and cooling and solidifying the metallic iron. the total content of 10.5 mass with the volatile content of carbonaceous material Hereinafter, a method for producing metallic iron, wherein the amount of water attached is not more than 1.0 mass%.

請求項12に記載の発明は、前記炭材内装酸化鉄塊成化物は、その中における前記結晶水の含有量が4質量%以上である請求項11に記載の金属鉄の製造方法である。   The invention according to claim 12 is the method for producing metallic iron according to claim 11, wherein the carbonaceous material-containing iron oxide agglomerated product has a content of the crystal water of 4% by mass or more.

請求項13に記載の発明は、前記炭材内装酸化鉄塊成化物は、その塩基度(CaO/SiO)が質量比で0.5以上である請求項11または12に記載の金属鉄の製造方法である。 The invention according to claim 13 is characterized in that the carbonaceous material-containing iron oxide agglomerated product has a basicity (CaO / SiO 2 ) of 0.5 or more in terms of mass ratio. It is a manufacturing method.

本発明によれば、塊成化物中のガス化成分である、結晶水と炭材の揮発分との合計含有量を所定値(10.5質量%)以下に制限したことで、酸化鉄原料として高結晶水鉱石を使用した塊成化物を急速加熱還元炉に装入しても、塊成化物内部に生じるガス圧が抑制され、バースティングの発生を確実に防止できるようになった。また、還元炉内に予熱帯を設ける必要がないため、還元鉄等の生産性の低下や還元炉の大型化を招くことがなく、有機質粘結剤などの結合剤を過度に増量する必要がないため、還元鉄等の製造コストの上昇を招くこともない。 According to the present invention, the total content of crystal water and the volatile content of the carbonaceous material , which is a gasification component in the agglomerated material, is limited to a predetermined value (10.5% by mass) or less, so that the iron oxide raw material Even when an agglomerate using high crystal water ore is charged into a rapid heating reduction furnace, the gas pressure generated inside the agglomerate is suppressed, and the occurrence of bursting can be reliably prevented. In addition, since there is no need to provide a pre-tropical zone in the reduction furnace, there is no need to increase the amount of binder such as organic binder without reducing the productivity of reduced iron and reducing the size of the reduction furnace. Therefore, the production cost of reduced iron or the like is not increased.

以下、本発明についてさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail.

本発明に係る炭材内装酸化鉄塊成化物は、当該炭材内装酸化鉄塊成化物中における、結晶水と炭材の揮発分(以下、単に揮発分と略称する)との合計含有量が10.5質量%(乾量基準、以下同じ。)以下、付着水分の含有量が1.0質量%以下であることを特徴とする。 The carbonaceous material-incorporated iron oxide agglomerate according to the present invention has a total content of crystal water and volatile matter of the carbonaceous material ( hereinafter simply referred to as volatile matter) in the carbonaceous material-incorporated iron oxide agglomerated product. 10.5% by mass (based on dry weight, the same shall apply hereinafter) or less, and the content of adhering moisture is 1.0% by mass or less.

さらに、結晶水の含有量が4質量%以上であることが好ましい。また、炭材内装酸化鉄塊成化物の塩基度(CaO/SiO)が質量比で0.5以上1.5以下とするのが好ましい。 Furthermore, the content of crystal water is preferably 4% by mass or more. Moreover, it is preferable that the basicity (CaO / SiO 2 ) of the carbonaceous material-incorporated iron oxide agglomerated material is 0.5 to 1.5 in terms of mass ratio.

以下、上記構成中における各要件の数値限定理由について順次説明する。   Hereinafter, the reasons for limiting the numerical values of the requirements in the above configuration will be sequentially described.

(1)塊成化物中における、結晶水と揮発分との合計含有量が10.5質量%以下
後記実施例の試験−4の結果(図3参照)より、バースティング発生の有無は、塊成化物中における、結晶水と揮発分との合計含有量(質量基準)で整理でき、その臨界値が10.5質量%であることによる。
(1) The total content of crystallization water and volatile matter in the agglomerated material is 10.5% by mass or less From the results of Test-4 in the examples described later (see FIG. 3), This is because the total content (mass basis) of crystal water and volatile matter in the chemical can be arranged, and the critical value is 10.5% by mass.

(a)結晶水と揮発分との合計含有量で評価できることの妥当性
ここで、図1に模式的に示すように、結晶水の解離に伴うガス(水蒸気)発生温度範囲200〜400℃と揮発分の脱揮に伴うガス発生温度範囲300〜700℃とは、一部重なるものの、ほとんどが重なり合わないため、結晶水と揮発分との合計含有量でバースティング発生の有無を評価することには疑問が生じるかもしれない。
(A) Validity of being able to be evaluated by the total content of crystal water and volatile matter Here, as schematically shown in FIG. 1, the gas (water vapor) generation temperature range accompanying dissociation of crystal water is 200 to 400 ° C. Although the gas generation temperature range 300 to 700 ° C. accompanying devolatilization of volatile components partially overlaps, most of them do not overlap, so the presence or absence of bursting should be evaluated based on the total content of crystal water and volatile components. There may be doubts.

しかしながら、図1に示すようなガス発生挙動は、昇温速度が小さい(通常5〜10℃/min)定常状態に近い条件でのガス発生挙動を示すものであるため、両者のガス発生の温度範囲が明瞭に区別されたものである。これに対し、1000℃以上の高温雰囲気中に装入された場合には、塊成化物の昇温速度が非常に大きくなるため、高温雰囲気下では、結晶水の解離に伴うガスの発生範囲温度と揮発分の脱揮に伴うガスの発生温度範囲とはいずれも塊成化物の昇温過程にあるため、両者のガス発生の温度範囲はほとんど重なり合うものと考えられる。   However, the gas generation behavior as shown in FIG. 1 shows the gas generation behavior under conditions close to a steady state where the rate of temperature increase is small (usually 5 to 10 ° C./min). The range is clearly distinguished. On the other hand, when charged in a high temperature atmosphere of 1000 ° C. or higher, the temperature increase rate of the agglomerate becomes very large. And the gas generation temperature range accompanying the devolatilization of the volatile matter are both in the process of raising the agglomerate, and it is considered that the temperature ranges of both gas generations almost overlap.

したがって、結晶水由来の水蒸気と揮発分由来の発生ガスは、塊成化物を急速加熱還元炉に装入した後、ほぼ同時期に発生するものと考えられるので、バースティング発生の有無を結晶水と揮発分との合計含有量で評価できるものと判断される。   Therefore, it is considered that water vapor derived from water of crystallization and gas generated from volatile matter are generated almost at the same time after the agglomerate is charged into the rapid heating and reduction furnace. It is judged that it can be evaluated by the total content of and volatile matter.

(b)結晶水と揮発分との合計含有量を質量基準で評価できることの妥当性
また、バースティングの発生は、塊成化物内部でのガス発生に伴う圧力上昇に起因することからすると、質量基準での合計含有量でなく、ガス化時のガス容積(またはモル)基準で評価する方が合理的ではないかとの疑問も生じるかもしれない。
(B) Appropriateness of being able to evaluate the total content of crystal water and volatile matter on a mass basis In addition, since the occurrence of bursting is due to the pressure increase accompanying the gas generation inside the agglomerate, the mass There may be doubts that it would be more reasonable to evaluate on the basis of gas volume (or mole) at the time of gasification rather than the total content on the basis.

そこで、質量基準での合計含有量で評価することの妥当性を確認するため、結晶水および揮発分がガス化したときのそれぞれの分子量を比較した。結晶水由来の水蒸気(HO)の分子量は、当然18.0である。これに対し、揮発分由来の発生ガスの成分組成は、炭種、昇温速度等によって異なると考えられるので、先ず、炭種の影響を考慮し、後記実施例で用いた揮発分含有量の異なる3種の石炭CA、HO、YAについて、以下の方法で揮発分由来の発生ガスの平均分子量を推定した。すなわち、揮発分由来の発生ガスの成分は、粒径16mmの炭材内装酸化鉄ペレットを1300℃の雰囲気中に装入した試験における、装入直後の発生ガス中のCOとCOとの比率を参考にして、CO:CO=71:29(体積比)とした。そして、揮発分中のCはCOおよびCOに、HはHOに、NはNOに、SはSOに、Oは前記CO、CO、HO、NOおよびSOのOの一部になると仮定した(脱揮直後の揮発分由来のガス成分としては、コークス炉ガスの成分組成からの類推で、CHやH等が多く含まれるはずであるが、塊成化物の内部から表面まで移動する間に塊成化物中の酸化鉄を還元し、ガス自体は酸化されて、塊成化物の表面から放出されたときには、CHやH等はCO、CO、HO等の酸化物の形態になっているものと考えられる。)。そして、各石炭の分析値より上記各ガス成分の発生割合を算出し、これより各石炭の揮発分由来の発生ガスの平均分子量を算出した。ここで、揮発分中のCは、T.C(元素分析のC)とF.C(工業分析の固定炭素)との差とし、H、N、Sは、それぞれ、元素分析のH、N、Sの値を用いた。推定計算の結果、上記各石炭CA、HO、YA中の揮発分由来の発生ガスの組成は、下記表1のようになり、各発生ガスの平均分子量は、同表に示すように、おおよそ20±0.5の範囲となった。これらの発生ガスの平均分子量は、昇温速度によっても変化すると想定されることからすると、結晶水由来の水蒸気の平均分子量と、揮発分由来の発生ガスの平均分子量は大差なく、容積(モル)基準を用いずに、結晶水と揮発分の質量基準の合計含有量でバースティング発生の有無を評価しても実質上問題ないと判断される。
(c)まとめ
上記(a)および(b)の検討結果から、塊成化物中における、結晶水と揮発分との合計含有量を10.5質量%以下に規定することとした。なお、塊成化物中における、結晶水と揮発分との合計含有量は9質量%以下とするのがさらに好ましい。
Therefore, in order to confirm the validity of the evaluation based on the total content on the mass basis, respective molecular weights when the crystal water and the volatile component were gasified were compared. Naturally, the molecular weight of water vapor (H 2 O) derived from crystal water is 18.0. On the other hand, the component composition of the generated gas derived from the volatile matter is considered to be different depending on the coal type, the rate of temperature rise, etc. First, considering the influence of the coal type, the content of the volatile content used in the examples described later For three different types of coals CA, HO, and YA, the average molecular weight of generated gas derived from volatile matter was estimated by the following method. That is, the component of the generated gas derived from the volatile matter is the ratio of CO and CO 2 in the generated gas immediately after charging in a test in which carbonaceous iron-containing iron oxide pellets having a particle size of 16 mm were charged in an atmosphere of 1300 ° C. Was referred to as CO: CO 2 = 71: 29 (volume ratio). C in the volatile matter is CO and CO 2 , H is H 2 O, N is NO 2 , S is SO 2 , and O is the CO, CO 2 , H 2 O, NO 2 and SO 2. (As a gas component derived from volatile components immediately after devolatilization, by analogy from the component composition of coke oven gas, it should contain a lot of CH 4 , H 2, etc. While moving from the inside of the agglomerate to the surface, iron oxide in the agglomerate is reduced, and when the gas itself is oxidized and released from the surface of the agglomerate, CH 4 , H 2, etc. are CO, CO 2. It is considered that it is in the form of an oxide such as H 2 O.) And the generation | occurrence | production ratio of each said gas component was computed from the analytical value of each coal, and the average molecular weight of the generated gas derived from the volatile matter of each coal was computed from this. Here, C in the volatile matter is T.I. C (elemental analysis C) and F.I. Differences from C (fixed carbon in industrial analysis) were used, and H, N, and S values in elemental analysis were used for H, N, and S, respectively. As a result of the estimation calculation, the composition of the generated gas derived from the volatile matter in each of the coals CA, HO, and YA is as shown in Table 1 below, and the average molecular weight of each generated gas is approximately 20 as shown in the table. The range was ± 0.5. Since the average molecular weight of these generated gases is assumed to change depending on the heating rate, the average molecular weight of water vapor derived from crystal water and the average molecular weight of generated gas derived from volatile matter are not much different, and the volume (mole) Even if the presence or absence of bursting is evaluated based on the total content of crystallization water and volatile matter based on the mass content without using the standard, it is determined that there is substantially no problem.
(C) Summary From the examination results of the above (a) and (b), the total content of crystal water and volatile matter in the agglomerated material is defined to be 10.5% by mass or less. The total content of crystal water and volatile matter in the agglomerated product is more preferably 9% by mass or less.

Figure 0005547879
Figure 0005547879

(2)塊成化物中における、付着水分含有量が1.0質量%以下
本発明に係る炭材内装酸化鉄塊成化物は、還元鉄または金属鉄の製造時に、1000℃以上に急速に加熱される。そのため、塊成化物の付着水分によるバースティングを防止するために、上記引用文献4に記載の発明と同様、塊成化物中の付着水分含有量は1.0質量%以下とする。好ましくは、0.3質量%以下である。なお、このように、塊成化物中の付着水分含有量を制限することで、塊成化物の圧潰強度が高まり、還元炉に装入するまでの搬送過程での塊成化物の粉化を防止する効果も得られる。
(2) Adhesive moisture content in the agglomerated material is 1.0% by mass or less The carbonaceous material-containing iron oxide agglomerated material according to the present invention is rapidly heated to 1000 ° C. or higher during the production of reduced iron or metallic iron. Is done. Therefore, in order to prevent bursting due to adhering moisture of the agglomerated material, the adhering moisture content in the agglomerated material is set to 1.0 mass% or less as in the invention described in the above cited reference 4. Preferably, it is 0.3 mass% or less. In addition, by restricting the moisture content in the agglomerate in this way, the crushing strength of the agglomerate is increased, preventing the agglomerate from being pulverized during the transportation process until it is charged into the reduction furnace. Effect is also obtained.

(3)塊成化物中における結晶水の含有量が4質量%以上
塊成化物中の結晶水の含有量が4質量%以上のものを対象とした。使用が期待される高結晶水鉱石は、結晶水含有量が5質量%程度以上のもの(例えば、マラマンバ鉱石、ローブリバー鉱石、ヤンディ鉱石)が多い。そして、塊成化物中の鉱石と炭材との配合割合は、通常80:20程度であることから、酸化鉄原料として高結晶水鉱石を用いた場合は、塊成化物中の結晶水含有量は4質量%以上となることが多いからである。これにより、高結晶水鉱石を高い比率で使用できるので、コスト低減効果が得られる。
(3) The content of crystallization water in the agglomerated material was 4% by mass or more. The content of crystallization water in the agglomerated material was 4% by mass or more. Many high crystal water ores expected to be used have a crystal water content of about 5% by mass or more (for example, maramamba ore, lobe river ore, yandi ore). And since the compounding ratio of the ore and carbon | charcoal material in an agglomerate is about 80:20 normally, when a high crystal water ore is used as an iron oxide raw material, the content of crystal water in an agglomerate This is because it often becomes 4% by mass or more. Thereby, since a high crystal water ore can be used in a high ratio, the cost reduction effect is acquired.

(4)塊成化物の塩基度(CaO/SiO)が質量比で0.5以上1.5以下
塊成化物を原料として還元鉄を製造する場合は、製造された還元鉄を高炉や電気炉などの原料として使用する際に、塊成化物中の脈石分および灰分のスラグ化を促進して還元鉄の溶解を容易とするため、塊成化物の塩基度(CaO/SiO)を高めておくことが推奨される。塊成化物の塩基度(CaO/SiO)は1.0以上が好ましい。ただし、塊成化物の塩基度(CaO/SiO)を過度に高めるとスラグ融点が上昇して却って還元鉄中の脈石分および灰分のスラグ化が阻害され還元鉄の溶解が遅くなるので、塊成化物の塩基度(CaO/SiO)は1.5以下とするのが望ましい。より好ましくは、1.3以下である。
(4) The basicity (CaO / SiO 2 ) of the agglomerated material is 0.5 to 1.5 in mass ratio. When producing reduced iron using the agglomerated material as a raw material, the produced reduced iron is used as a blast furnace or electric When used as a raw material for a furnace or the like, the basicity (CaO / SiO 2 ) of the agglomerate is set to facilitate the dissolution of reduced iron by promoting the slag formation of gangue and ash in the agglomerate. It is recommended to keep it high. The basicity (CaO / SiO 2 ) of the agglomerated product is preferably 1.0 or more. However, if the basicity (CaO / SiO 2 ) of the agglomerated material is excessively increased, the slag melting point rises, and on the contrary, the slag formation of gangue and ash in the reduced iron is inhibited, and the dissolution of the reduced iron is delayed. The basicity (CaO / SiO 2 ) of the agglomerated product is desirably 1.5 or less. More preferably, it is 1.3 or less.

一方、塊成化物を原料として高品位の粒状金属鉄を製造する場合は、急速加熱還元炉内での粒状金属鉄とスラグの分離を良くするため、塊成化物の塩基度(CaO/SiO)は0.5以上とするのが望ましい。より好ましくは、1.2以上である。また、1.4以下が好ましい。 On the other hand, when producing high-grade granular metallic iron using the agglomerated material as a raw material, the basicity of the agglomerated material (CaO / SiO 2) is improved in order to improve separation of the granular metallic iron and slag in the rapid heating reduction furnace. ) Is preferably 0.5 or more. More preferably, it is 1.2 or more. Moreover, 1.4 or less is preferable.

よって、還元鉄および粒状金属鉄のいずれの製造にも適した塊成化物の好適な塩基度(CaO/SiO)の範囲は、0.5〜1.5である。
〔炭材内装酸化鉄塊成化物の製造方法〕
本発明に係る炭材内装酸化鉄塊成化物は、還元鉄または金属鉄の製造原料であり、回転炉床式還元炉や直線式還元炉などの急速加熱還元炉に装入されることを特徴とする。ここで、「急速加熱還元炉」とは、炉内の200℃以下の低温領域から1000℃以上の高温領域までをおよそ20秒以下の時間で、被加熱物を移動させて、当該被加熱物を加熱する加熱還元炉をいう。上記低温領域から高温領域までの被加熱物の移動時間は、12.5秒以下であることが好ましい。急速加熱還元炉として、例えば、炉内の装入領域(低温領域)と燃焼加熱領域(高温領域)が壁で区分けされており、炉床を回転させることで、炉床上の装入原料を装入領域から燃焼加熱領域まで12.5秒程度で移動させることができる回転炉床式還元炉がある。急速加熱還元炉は装入原料を室温から300〜500℃程度にまで加熱する予熱帯を備えていなくても良い。本発明に係る炭材内装酸化鉄塊成化物が急速加熱還元炉で加熱されると、上述したように、炭材内装酸化鉄塊成化物から結晶水由来の水蒸気と揮発分由来のガスがほぼ同時期に発生する。
Therefore, the range of suitable basicity of agglomerates suitable to any production of reduced iron and granular metallic iron (CaO / SiO 2) is 0.5 to 1.5.
[Production method of carbonized iron oxide agglomerates]
The carbonaceous material-containing iron oxide agglomerate according to the present invention is a raw material for producing reduced iron or metallic iron, and is charged into a rapid heating reduction furnace such as a rotary hearth type reduction furnace or a linear reduction furnace. And Here, the “rapid heating reduction furnace” means that the object to be heated is moved from a low temperature region of 200 ° C. or lower to a high temperature region of 1000 ° C. or higher in the furnace in a time of approximately 20 seconds or less. Refers to a heating reduction furnace that heats. The moving time of the object to be heated from the low temperature region to the high temperature region is preferably 12.5 seconds or less. As a rapid heating and reducing furnace, for example, a charging area (low temperature area) and a combustion heating area (high temperature area) in the furnace are separated by walls, and the charging material on the hearth is loaded by rotating the hearth. There is a rotary hearth type reduction furnace that can be moved from the entrance region to the combustion heating region in about 12.5 seconds. The rapid heating and reducing furnace may not have a pre-tropical zone for heating the charged raw material from room temperature to about 300 to 500 ° C. When the carbonaceous material-containing iron oxide agglomerate according to the present invention is heated in the rapid heating reduction furnace, as described above, the water vapor derived from crystal water and the gas derived from the volatile matter are almost from the carbonaceous material-containing iron oxide agglomerated product. It occurs at the same time.

〔炭材内装酸化鉄塊成化物の製造方法〕
上記構成からなる炭材内装酸化鉄塊成化物は、以下のようにして製造できる。
例えば、酸化鉄原料として特定銘柄の高結晶水鉱石1種類だけを使用する場合、炭材内装塊成化物中の結晶水と揮発分との合計含有量が10.5質量%以下になるように、上記特定銘柄の高結晶水鉱石中の結晶水含有量に応じて、適正な揮発分含有量の石炭を1種類選択する。
[Production method of carbonized iron oxide agglomerates]
The carbonaceous material-incorporated iron oxide agglomerate having the above structure can be produced as follows.
For example, when only one type of high-crystal water ore of a specific brand is used as an iron oxide raw material, the total content of crystal water and volatile matter in the carbonaceous material agglomerated material is 10.5% by mass or less. Depending on the content of crystal water in the high-crystal water ore of the specific brand, one type of coal having an appropriate volatile content is selected.

そして、粒径1mm以下が80質量%以上含有するように粒度調整した上記高結晶水鉱石に、同様の粒度に調整した、上記高結晶水鉱石中の酸化鉄を還元するのに十分な量の上記石炭と、有機質粘結剤としての澱粉を適量添加し、さらに水分を添加してペレタイザで造粒して生ペレットとし、これを乾燥機にて付着水分量が1質量%以下になるまで乾燥することによって、本発明の構成を満足する炭材内装酸化鉄ペレット(炭材内装酸化鉄塊成化物)が製造できる。炭材の添加量としては、酸化鉄含有物質中の酸化鉄を還元するのに必要な量の1.3倍以上(質量基準)が望ましい。   And the above-mentioned high crystal water ore whose particle size is adjusted so that the particle size of 1 mm or less is contained by 80% by mass or more is adjusted to the same particle size, and an amount sufficient to reduce iron oxide in the high crystal water ore. Add an appropriate amount of the above coal and starch as an organic binder, add water, granulate with a pelletizer to make green pellets, and dry it with a dryer until the amount of water attached is 1% by mass or less. By doing, the carbonaceous material interior iron oxide pellet (carbon material interior iron oxide agglomerate) which satisfies the structure of this invention can be manufactured. The amount of carbon material added is desirably 1.3 times or more (on a mass basis) the amount required to reduce iron oxide in the iron oxide-containing material.

なお、炭材内装酸化鉄塊成化物の塩基度(CaO/SiO)を調整するためには、造粒原料に石灰石、消石灰などの酸化カルシウム供給物質(CaO供給物質)を所定量添加するとよい。 In addition, in order to adjust the basicity (CaO / SiO 2 ) of the carbonaceous material-incorporated iron oxide agglomerate, a predetermined amount of a calcium oxide supply substance (CaO supply substance) such as limestone or slaked lime may be added to the granulated raw material. .

ここで、炭材内装酸化鉄塊成化物に酸化カルシウム供給物質を添加すると、塊成化物を急速加熱還元炉に装入した際に、上記結晶水と揮発分由来のガス発生に加えて、酸化カルシウム供給物質が分解してCOガスまたは水蒸気が発生するため、よりバースティングが発生しやすくなることが懸念される。 Here, when a calcium oxide supply substance is added to the carbonized iron-incorporated iron oxide agglomerate, when the agglomerate is charged into the rapid heating reduction furnace, in addition to the generation of gas derived from the crystal water and volatile matter, oxidation Since the calcium supply substance is decomposed to generate CO 2 gas or water vapor, there is a concern that bursting is more likely to occur.

しかしながら、石灰石を用いた場合は、図1に示すように、その分解に伴うガス発生温度範囲が670〜1200℃であり、結晶水の解離に伴うガス発生温度範囲200〜400℃とは、全く重なり合わない。このため、急速昇温下で、両者の温度範囲が近づくとしても、塊成化物への石灰石の添加は、塊成化物内部でのガス圧の上昇にほとんど影響することはなく、むしろ、塊成化物中の結晶水と揮発分の合計含有量を希釈して低くするので、結晶水および揮発分由来の発生ガス量が減少し、バースティング発生を抑制する方向に働く(後記実施例の試験−3参照)。   However, when limestone is used, as shown in FIG. 1, the gas generation temperature range accompanying decomposition is 670 to 1200 ° C., and the gas generation temperature range 200 to 400 ° C. accompanying dissociation of crystal water is completely different from Does not overlap. For this reason, even if both temperature ranges approach at a rapid temperature rise, the addition of limestone to the agglomerate has little effect on the increase in gas pressure inside the agglomerate, but rather agglomeration. Since the total content of crystallization water and volatile matter in the compound is diluted and lowered, the amount of gas generated from the crystallization water and volatile matter is reduced, and it works in the direction of suppressing the generation of bursting. 3).

一方、消石灰を用いた場合は、図1には示していないが、その分解に伴うガス発生温度範囲は100〜580℃であり、結晶水および揮発分の分解に伴うガス発生温度範囲と重なるものの、消石灰の分解に伴うガス発生温度範囲は非常に広いため、塊成化物内部でのガス発生速度への影響は小さい。したがって、塊成化物への消石灰の添加は、上記石灰石の場合と同様に、塊成化物内部でのガス圧の上昇にほとんど影響することはなく、むしろ、塊成化物中の結晶水と揮発分の合計含有量を希釈して低くするので、結晶水および揮発分由来の発生ガス量が減少し、バースティング発生を抑制する方向に働く(後記実施例の試験−3参照)。   On the other hand, when slaked lime is used, although not shown in FIG. 1, the gas generation temperature range accompanying the decomposition is 100 to 580 ° C., which overlaps with the gas generation temperature range accompanying the decomposition of crystal water and volatile matter. Since the gas generation temperature range accompanying the decomposition of slaked lime is very wide, the influence on the gas generation rate inside the agglomerated material is small. Therefore, the addition of slaked lime to the agglomerated material has almost no effect on the increase in gas pressure inside the agglomerated material, as in the case of limestone, but rather the crystal water and volatiles in the agglomerated material. Therefore, the amount of generated gas derived from crystallization water and volatile matter is reduced and the generation of bursting is suppressed (see Test-3 in Examples below).

よって、塊成化物に酸化カルシウム供給物質を添加しても、結晶水と揮発分との合計含有量を規定値(10.5質量%)以下とする限り、結合剤を過度に増量しなくとも、バースティング発生を懸念する必要はない。   Therefore, even if a calcium oxide supply substance is added to the agglomerated material, the binder may not be excessively increased as long as the total content of crystal water and volatile components is not more than a specified value (10.5% by mass). There is no need to worry about the occurrence of bursting.

(変形例)
上記塊成化物を原料として用いる急速加熱還元炉として、回転炉床式還元炉を例示したが、直線炉にも当然適用できる。
(Modification)
Although the rotary hearth type reduction furnace is exemplified as the rapid heating reduction furnace using the agglomerated material as a raw material, it is naturally applicable to a linear furnace.

上記塊成化物の製造方法として、ペレットの製造方法を例示したが、もちろん、ブリケットの製造方法を採用してもよい。   As a method for producing the agglomerated material, a method for producing pellets has been exemplified, but, of course, a method for producing briquettes may be employed.

また、酸化鉄原料として、特定銘柄の高結晶水鉱石を1種類だけ用いる例を示したが、複数銘柄の(結晶水含有量の異なる)高結晶鉱石を適宜混合して用いてもよい。さらには、結晶水含有量が7質量%以上と非常に高い高結晶水鉱石(例えば、ローブリバー鉱石、ヤンディ鉱石)を用いる場合は、塊成化物中の結晶水含有量が4質量%以上を維持できる範囲で、結晶水含有量の少ない、ないしは、結晶水を含有しない、一般のヘマタイト鉱石や製鉄所ダスト等を適宜混合して用いてもよい。   Moreover, although the example which uses only one kind of high-crystal water ore of a specific brand as an iron oxide raw material was shown, you may mix and use the high-crystal ore of multiple brands (different crystallization water content) suitably. Furthermore, when using a high crystal water ore (for example, lobe river ore, yandi ore) with a very high crystal water content of 7% by mass or more, the crystal water content in the agglomerated product is 4% by mass or more. As long as it can be maintained, ordinary hematite ore, steel mill dust, or the like having a low crystallization water content or no crystallization water may be appropriately mixed and used.

また、炭材として、適正な揮発分含有量を有する石炭を1種類だけ選択して用いる例を示したが、揮発分含有量の異なる複数種類の石炭を混合して、揮発分含有量を適正範囲に調整して用いてもよい。さらには、石炭の他、コークス、オイルコークス、木炭、木材チップ、廃プラスチック、古タイヤ等を使用することもできる。   Moreover, although the example which selects and uses only 1 type of coal which has an appropriate volatile content as a carbon material was shown, several types of coal from which a volatile content differs is mixed, and volatile content is appropriate. You may adjust and use for the range. In addition to coal, coke, oil coke, charcoal, wood chips, waste plastic, old tires, and the like can also be used.

本発明の効果を確証するために、下記表2に示す鉄鉱石および石炭を使用して、以下の各試験を実施した。   In order to confirm the effect of the present invention, the following tests were performed using iron ore and coal shown in Table 2 below.

Figure 0005547879
Figure 0005547879

〔試験−1〕塊成化物中の結晶水の影響
先ず、塊成化物中の結晶水の影響を調査するため、上記表2(a)に示す、結晶水含有量が大きく異なる2種類の鉄鉱石(Y鉱石およびM鉱石)を用い、炭材を配合することなく、鉄鉱石単味で塊成化物(ペレット)を作製し、急速加熱試験を実施した(下記表3参照)。
[Test-1] Effect of water of crystallization in agglomerates First, in order to investigate the effect of water of crystallization in agglomerates, two types of iron ore shown in Table 2 (a) above, with significantly different water contents of crystallization Using stones (Y ore and M ore), an agglomerate (pellet) was produced with a simple iron ore without blending carbonaceous materials, and a rapid heating test was performed (see Table 3 below).

先ず、結晶水を10.8質量%含有するY鉱石に、結合剤として小麦粉0.5質量%添加し、適量の水分を添加して造粒された直径16mmの生ペレットを乾燥器中で105℃、20時間乾燥して付着水を完全に除去した。この乾燥後のペレット6個をステンレス金網製カゴに1層に並べて、このステンレス金網製カゴを縦型加熱炉中の1300℃に加熱された均熱帯へ炉口から20秒間で到達するように移動させた。この加熱炉内の雰囲気は100%窒素ガスである。この加熱によって、すべてのペレットが崩壊し、小粒チップに分離した(試験No.1)。上記急速加熱条件は、回転炉床式還元炉において、塊成化物を装入領域から燃焼加熱領域までを12.5秒程度で移動させて加熱する場合を模擬したものである。   First, 0.5% by mass of wheat flour as a binder is added to Y ore containing 10.8% by mass of crystallization water, and an appropriate amount of water is added to granulate raw pellets having a diameter of 16 mm in a drier. Drying at 20 ° C. for 20 hours completely removed adhering water. Six of the dried pellets are arranged in a layer on a stainless steel mesh basket, and the stainless steel mesh basket is moved so as to reach the soaking zone heated to 1300 ° C in a vertical heating furnace from the furnace port in 20 seconds. I let you. The atmosphere in the heating furnace is 100% nitrogen gas. By this heating, all the pellets collapsed and separated into small chips (Test No. 1). The rapid heating condition simulates a case where the agglomerated material is moved from the charging region to the combustion heating region in about 12.5 seconds and heated in a rotary hearth type reduction furnace.

一方、結晶水を含有しないM鉱石を用いて、結合剤をベントナイト0.8質量%に替えた他は、上記試験No.1と同様の条件でペレットを作製し、加熱試験を行った結果、すべてのペレットは健全なままであり、全く崩壊しなかった(試験No.2)。   On the other hand, except that M ore containing no crystal water was used and the binder was changed to 0.8% by mass of bentonite, the above test no. As a result of producing a pellet under the same conditions as in No. 1 and conducting a heating test, all the pellets remained healthy and did not collapse at all (Test No. 2).

以上の結果から、付着水がなくても、鉄鉱石の結晶水がバースティング発生に大きく関わっていることが確認された。   From the above results, it was confirmed that the crystal water of iron ore is greatly involved in the occurrence of bursting even without adhering water.

Figure 0005547879
Figure 0005547879

〔試験−2〕塊成化物の揮発分の影響
次に、塊成化物中の揮発分の影響を調査するため、結晶水を含有しないM鉱石に、揮発分含有量が大きく異なる2種類の石炭(CA炭およびHO炭、表2(b)参照)をそれぞれ配合して炭材内装酸化鉄塊成化(ペレット)を作製し、付着水を完全に除去した後に、上記試験−1と同様の急速加熱試験を実施した(下記表4参照)。なお、鉄鉱石と石炭の配合割合は、過去に実施した炭材内装酸化鉄ペレットの加熱還元試験の結果に基づき、鉄鉱石中の酸化鉄が石炭にて十分に還元される配合割合とし、塩基度調整のため、酸化カルシウム供給物質として消石灰を添加した。
[Test-2] Effect of volatile content of agglomerate Next, in order to investigate the effect of volatile content in the agglomerate, two types of coal with significantly different volatile content in M ore containing no crystal water (CA charcoal and HO charcoal, see Table 2 (b)) were respectively prepared to produce a carbonaceous material-incorporated iron oxide agglomeration (pellet), and after removing adhering water completely, the same as test-1 above A rapid heating test was performed (see Table 4 below). The mixing ratio of iron ore and coal is based on the result of the heat reduction test of the iron oxide pellets in the carbonaceous material carried out in the past, and the mixing ratio is such that the iron oxide in the iron ore is sufficiently reduced by coal. In order to adjust the degree, slaked lime was added as a calcium oxide supply substance.

揮発分の少ないHO炭を使用した場合は、ペレット表面にクラック(亀裂)の発生が認められるものの、小粒化(微粉化)はほとんど起こらなかった。   When HO charcoal with a small amount of volatile matter was used, cracks (cracks) were observed on the pellet surface, but there was almost no grain reduction (micronization).

一方、揮発分の多いCA炭を使用した場合は、ペレットの上部が崩壊して飛散した。これは、揮発分が多い分だけペレット内のガス圧が高くなり一部が分離したためと考えられる。   On the other hand, when CA charcoal with a high volatile content was used, the upper part of the pellet collapsed and scattered. This is considered to be because the gas pressure in the pellet was increased by the amount of the volatile component, and a part was separated.

Figure 0005547879
Figure 0005547879

〔試験−3〕塊成化物への酸化カルシウム供給物質添加の影響
次に、塊成化物へ添加する酸化カルシウム供給物質の影響を調査するため、結晶水の多いY鉱石に、炭材を配合することなく、消石灰と石灰石をそれぞれ添加した場合、無添加の場合について、塊成化物(ペレット)を作製し、付着水を完全に除去した後に、次の急速加熱試験を実施した(下記表5の試験No.5〜7参照)。
[Test-3] Effect of addition of calcium oxide supply substance to agglomerate Next, in order to investigate the influence of calcium oxide supply substance added to agglomerate, carbonaceous material is added to Y ore with a lot of crystal water. Without adding slaked lime and limestone respectively, the agglomerated material (pellet) was prepared for the case of no addition, and the following rapid heating test was carried out after completely removing adhering water (Table 5 below) Test No. 5-7 reference).

この試験−3では、急速加熱試験方法は、上記試験−1、2で用いたステンレス金網製カゴを縦型加熱炉に装入する方法と異なり、実際の回転炉床式還元炉により近い加熱状態を模擬するため、乾燥後のペレット4個を軽量アルミナトレー上に載置し、N雰囲気に置換された横型加熱炉中の1300℃の均熱帯へ炉口から20秒間で到達するように装入してその位置で保持し、ペレットの還元率が90%以上になる時間加熱した後、横型加熱炉の冷却ゾーンへ移動してN雰囲気中で常温まで冷却する方法を採用した。
さらに、炭材配合時における、塊成化物への酸化カルシウム供給物質添加の影響を調査するため、結晶水の多いY鉱石と、揮発分が中程度のYA炭との配合割合を種々変更したものに、石灰石を添加して塊成化物(ペレット)を作製し、付着水を完全に除去した後に、上記試験−1,2と同様の急速加熱試験を実施した(下記表5の試験No.8〜10)。
In this test-3, the rapid heating test method is different from the method in which the stainless steel wire cage used in the above tests-1 and 2 is charged into the vertical heating furnace, and the heating state is closer to that of the actual rotary hearth type reducing furnace. In order to simulate this, four dried pellets were placed on a lightweight alumina tray and loaded into the 1300 ° C soaking zone in a horizontal heating furnace replaced with an N 2 atmosphere in 20 seconds from the furnace port. Then, it was held at that position, heated for a time when the reduction rate of the pellet was 90% or more, then moved to the cooling zone of the horizontal heating furnace and cooled to room temperature in an N 2 atmosphere.
Furthermore, in order to investigate the influence of the addition of calcium oxide supply substances to the agglomerates when blending carbonaceous materials, various blending ratios of Y ore with a lot of crystal water and YA charcoal with a medium volatile content were changed. After adding limestone to produce an agglomerated product (pellet) and completely removing adhering water, a rapid heating test similar to Tests 1 and 2 was performed (Test No. 8 in Table 5 below). -10).

試験No.5〜7より、鉄鉱石単味の場合に比べて、酸化カルシウム供給物質として石灰石または消石灰を添加したときの方が、むしろバースティング発生が抑制される傾向にあることがわかる。また、試験No.8〜10より、塊成化物の耐バースティング特性に関しては、鉄鉱石中の結晶水および石炭中の揮発分の影響が大きく、酸化カルシウム供給物質の添加による影響は少ないことがわかる。   Test No. From 5 to 7, it can be seen that when limestone or slaked lime is added as a calcium oxide supply substance, the occurrence of bursting tends to be suppressed as compared with the case of simple iron ore. In addition, Test No. From 8 to 10, it can be seen that regarding the bursting resistance of the agglomerated material, the influence of crystallization in the iron ore and the volatile matter in the coal is large, and the influence due to the addition of the calcium oxide supply substance is small.

Figure 0005547879
Figure 0005547879

〔試験−4〕各種鉄鉱石と各種石炭を使用した塊成化物の耐バースティング特性の調査
次に、結晶水含有量の異なる鉄鉱石と、揮発分含有量の異なる石炭を種々の配合条件で作製した塊成化物(ペレット)の耐バースティング特性を調査するため、上記試験1〜3で急速加熱試験が実施された塊成化物に加えて、以下の条件(A)と(B)に基づいて作製され、急速加熱試験が実施された塊成化物に対して後記のように小粒子の割合を測定した。
条件(A):M鉱石とHO炭を用いて、下記表6の試験No.11〜14の配合条件で塊成化物を作製した。そして、上記試験−1と同様に、乾燥器で付着水を完全に除去した後に縦型加熱炉で急速加熱試験を実施した(表6の試験No.11〜14参照)。
条件(B):Y鉱石とCA炭を用いて、下記表6の試験No.15の配合条件で塊成化物を作製した。そして、上記試験−1と同様に、乾燥器で付着水を完全に除去した後に、上記試験−3と同様に横型加熱炉で急速加熱試験を実施した(表6の試験No.15参照)。
[Test-4] Investigation of anti-bursting properties of agglomerates using various iron ores and various coals Next, iron ores with different crystallization water contents and coals with different volatile contents under various compounding conditions Based on the following conditions (A) and (B) in addition to the agglomerated materials subjected to the rapid heating test in the above tests 1 to 3 in order to investigate the bursting resistance properties of the produced agglomerated materials (pellets). The proportion of small particles was measured as described below with respect to the agglomerates prepared and subjected to the rapid heating test.
Condition (A): Test No. in Table 6 below using M ore and HO charcoal. Agglomerates were prepared under the blending conditions of 11-14. And like the said test-1, after removing adhering water completely with a dryer, the rapid heating test was implemented with the vertical heating furnace (refer test No.11-14 of Table 6).
Condition (B): Test No. in Table 6 below using Y ore and CA charcoal. An agglomerated product was prepared under 15 blending conditions. And like the said test-1, after removing adhering water completely with a dryer, the rapid heating test was implemented with the horizontal heating furnace similarly to the said test-3 (refer test No. 15 of Table 6).

図2に、この急速加熱試験方法で試験したペレットの加熱前後の様子を上方から観察した例を示す。このペレットは、加熱後にクラックを発生しているが、分離小片を発生していないため、良好な耐バースティング特性を有するペレットとみなされる。   FIG. 2 shows an example in which the state of the pellets tested by this rapid heating test method before and after heating is observed from above. Although this pellet is cracked after heating but does not generate separated pieces, it is regarded as a pellet having good bursting resistance.

耐バースティング特性を定量的に評価するため、冷却後にペレットを取り出し、篩にて3.35mm以下(「−3.35mm」とも表示する。)の小粒子を分離し、その小粒子の質量がペレット全体の質量に占める割合によって評価することとし、この3.35mm以下の小粒子の割合が5%以下のとき、耐バースティング特性が良好と定義した(なお、試験1〜3においても、同様にして耐バースティング特性の評価を行った。)。この評価法は、たとえペレットにクラックが入っていても、金属鉄が焼結し、小片に分離していなければ、製品(還元鉄または金属鉄)として実用に供しうることに基づいて策定したものである。   In order to quantitatively evaluate the resistance to bursting, the pellets are taken out after cooling, and small particles of 3.35 mm or less (also expressed as “−3.35 mm”) are separated by a sieve, and the mass of the small particles is The evaluation was based on the proportion of the whole pellet, and when the proportion of small particles of 3.35 mm or less was 5% or less, the bursting resistance was defined as good (the same applies to tests 1 to 3). To evaluate the anti-bursting properties.) This evaluation method was formulated based on the fact that even if the pellets are cracked, if the metallic iron is sintered and not separated into small pieces, it can be put into practical use as a product (reduced iron or metallic iron). It is.

また、1300℃の均熱帯に急速に装入する方法を採用した理由は、還元鉄を最も効率よく製造するためには、炭材内装酸化鉄塊成化物ができるだけ短時間で高温まで加熱されることが必要であることから、耐バースティング特性を評価するうえで、回転炉床式還元炉で還元鉄を製造する場合の十分高い炉内雰囲気温度に相当する1300℃を選定した。   In addition, the reason for adopting the method of rapidly charging the soaking zone at 1300 ° C. is that the carbonaceous material-containing iron oxide agglomerates are heated to a high temperature in as short a time as possible in order to produce reduced iron most efficiently. Therefore, in evaluating the bursting resistance, 1300 ° C. corresponding to a sufficiently high furnace atmosphere temperature in the case of producing reduced iron in a rotary hearth type reducing furnace was selected.

本試験−4の結果を、上記試験−1〜3の結果と併せて、下記表6および図3に示す。同図に示すように、試験−1〜3のステンレス金網製カゴを用いて縦型加熱炉で急速加熱した場合とでも、試験−4のアルミナトレーを用いて横型加熱炉で急速加熱した場合とででも、ばらつきの範囲内で、ほぼ同様の傾向を示すことがわかる。   The results of the test-4 are shown in the following Table 6 and FIG. 3 together with the results of the tests-1-3. As shown in the figure, even when heated rapidly in a vertical heating furnace using the stainless steel mesh cages of Tests 1-3, and when heated rapidly in a horizontal heating furnace using the alumina tray of Test-4 However, it can be seen that the same tendency is shown within the range of variation.

表6および図3から明らかなように、塊成化物中の結晶水(LOI)と揮発分(VM)の合計含有量が10.5質量%を超えると、3.35mm以下の小粒子の割合が急激に増加して40〜63%に達する(試験No.9,10,15参照)のに対し、塊成化物中の結晶水(LOI)と揮発分(VM)の合計含有量が10.5質量%以下の場合では、3.35mm以下(−3.35mm)の小粒子の割合は、常に5%未満となり、耐バースティング特性に非常に優れていることがわかる(試験No.3,4,11〜14参照)。   As apparent from Table 6 and FIG. 3, when the total content of water of crystallization (LOI) and volatile matter (VM) in the agglomerate exceeds 10.5% by mass, the proportion of small particles of 3.35 mm or less Increases rapidly to 40 to 63% (see Test Nos. 9, 10, and 15), whereas the total content of crystal water (LOI) and volatile matter (VM) in the agglomerate is 10. In the case of 5% by mass or less, the proportion of small particles of 3.35 mm or less (−3.35 mm) is always less than 5%, which indicates that the resistance to bursting is very excellent (Test No. 3, 4, see 11-14).

また、表6より、耐バースティング特性を確保するためには、塊成化物中の結晶水(LOI)と揮発分(VM)の合計含有量を10.5質量%以下とすることで、結合剤としての小麦粉(澱粉)の添加量は0.8質量%で十分であり、過度に結合剤を増量する必要がないことがわかる(試験No.11〜14参照)。   Moreover, from Table 6, in order to ensure the bursting resistance, the total content of crystal water (LOI) and volatile matter (VM) in the agglomerated material is set to 10.5% by mass or less. It can be seen that 0.8 mass% is sufficient for the addition amount of wheat flour (starch) as an agent, and it is not necessary to increase the binder excessively (see Test Nos. 11 to 14).

Figure 0005547879
Figure 0005547879

炭材内装塊成化物中の、鉄鉱石の結晶水、石炭の揮発分および石灰石の各分解反応に伴うガス発生挙動を説明するための、加熱温度とガス発生速度との関係を模式的に示すグラフ図である。The relationship between heating temperature and gas generation rate is schematically shown to explain the gas generation behavior associated with each decomposition reaction of iron ore crystallization water, coal volatile matter, and limestone in the agglomerates of carbonaceous materials. FIG. 急速加熱試験前後の炭材内装酸化鉄ペレットの様子を示す図である。It is a figure which shows the mode of the carbonaceous material interior iron oxide pellet before and behind a rapid heating test. 炭材内装酸化鉄塊成化物中の結晶水と揮発分の合計含有量と、急速加熱試験後における3.35mm以下の小粒子の割合との関係を示すグラフ図である。It is a graph which shows the relationship between the total content of the crystal water and volatile matter in a carbonaceous material interior iron oxide agglomerate, and the ratio of the small particle of 3.35 mm or less after a rapid heating test.

Claims (13)

急速加熱還元炉用の原料として用いられる炭材内装酸化鉄塊成化物であって、
当該炭材内装酸化鉄塊成化物中における、結晶水と炭材の揮発分との合計含有量が10.5質量%(乾量基準、以下同じ。)以下、付着水分の含有量が1.0質量%以下であることを特徴とする炭材内装酸化鉄塊成化物。
A carbonaceous material-containing iron oxide agglomerate used as a raw material for a rapid heating and reduction furnace,
The total content of crystal water and the volatile content of the carbonaceous material in the carbonaceous material- incorporated iron oxide agglomerate is 10.5% by mass (dry basis, the same shall apply hereinafter) or less, and the content of adhered water is 1. Carbonaceous iron-incorporated iron oxide agglomerates characterized by being 0% by mass or less.
前記炭材内装酸化鉄塊成化物中における前記結晶水の含有量が4質量%以上である請求項1に記載の炭材内装酸化鉄塊成化物。   The carbonaceous material-incorporated iron oxide agglomerated product according to claim 1, wherein a content of the crystal water in the carbonized material-incorporated iron oxide agglomerated material is 4% by mass or more. 前記炭材内装酸化鉄塊成化物の塩基度(CaO/SiO)が質量比で0.5以上1.5以下である請求項1または2に記載の炭材内装酸化鉄塊成化物。 The basicity (CaO / SiO 2 ) of the carbonaceous material-incorporated iron oxide agglomerated product is 0.5 to 1.5 in mass ratio, and the carbonaceous material-incorporated iron oxide agglomerated product according to claim 1 or 2. 急速加熱還元炉用の原料として用いられる炭材内装酸化鉄塊成化物を製造する方法であって、
当該炭材内装酸化鉄塊成化物中における、結晶水と炭材の揮発分との合計含有量が10.5質量%以下となるように、酸化鉄原料および炭材を配合するステップと、
前記酸化鉄原料および前記炭材を塊成化物に造粒するステップと、
前記塊成化物の付着水分の含有量が1.0質量%以下になるまで、当該塊成化物を乾燥するステップと
を有することを特徴とする炭材内装酸化鉄塊成化物の製造方法。
A method for producing a carbonaceous material-containing iron oxide agglomerate used as a raw material for a rapid heating reduction furnace,
In the carbonaceous material-incorporated iron oxide agglomerate, a step of blending the iron oxide raw material and the carbonaceous material so that the total content of crystal water and the volatile content of the carbonaceous material is 10.5% by mass or less;
Granulating the iron oxide raw material and the carbonaceous material into agglomerates;
Drying the agglomerated product until the content of adhering moisture in the agglomerated product is 1.0% by mass or less, and producing the carbonized iron oxide agglomerated product.
前記酸化鉄原料および炭材を配合するステップにおいて、
前記炭材内装酸化鉄塊成化物中における前記結晶水の含有量が4質量%以上となるように、前記酸化鉄原料および前記炭材を配合する請求項4に記載の炭材内装酸化鉄塊成化物の製造方法。
In the step of blending the iron oxide raw material and the carbonaceous material,
The carbonaceous material-incorporated iron oxide ingot according to claim 4, wherein the iron oxide raw material and the carbonaceous material are blended so that the content of the crystal water in the carbonized material-incorporated iron oxide agglomerate is 4% by mass or more. A method for producing chemical compounds.
前記酸化鉄原料および炭材を配合するステップにおいて、
前記炭材内装酸化鉄塊成化物の塩基度(CaO/SiO)が質量比で0.5以上1.5以下となるように、前記酸化鉄原料および前記炭材を配合する請求項4または5に記載の炭材内装酸化鉄塊成化物の製造方法。
In the step of blending the iron oxide raw material and the carbonaceous material,
Wherein As carbonaceous material furnished oxidation TetsukatamariNaru products of basicity (CaO / SiO 2) is 0.5 to 1.5 in mass ratio, claim 4 formulating the iron oxide raw material and the carbonaceous material or 5. A method for producing an agglomerated iron oxide agglomerated material according to item 5.
前記酸化鉄原料および炭材を配合するステップにおいて、
さらに酸化カルシウム供給物質を配合する請求項4〜6のいずれかに記載の炭材内装酸化鉄塊成化物の製造方法。
In the step of blending the iron oxide raw material and the carbonaceous material,
Furthermore, the manufacturing method of the carbonaceous material interior iron oxide agglomerated material in any one of Claims 4-6 which mix | blend a calcium oxide supply substance.
還元鉄を製造する方法であって、
炭材内装酸化鉄塊成化物を急速加熱還元炉に装入するステップと、
前記炭材内装酸化鉄塊成化物を前記急速加熱還元炉の炉内温度が200℃以下の領域から1000℃以上の領域までを20秒以下の時間で移動させることで、当該炭材内装酸化鉄塊成化物を加熱するステップと、
前記炭材内装酸化鉄塊成化物の酸化鉄を当該炭材内装酸化鉄塊成化物中の炭素質還元剤で還元鉄に還元するステップと、
前記還元鉄を冷却凝固させるステップと
を有し、
前記炭材内装酸化鉄塊成化物は、当該炭材内装酸化鉄塊成化物中における結晶水と炭材の揮発分との合計含有量が10.5質量%以下、付着水分の含有量が1.0質量%以下であることを特徴とする還元鉄の製造方法。
A method for producing reduced iron, comprising:
Charging the carbonized iron oxide agglomerate into a rapid heating reduction furnace;
By moving the carbonaceous material-containing iron oxide agglomerated material from the region where the furnace temperature of the rapid heating reduction furnace is 200 ° C. or lower to the region where the temperature is 1000 ° C. or higher in 20 seconds or less, Heating the agglomerates;
Reducing the iron oxide of the carbonaceous material-incorporated iron oxide agglomerate to reduced iron with a carbonaceous reducing agent in the carbonaceous material-incorporated iron oxide agglomerate;
Cooling and solidifying the reduced iron,
The carbonaceous material-incorporated iron oxide agglomerated product has a total content of crystal water and a volatile content of the carbonaceous material in the carbonized material-incorporated iron oxide agglomerated material of 10.5% by mass or less, and a content of adhering moisture is 1. The manufacturing method of reduced iron characterized by being 0.0 mass% or less.
前記炭材内装酸化鉄塊成化物は、その中における前記結晶水の含有量が4質量%以上である請求項8に記載の還元鉄の製造方法。   9. The method for producing reduced iron according to claim 8, wherein the carbonaceous material-containing iron oxide agglomerated product has a content of the crystal water of 4% by mass or more. 前記炭材内装酸化鉄塊成化物は、その塩基度(CaO/SiO)が質量比で1.5以下である請求項8または9に記載の還元鉄の製造方法。 The method for producing reduced iron according to claim 8 or 9, wherein the carbonaceous material-incorporated iron oxide agglomerated product has a basicity (CaO / SiO 2 ) of 1.5 or less in terms of mass ratio. 金属鉄を製造する方法であって、
炭材内装酸化鉄塊成化物を急速加熱還元炉に装入するステップと、
前記炭材内装酸化鉄塊成化物を前記急速加熱還元炉の炉内温度が200℃以下の領域から1000℃以上の領域までを20秒以下の時間で移動させることで、当該炭材内装酸化鉄塊成化物を加熱するステップと、
前記炭材内装酸化鉄塊成化物の酸化鉄を当該炭材内装酸化鉄塊成化物中の炭素質還元剤で還元することで、金属鉄を生成してスラグを副生するステップと、
前記金属鉄を前記スラグと分離しつつ粒状に凝集させるステップと、
前記金属鉄を冷却凝固させるステップと
を有し、
前記炭材内装酸化鉄塊成化物は、当該炭材内装酸化鉄塊成化物中における結晶水と炭材の揮発分との合計含有量が10.5質量%以下、付着水分の含有量が1.0質量%以下であることを特徴とする金属鉄の製造方法。
A method of producing metallic iron,
Charging the carbonized iron oxide agglomerate into a rapid heating reduction furnace;
By moving the carbonaceous material-containing iron oxide agglomerated material from the region where the furnace temperature of the rapid heating reduction furnace is 200 ° C. or lower to the region where the temperature is 1000 ° C. or higher in 20 seconds or less, Heating the agglomerates;
Reducing iron oxide of the carbonaceous material-incorporated iron oxide agglomerate with a carbonaceous reducing agent in the carbonaceous material-incorporated iron oxide agglomerate, thereby generating metallic iron and by-producing slag;
Aggregating the metallic iron into particles while separating from the slag;
Cooling and solidifying the metallic iron,
The carbonaceous material-incorporated iron oxide agglomerated product has a total content of crystal water and a volatile content of the carbonaceous material in the carbonized material-incorporated iron oxide agglomerated material of 10.5% by mass or less, and a content of adhering moisture is 1. The manufacturing method of metallic iron characterized by being 0.0 mass% or less.
前記炭材内装酸化鉄塊成化物は、その中における前記結晶水の含有量が4質量%以上である請求項11に記載の金属鉄の製造方法。   12. The method for producing metallic iron according to claim 11, wherein the carbonaceous material-containing iron oxide agglomerated product has a content of the crystal water of 4% by mass or more. 前記炭材内装酸化鉄塊成化物は、その塩基度(CaO/SiO)が質量比で0.5以上である請求項11または12に記載の金属鉄の製造方法。 The method for producing metallic iron according to claim 11 or 12, wherein the carbonaceous material-containing iron oxide agglomerated product has a basicity (CaO / SiO 2 ) of 0.5 or more in terms of mass ratio.
JP2008180500A 2007-07-10 2008-07-10 Carbonaceous material-incorporated iron oxide agglomerate, method for producing the same, and method for producing reduced iron or metallic iron Expired - Fee Related JP5547879B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008180500A JP5547879B2 (en) 2007-07-10 2008-07-10 Carbonaceous material-incorporated iron oxide agglomerate, method for producing the same, and method for producing reduced iron or metallic iron

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007181216 2007-07-10
JP2007181216 2007-07-10
JP2008180500A JP5547879B2 (en) 2007-07-10 2008-07-10 Carbonaceous material-incorporated iron oxide agglomerate, method for producing the same, and method for producing reduced iron or metallic iron

Publications (2)

Publication Number Publication Date
JP2009035820A JP2009035820A (en) 2009-02-19
JP5547879B2 true JP5547879B2 (en) 2014-07-16

Family

ID=40228449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008180500A Expired - Fee Related JP5547879B2 (en) 2007-07-10 2008-07-10 Carbonaceous material-incorporated iron oxide agglomerate, method for producing the same, and method for producing reduced iron or metallic iron

Country Status (2)

Country Link
JP (1) JP5547879B2 (en)
WO (1) WO2009008270A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5494071B2 (en) * 2009-03-27 2014-05-14 新日鐵住金株式会社 Method for producing reduced iron
JP5466590B2 (en) 2009-07-21 2014-04-09 株式会社神戸製鋼所 Reduced iron manufacturing method using carbonized material agglomerates
US20130047787A1 (en) 2010-03-25 2013-02-28 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Carbon-material-containing iron oxide briquette composition, method for producing the same, and method for producing direct reduced iron using the same
JP2012062505A (en) * 2010-09-14 2012-03-29 Kobe Steel Ltd Method for manufacturing agglomerate
JP5786668B2 (en) * 2011-11-15 2015-09-30 新日鐵住金株式会社 Method for producing unfired carbon-containing agglomerated mineral
JP5962077B2 (en) * 2012-03-06 2016-08-03 Jfeスチール株式会社 Method for producing blast furnace iron source material
JP6520632B2 (en) * 2015-10-15 2019-05-29 日本製鉄株式会社 Evaluation method for blasting properties of materials for rotary hearth furnace
CN105803189B (en) * 2016-05-16 2018-06-29 贵州大学 A kind of method of phosphorus in efficient removal high-phosphor oolitic hematite
CN110106299B (en) * 2019-05-23 2020-09-15 东北大学 Blast furnace smelting method of vanadium titano-magnetite
JPWO2023171468A1 (en) * 2022-03-07 2023-09-14

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5466314A (en) * 1977-11-08 1979-05-28 Nippon Steel Corp Manufacture of reduced pellets
JPH0499132A (en) * 1990-08-07 1992-03-31 Kobe Steel Ltd Production of pellet of iron ore containing much water of crystallization
JP2762913B2 (en) * 1994-02-25 1998-06-11 株式会社神戸製鋼所 Method for reducing agglomerates of fine iron ore with a solid reducing agent
JP4031108B2 (en) * 1997-06-30 2008-01-09 株式会社神戸製鋼所 Reduction method of reduced iron powder
JP3040978B2 (en) * 1997-10-30 2000-05-15 株式会社神戸製鋼所 Method for producing reduced iron pellets and reduced iron pellets
JP3020494B2 (en) * 1998-03-24 2000-03-15 株式会社神戸製鋼所 Method for producing reduced iron agglomerates
JP3817969B2 (en) * 1998-05-27 2006-09-06 Jfeスチール株式会社 Method for producing reduced metal
JP3476371B2 (en) * 1998-09-08 2003-12-10 株式会社神戸製鋼所 Iron ore pellet manufacturing method
JP2004315852A (en) * 2003-04-11 2004-11-11 Nippon Steel Corp Method for reducing metal oxide in rotary hearth type reduction furnace
JP5004421B2 (en) * 2004-09-17 2012-08-22 Jfeスチール株式会社 Method for producing sintered ore
JP4600102B2 (en) * 2005-03-16 2010-12-15 Jfeスチール株式会社 Method for producing reduced iron
JP4627236B2 (en) * 2005-09-16 2011-02-09 株式会社神戸製鋼所 Manufacturing method of carbonized material agglomerates

Also Published As

Publication number Publication date
JP2009035820A (en) 2009-02-19
WO2009008270A1 (en) 2009-01-15

Similar Documents

Publication Publication Date Title
JP5547879B2 (en) Carbonaceous material-incorporated iron oxide agglomerate, method for producing the same, and method for producing reduced iron or metallic iron
JP2003292968A (en) Method for reusing dust coke produced in coke production process
JP2004285399A (en) Method for producing granular metallic iron
WO2009125814A1 (en) Agglomerate, containing titanium oxide, for manufacturing granular metallic iron
JP6075231B2 (en) Method for producing sintered ore
JP2008024984A (en) Blast furnace operating method using woody biomass as raw material
JP2016104901A (en) Modified carbonaceous material for manufacturing sinter ore and manufacturing method of sinter ore using the same
JP5334240B2 (en) Method for producing reduced iron agglomerates for steelmaking
JP6421666B2 (en) Method for producing sintered ore
JP4971815B2 (en) Blast furnace operation method
JP6102484B2 (en) Method for producing sintered ore
WO2015174450A1 (en) Production method of granular metallic iron
JP5512205B2 (en) Strength improvement method of raw material for agglomerated blast furnace
JP4532313B2 (en) Manufacturing method of carbonized material agglomerates
JP2010138427A (en) Method for manufacturing reduced iron agglomerate for steel-making
JP2006152432A (en) Method for producing molten iron
US20160237514A1 (en) Method for manufacturing iron nuggets
JP2015196896A (en) Method of regenerating oil-containing waste to useful material
JP6333770B2 (en) Method for producing ferronickel
WO2016208435A1 (en) Ferro-coke production method
JP2022033594A (en) Method for manufacturing sintered ore
JP5003328B2 (en) Method for producing sintered ore
JP5494071B2 (en) Method for producing reduced iron
JP2008019455A (en) Method for producing half-reduced sintered ore
JP2015063716A (en) Iron ore mini pellet for sintered ore manufacturing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110412

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140513

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140516

R150 Certificate of patent or registration of utility model

Ref document number: 5547879

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees