JP2015199976A - Method for producing sintered ore, and method for evaluating coal char or anthracite coal or half-anthracite coal - Google Patents
Method for producing sintered ore, and method for evaluating coal char or anthracite coal or half-anthracite coal Download PDFInfo
- Publication number
- JP2015199976A JP2015199976A JP2014078047A JP2014078047A JP2015199976A JP 2015199976 A JP2015199976 A JP 2015199976A JP 2014078047 A JP2014078047 A JP 2014078047A JP 2014078047 A JP2014078047 A JP 2014078047A JP 2015199976 A JP2015199976 A JP 2015199976A
- Authority
- JP
- Japan
- Prior art keywords
- anthracite
- sintering
- coal
- rate
- semi
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
本発明は、焼結鉱製造方法、及び、石炭チャー、又は無煙炭若しくは半無煙炭の評価方法に関する。 The present invention relates to a method for producing sintered ore, and a method for evaluating coal char or anthracite or semi-anthracite.
焼結鉱製造プロセスは、粉鉄鉱石及び焼結工場系内、焼結工場系外で発生する篩下粉、ダスト、ミルスケール等の鉄分を含む原料(雑鉄源)並びに石灰石などの造滓材(副原料)を焼結用の新原料とする。上記新原料に燃料として焼結用炭材(凝結材)、及び返鉱(成品粒度を満足しなかった焼結鉱で再度焼結処理を行うために循環しているもの)を加えて配合原料とする。現在、一般に行われているドワイトロイド(DL)式焼結機の焼結鉱製造プロセスでは、上記配合原料からなる充填層の下方を負圧とし、上方から下方に空気を流通させて配合原料中の凝結材を燃焼させる。発生した燃焼熱により配合原料を焼結して塊成化した焼結鉱を製造する。この焼結鉱を高炉では主要な原料として使用する。 Sinter ore manufacturing process includes iron ore and raw materials containing iron such as sieving powder, dust, mill scale, etc. generated inside and outside the sintering plant system, and limestone The material (sub-material) is used as a new raw material for sintering. Addition of carbonaceous material (condensation material) for sintering and return ore (sintered ore that did not satisfy the product particle size and circulated for re-sintering) to the new raw material And Currently, in the sinter ore manufacturing process of the Dwytroid (DL) type sintering machine that is generally performed, the lower part of the packed bed made of the above blended raw material is set to a negative pressure, and air is circulated from the upper part to the lower part in the blended raw material. Burn the condensed material. Sintered ore is produced by sintering the blended raw materials with the generated combustion heat. This sintered ore is used as the main raw material in the blast furnace.
現状、焼結鉱製造プロセスでは、揮発分の少ない粉コークスと無煙炭が、凝結材として使用されている。粉コークスの揮発分は1%以下、無煙炭の揮発分は5%程度である。
粉コークスは、製鉄所で製造するコークスのうち、高炉の製造に適した整粒コークスを篩い出した後の粒径の小さなコークスである。しかし、高炉が使用する整粒コークスに対し、粉コークスの量は少なく、焼結鉱製造用コークスとして不足する。製鉄所内でのバランス上、粉コークスが不足する場合には、無煙炭を選択して使用する必要がある。一方で、揮発分の少ない無煙炭は、その埋蔵量が枯渇してきている。
At present, in the sinter manufacturing process, pulverized coke and anthracite are used as a coagulant. The volatile content of powder coke is 1% or less, and the volatile content of anthracite is about 5%.
Powdered coke is coke having a small particle size after sieving sized coke suitable for blast furnace production among coke produced at steelworks. However, the amount of powdered coke is small compared to the sized coke used by the blast furnace, which is insufficient as coke for producing sintered ore. If there is a shortage of coke breeze due to the balance in the steelworks, it is necessary to select and use anthracite. On the other hand, the reserves of anthracite with low volatile content have been depleted.
粉コークスや無煙炭の代替燃料として、半無煙炭や瀝青炭、亜瀝青炭、褐炭などの石炭を焼結用炭材として用いることが検討されている。
しかしながら、半無煙炭や瀝青炭、亜瀝青炭、褐炭などの石炭は、揮発分が10〜50%と多く、そのまま使用した場合には、石炭中の揮発分が焼結ベッド内で燃焼せずに排ガス中へ同伴してしまい、排ガスブロアの不具合や最終的に煙突から排出される排ガスが着色するなどのトラブルを引き起こす。
したがって、これらの石炭を、焼結用炭材として用いるためには、何らかの手段によってチャー化を行い、揮発分を10%未満、好ましくは5%程度に減少させる必要がある。
The use of coal such as semi-anthracite, bituminous coal, sub-bituminous coal, and lignite as a sintering carbonaceous material is being investigated as an alternative fuel for powdered coke and anthracite coal.
However, coal such as semi-anthracite, bituminous coal, sub-bituminous coal, and brown coal has a high volatile content of 10 to 50%. Cause troubles such as malfunction of exhaust gas blower and coloration of exhaust gas finally discharged from the chimney.
Therefore, in order to use these coals as sintering carbon materials, it is necessary to char by some means to reduce the volatile content to less than 10%, preferably about 5%.
これまで、石炭を300℃〜900℃で熱分解して製造したチャーを焼結用炭材の全量又は一部として使用する提案がある(特許文献1)。
また、循環流動層を用いて石炭(亜瀝青炭、褐炭)を600℃〜900℃で熱分解して製造したチャーを焼結用炭材として利用する提案がある(特許文献2)。
また、石炭を内部燃焼方式のロータリーキルンにより300〜1150℃に加熱乾留し、チャーを製造する方法であって、石炭から発生する250μmの微粉粒子を燃焼除去し、石炭を乾留する提案がある(特許文献3)。
さらに、揮発分の含有量が30質量%以上、51質量%以下の石炭から製造するチャーの平均燃焼速度が、粉コークスに対して1.05倍以上、1.22倍以下であることを特徴とする焼結鉱の製造方法の提案がある(特許文献4)。
Up to now, there has been a proposal to use char produced by pyrolyzing coal at 300 ° C. to 900 ° C. as a total amount or a part of a sintering carbon material (Patent Document 1).
In addition, there is a proposal of using char produced by pyrolyzing coal (subbituminous coal, lignite) at 600 ° C. to 900 ° C. using a circulating fluidized bed as a sintering carbon material (Patent Document 2).
Also, there is a proposal for producing char by heating and distilling coal to 300 to 1150 ° C. with an internal combustion type rotary kiln, and combusting and removing 250 μm fine powder particles generated from the coal, and then subjecting the coal to carbonization (patent) Reference 3).
Furthermore, the average combustion rate of char produced from coal having a volatile content of 30% by mass or more and 51% by mass or less is 1.05 times or more and 1.22 times or less of the powder coke. There is a proposal of a method for producing a sintered ore (Patent Document 4).
しかしながら、粉コークスを代替する揮発分が低い凝結材として、上記特許文献1〜4に記載のチャーだけでなく、それ以外の選択肢についても望まれている。
However, as a coagulant having a low volatile content replacing powder coke, not only the char described in
本発明の目的は、凝結材として使用可能な炭材の種類を増やすことができ、かつ焼結鉱の生産性へ及ぼす悪影響を回避することが可能な、焼結鉱製造方法、及び、石炭チャー、又は無煙炭若しくは半無煙炭の評価方法を提供することである。 An object of the present invention is to provide a method for producing a sinter ore and a coal char which can increase the types of carbon materials that can be used as a coagulant and can avoid adverse effects on the productivity of the sinter. Or providing an evaluation method for anthracite or semi-anthracite.
これまで炭材中の揮発分は、いわゆる工業分析(JIS−M8812)で定義される分析手法によって得られた数値に基づいて評価されていた。上記分析手法では、空気を遮断した状態で900℃まで加熱した際の重量減少から揮発分を算出する。
このため、上記分析手法により評価された、揮発分が比較的大きな炭材は、排ガス中へ流出する揮発分が問題となるため、焼結用炭材には適当ではないと考えられていた。ここで、上記分析手法により評価された、揮発分が比較的大きな炭材としては、高揮発分炭材と称される、いわゆる無煙炭以外の半無煙炭を含む原炭や、比較的低温で製造した石炭チャーなどが挙げられる。
Until now, the volatile matter in the carbonaceous material has been evaluated based on numerical values obtained by an analytical method defined by so-called industrial analysis (JIS-M8812). In the above analysis method, the volatile matter is calculated from the weight reduction when heated to 900 ° C. in a state where the air is shut off.
For this reason, the carbon material having a relatively large volatile content evaluated by the above analysis method has been considered to be unsuitable for the sintering carbon material because the volatile component flowing into the exhaust gas becomes a problem. Here, as the carbon material having a relatively large volatile content evaluated by the above analysis method, the raw material coal including semi-anthracite coal other than so-called anthracite coal, which is called a highly volatile coal material, or produced at a relatively low temperature is used. Examples include coal char.
しかし、焼結用炭材としての使用を想定した場合、上記工業分析によって測定される揮発分がすべて排ガス中へ飛散同伴してしまうわけではない。確かに、炭材が燃焼を開始するまでに揮発する揮発分は排ガス中に同伴される。しかし、炭材が燃焼を開始した以降も残存していた揮発分は、焼結ベッド内で炭材の燃焼とともに燃焼されよう。したがって、かかる揮発分は排ガス中に同伴されることがなく、何ら問題が起こらないと推察される。
上記推察に基づき、本発明者は、焼結ベッド内において有効に燃焼利用される揮発分と、排ガス中へ同伴される揮発分とに着目した。そして、炭材が燃焼を開始するまでに揮発する揮発分を新たに規定し、その規定に従って炭材を選択・使用することにより、焼結鉱の生産性へ及ぼす悪影響を回避でき、また、凝結材としての使用が可能な種類を増やすことができることを見出した。本発明は、これらの知見に基づくものである。
However, assuming use as a carbon material for sintering, not all volatile components measured by the industrial analysis are scattered in the exhaust gas. Certainly, the volatile matter that volatilizes before the charcoal starts to burn is entrained in the exhaust gas. However, the volatile matter remaining after the charcoal starts to burn will be burned in the sintering bed as the charcoal burns. Therefore, such a volatile matter is not accompanied in the exhaust gas, and it is assumed that no problem occurs.
Based on the above inference, the inventor has focused on the volatile matter that is effectively used in the sintering bed and the volatile matter that is entrained in the exhaust gas. Then, by newly defining the volatile matter that volatilizes until the charcoal starts to burn, and selecting and using the charcoal according to the regulations, adverse effects on the productivity of sintered ore can be avoided, and condensation can be achieved. It was found that the types that can be used as materials can be increased. The present invention is based on these findings.
本発明の要旨とするところは、以下のとおりである。
(1)石炭チャー、又は無煙炭若しくは半無煙炭を焼結用炭材として用いる焼結鉱製造方法であって、窒素雰囲気下において、焼結時の焼結原料の昇温速度と同等の速度で加熱し、650℃における質量減少量の初期質量に対する百分率(以下、脱揮発割合という)が所望値以下の石炭チャー、又は無煙炭若しくは半無煙炭(工業分析における揮発分が5質量%以下を除く)を焼結用炭材として用いることを特徴とする焼結鉱製造方法。
(2)前記窒素雰囲気下において、焼結時の焼結原料の昇温速度と同等の速度で加熱し、石炭チャー、又は無煙炭若しくは半無煙炭の650℃における脱揮発割合を測定し、前記脱揮発割合が所望値以下の石炭チャー、又は無煙炭若しくは半無煙炭を焼結用炭材として用いることを特徴とする(1)に記載の焼結鉱製造方法。
(3)石炭チャー、又は無煙炭若しくは半無煙炭の評価方法であって、窒素雰囲気下において、焼結時の焼結原料の昇温速度と同等の速度で加熱し、650℃における脱揮発割合を測定することを特徴とする石炭チャー、又は無煙炭若しくは半無煙炭の評価方法。
The gist of the present invention is as follows.
(1) A method for producing sintered ore using coal char, anthracite or semi-anthracite as a carbon material for sintering, and heating in a nitrogen atmosphere at a rate equivalent to the rate of temperature increase of the sintering raw material during sintering And burn charcoal with a percentage of mass loss at 650 ° C. relative to the initial mass (hereinafter referred to as “devolatilization rate”) or anthracite or semi-anthracite (except for volatile content of 5% by mass or less in industrial analysis). A method for producing a sintered ore characterized by being used as a coal for binding.
(2) In the nitrogen atmosphere, heating is performed at a rate equivalent to the rate of temperature rise of the sintering raw material during sintering, and the devolatilization rate at 650 ° C. of coal char or anthracite or semi-anthracite is measured, and the devolatilization is performed. The method for producing a sinter according to (1), wherein a coal char having a ratio equal to or less than a desired value, or anthracite or semi-anthracite is used as a carbon material for sintering.
(3) Evaluation method for coal char, anthracite or semi-anthracite, heated at a rate equivalent to the rate of temperature rise of the sintering raw material during sintering in a nitrogen atmosphere, and measured the devolatilization rate at 650 ° C. A method for evaluating coal char or anthracite or semi-anthracite.
本発明によれば、脱揮発割合が所定の範囲の石炭チャー、又は無煙炭若しくは半無煙炭を焼結用炭材として用いることによって、凝結材として使用できる炭材の種類を増やすことができ、かつ焼結鉱の生産性へ及ぼす悪影響を回避することができる。 According to the present invention, it is possible to increase the types of carbonaceous materials that can be used as a coagulating material by using coal char having an devolatilization ratio within a predetermined range, or anthracite or semi-anthracite as a carbonaceous material for sintering. Adverse effects on the productivity of the ore can be avoided.
以下、本発明の実施形態を図面に基づいて詳細に説明する。
(焼結鉱製造方法)
本実施形態の焼結鉱製造方法は、石炭チャー、又は無煙炭若しくは半無煙炭の脱揮発割合を算出し、石炭チャー、又は無煙炭若しくは半無煙炭を選択的に焼結用炭材として使用することを特徴とするものである。
本発明で、石炭チャーとは、石炭(褐炭、亜瀝青炭、瀝青炭)を300〜900℃で熱分解して得られ、焼結用原料として使用するものをいう。また、無煙炭、半無煙炭とは、石炭化度が高く、揮発分含有量が比較的少ない石炭であって、焼結用原料として使用するものをいう。
ここでは、工業分析における揮発分(ドライ石炭質量基準)が10%未満である石炭を無煙炭として定義し、揮発分(ドライ石炭質量基準)が10%以上15%以下である石炭を半無煙炭として定義する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(Sinter ore manufacturing method)
The method for producing sintered ore of the present embodiment calculates the devolatilization ratio of coal char or anthracite or semi-anthracite, and selectively uses coal char or anthracite or semi-anthracite as a carbon material for sintering. It is what.
In the present invention, coal char is obtained by pyrolyzing coal (brown coal, subbituminous coal, bituminous coal) at 300 to 900 ° C. and used as a raw material for sintering. Anthracite and semi-anthracite are coals having a high degree of coalification and a relatively low volatile content, and are used as raw materials for sintering.
Here, coal with an volatile content (dry coal mass standard) of less than 10% in industrial analysis is defined as anthracite, and coal with a volatile content (dry coal mass standard) of 10% to 15% is defined as semi-anthracite. To do.
ここで脱揮発割合とは、以下の評価手法を用いて算出されたものである。
先ず、熱天秤に測定試料10mgを設置する。そして、装置内部を充分に窒素によってパージした後、窒素を200ml/min流通させた状態で昇温し、120℃において30分間維持して測定試料を充分に乾燥させる。次に、100℃/minの昇温速度にて急速加熱を行い、試料温度が650℃に到達した際の重量減少を計測する。脱揮発割合[質量%]は、上記計測結果に基づき、以下の式(1)から算出する。
Here, the devolatilization ratio is calculated using the following evaluation method.
First, 10 mg of a measurement sample is placed on a thermobalance. Then, after the inside of the apparatus is sufficiently purged with nitrogen, the temperature is raised with a flow of nitrogen of 200 ml / min, and maintained at 120 ° C. for 30 minutes to sufficiently dry the measurement sample. Next, rapid heating is performed at a rate of temperature increase of 100 ° C./min, and the weight loss when the sample temperature reaches 650 ° C. is measured. The devolatilization ratio [mass%] is calculated from the following formula (1) based on the measurement result.
式中、Aは100℃/min急速昇温開始時の試料重量(mg)であり、Bは650℃における試料重量(mg)であり、A−Bは650℃までに揮発した揮発分である。
In the formula, A is a sample weight (mg) at the start of rapid heating at 100 ° C./min, B is a sample weight (mg) at 650 ° C., and A-B is a volatile component volatilized by 650 ° C. .
上記評価手法は、急速昇温が可能な熱天秤を用い、窒素などの不活性ガス雰囲気下で急速加熱することによって、各温度レベルにおける炭材の脱揮発挙動を測定するものである。焼結用炭材は、通常600℃〜650℃程度の温度域で燃焼を開始することが多い。このため、上記評価手法では、650℃における脱揮発割合を炭材評価指標としている。 The above-mentioned evaluation method measures the devolatilization behavior of carbonaceous materials at each temperature level by using a thermobalance capable of rapid temperature increase and rapidly heating in an inert gas atmosphere such as nitrogen. The carbonaceous material for sintering usually starts to burn in a temperature range of about 600 ° C to 650 ° C. For this reason, in the said evaluation method, the devolatilization ratio in 650 degreeC is made into the carbonaceous material evaluation parameter | index.
また、炭材の脱揮発挙動は昇温速度に応じて変化するが、一般的な焼結ベッド内におけるヒートパターン(焼結原料の昇温速度)は100〜300℃/min程度である。このため、上記評価手法では、昇温速度を焼結時の焼結原料の昇温速度と同等の速度としている。
図1に、炭材Aの昇温速度と脱揮発割合との関係を示す。図1に示すように、昇温速度100℃/minで加熱した結果よりも、低い昇温速度である10℃/minで加熱した結果の方が、脱揮発割合が高い結果が得られている。この結果から明らかなように、100℃/minよりも低速の昇温速度で加熱した場合、650℃における脱揮発割合が見かけ上、大きくなってしまうことが判る。したがって、低い昇温速度では、焼結ベッド内における炭材の脱揮発挙動が正確に再現されないおそれがある。
このうち、昇温速度は、100℃/min以上300℃/min以下がより好ましく、100℃/minが特に好ましい。昇温速度が100℃/min未満であると、上述のように、脱揮発割合が過小に評価されてしまうおそれがある。他方、昇温速度が300℃/minを超えると、脱揮発割合が過大に評価されてしまうおそれがある。
Moreover, although the devolatilization behavior of the carbonaceous material changes according to the temperature rising rate, the heat pattern (temperature rising rate of the sintering raw material) in a general sintering bed is about 100 to 300 ° C./min. For this reason, in the said evaluation method, the temperature increase rate is made into the speed equivalent to the temperature increase rate of the sintering raw material at the time of sintering.
In FIG. 1, the relationship between the temperature increase rate of the carbonaceous material A and a devolatilization rate is shown. As shown in FIG. 1, the result of heating at a lower temperature increase rate of 10 ° C./min is higher than the result of heating at a temperature increase rate of 100 ° C./min. . As is apparent from this result, it can be seen that when the heating rate is lower than 100 ° C./min, the devolatilization rate at 650 ° C. is apparently increased. Therefore, at a low temperature increase rate, the devolatilization behavior of the carbonaceous material in the sintering bed may not be accurately reproduced.
Among these, the heating rate is more preferably 100 ° C./min to 300 ° C./min, and particularly preferably 100 ° C./min. If the rate of temperature increase is less than 100 ° C./min, as described above, the devolatilization rate may be underestimated. On the other hand, if the rate of temperature rise exceeds 300 ° C./min, the devolatilization rate may be overestimated.
本実施形態の焼結鉱の製造方法では、脱揮発割合が所望値以下の石炭チャー、又は無煙炭若しくは半無煙炭を焼結用炭材として用いる。前記所望値は、焼結操業管理上の諸要因を勘案して決定、管理すればよいが、5質量%が好ましい。ここに、勘案すべき諸要因には、排ガスの有機塩素物質量、ダスト油分、ブロアーの振動等であり、これらが管理値以内となるように前記所望値を定める。
脱揮発割合が所望値以下の石炭チャー、又は無煙炭若しくは半無煙炭を焼結用炭材として用いることによって、炭材中に含有される揮発分が焼結ベッド内で燃焼せずに排ガス中へ同伴する割合を削減することが可能となる。このため、排ガス中へ同伴された揮発分に起因する各種設備トラブルを回避できる。また、炭材が燃焼を開始するまでに放出される揮発分以外の部分については、焼結ベッド内で燃焼利用されるため、結果として、より少ない炭材の使用量で焼結反応に必要な熱量を賄うことが可能となる。なお、脱揮発割合が所望値を超えると排ガス中へ同伴される揮発分に付随するトラブルが大きくなる可能性があり、かつ相対的に焼結ベッド内で燃焼利用される揮発分量が少なくなり、焼結に必要な熱量が賄えなくなる可能性がある。
工業分析の揮発分が5質量%以下の無煙炭や石炭チャーの焼結用炭材としての使用はこれまでも報告されていた。しかし、これまで焼結用炭材として使用することが難しいと考えられていた揮発分が5質量%を超える無煙炭、半無煙炭や高揮発分を含有する石炭チャーについても、上記脱揮発割合を満たす評価が得られれば、焼結用炭材として使用することが可能になる。このため、本実施形態によれば、焼結用炭材として使用できる炭材の種類を増やすことができる。
In the method for producing a sintered ore according to the present embodiment, coal char having an devolatilization ratio equal to or less than a desired value, or anthracite or semi-anthracite is used as a carbon material for sintering. The desired value may be determined and managed in consideration of various factors in the sintering operation management, but 5% by mass is preferable. Here, various factors to be taken into consideration are the amount of organic chlorine in exhaust gas, the amount of dust oil, the vibration of the blower, etc., and the desired value is determined so that these are within the control value.
By using coal char with an devolatilization rate less than the desired value, or anthracite or semi-anthracite as a sintering carbonaceous material, the volatile components contained in the carbonaceous material are not combusted in the sintering bed and are entrained in the exhaust gas. It becomes possible to reduce the ratio to do. For this reason, it is possible to avoid various equipment troubles caused by volatile components entrained in the exhaust gas. In addition, parts other than the volatile matter released before the start of combustion of the carbonaceous material are used for combustion in the sintering bed. As a result, a smaller amount of carbonaceous material is required for the sintering reaction. It becomes possible to cover the amount of heat. In addition, if the devolatilization ratio exceeds the desired value, the trouble accompanying the volatile components entrained in the exhaust gas may be increased, and the amount of volatile components that are combusted and used in the sintering bed is relatively reduced. The amount of heat required for sintering may not be covered.
The use of anthracite or coal char with a volatile content of 5% by mass or less in industrial analysis as a carbon material for sintering has been reported so far. However, the above devolatilization rate is also satisfied for anthracite, semi-anthracite, and coal char containing high volatile content that has been thought to be difficult to use as a carbon material for sintering. If the evaluation is obtained, it can be used as a carbon material for sintering. For this reason, according to this embodiment, the kind of carbonaceous material which can be used as a carbonaceous material for sintering can be increased.
(石炭チャー、又は無煙炭若しくは半無煙炭の評価方法)
本実施形態の石炭チャー、又は無煙炭若しくは半無煙炭の評価方法は、石炭チャー、又は無煙炭若しくは半無煙炭の650℃迄の脱揮発割合を測定することを特徴とするものである。この評価方法によれば、これまで工業分析で定義された揮発分の値によって漠然と判断していた焼結用炭材としての使用可否を、簡便な手法によって判断できるようになる。
(Evaluation method for coal char, anthracite or semi-anthracite)
The evaluation method of coal char of this embodiment, or anthracite or semi-anthracite, is characterized by measuring the devolatilization rate of coal char or anthracite or semi-anthracite up to 650 ° C. According to this evaluation method, whether or not it can be used as a carbon material for sintering, which has been vaguely determined based on the volatile content value defined in the industrial analysis, can be determined by a simple method.
次に実施例により本発明をさらに詳しく説明する。そこで、脱揮発割合が5質量%以下が好ましいとする根拠を示す。尚、本発明はこれらの例によって何ら制限されるものではない。 Next, the present invention will be described in more detail with reference to examples. Therefore, the grounds that the devolatilization ratio is preferably 5% by mass or less are shown. In addition, this invention is not restrict | limited at all by these examples.
(各炭材の性状及び脱揮発割合)
各炭材の性状及び脱揮発割合を次の表1に示す。また、各炭材の昇温速度と脱揮発割合との関係を図2に示す。
各炭材の脱揮発割合は、以下の手法により測定した。
先ず、熱天秤(リガク社製/Thermo Plus Evo2 TG−DTA8120/H−IR スマートローダ 赤外線加熱式)に測定試料10mgを設置(アルミナ試料容器(深さ2.5mm×直径5mm))した。そして、装置内部を充分に窒素によってパージした後、窒素を200ml/min流通させた状態で昇温し、120℃において30分間維持して測定試料を充分に乾燥させた。次に、100℃/minの昇温速度にて急速加熱を行い、試料温度が650℃に到達した際の重量減少を計測し、上記式(1)から脱揮発割合を算出した。
図2において、三角の記号で示している、650℃迄の脱揮発割合が5質量%以下の炭材(A,B,C,D,E)は焼結用炭材として使用することが好ましい範囲である。このうち、炭材Eは炭材Fよりも揮発分含有量は大きいが、650℃迄の脱揮発割合が少ないため、焼結用炭材として好ましい炭材であると評価できる。
(Characteristics and devolatilization rate of each charcoal)
The properties and devolatilization ratio of each carbon material are shown in Table 1 below. Moreover, the relationship between the temperature increase rate of each carbon | charcoal material and a devolatilization rate is shown in FIG.
The devolatilization ratio of each carbon material was measured by the following method.
First, 10 mg of a measurement sample (alumina sample container (depth 2.5 mm × diameter 5 mm)) was placed on a thermobalance (Rigaku Corporation / Thermo Plus Evo2 TG-DTA8120 / H-IR smart loader infrared heating type). Then, after the inside of the apparatus was sufficiently purged with nitrogen, the temperature was raised in a state where nitrogen was circulated at 200 ml / min, and maintained at 120 ° C. for 30 minutes to sufficiently dry the measurement sample. Next, rapid heating was performed at a rate of temperature increase of 100 ° C./min, the weight loss when the sample temperature reached 650 ° C. was measured, and the devolatilization rate was calculated from the above formula (1).
In FIG. 2, carbon materials (A, B, C, D, E) having a devolatilization rate up to 650 ° C. of 5% by mass or less, indicated by triangular symbols, are preferably used as sintering carbon materials. It is a range. Among these, although the carbon material E has a larger volatile content than the carbon material F, since it has a small devolatilization rate up to 650 ° C., it can be evaluated that the carbon material is a preferable carbon material for sintering.
(焼結実験)
上記表1に示す炭材(粉コークス、無煙炭、半無煙炭、石炭チャー)を用い、焼成鍋試験を実施し、焼結鉱生産性及び排ガス中に含有される揮発分(タール)量を確認した。
焼成鍋試験に用いた原料配合を以下の表2に示す。また、用いた炭材の粒度分布を表3に示す。全ての試験において、炭材の粒度分布は同一とした。炭材の使用量は、ベース(参考例)を乾燥済みの粉コークス4.5質量%(外数)とし、炭材A〜Gの使用時は、乾燥後の炭材重量が、ベースと同様になるように、コークスの全量を炭材A〜Gで置換した。
(Sintering experiment)
Using the charcoal materials (powder coke, anthracite, semi-anthracite, coal char) shown in Table 1 above, a firing pot test was carried out, and the sinter productivity and the amount of volatile matter (tar) contained in the exhaust gas were confirmed. .
The raw material composition used in the baking pot test is shown in Table 2 below. Table 3 shows the particle size distribution of the carbonaceous materials used. In all tests, the particle size distribution of the charcoal was the same. The amount of the carbon material used is 4.5% by mass (outside number) of the dried coke boiled base (reference example). When using the carbon materials A to G, the weight of the carbon material after drying is the same as that of the base. The total amount of coke was replaced with carbonaceous materials A to G.
焼結鍋試験は、配合原料を直径1mのドラムミキサーを用いて1分間混合したのち4分間造粒して擬似粒子原料を作成し、焼結鍋試験装置(直径:300mm、層高:600mm)に充填し、点火90秒、吸引負圧15kPa一定の条件で焼成した。評価項目は、燃焼進行速度、成品歩留、生産率、及び排ガス中揮発分含有量とした。排ガス中揮発分含有量の測定方法を以下に示す。 In the sintering pot test, the blended raw materials were mixed for 1 minute using a drum mixer having a diameter of 1 m, and then granulated for 4 minutes to prepare a pseudo particle raw material. A sintering pot test apparatus (diameter: 300 mm, layer height: 600 mm) And was fired under the conditions of ignition for 90 seconds and suction negative pressure of 15 kPa. Evaluation items were combustion progress rate, product yield, production rate, and volatile content in exhaust gas. The method for measuring the volatile content in the exhaust gas is shown below.
(排ガス中揮発分含有量の測定方法)
(1)鍋試験実施中(点火から焼結完了まで)の排ガスを吸収液としてジクロロメタンを投入した吸収瓶内へ1.0〜3.0L/minで吸引する。
(2)ガス吸引後の吸収液をろ過してダスト分を除去する。明らかに水分が多く含まれる場合にはデカンテーションによって水分の除去を行う。
(3)吸収液を80℃以下のホットプレート上で加熱することによってジクロロメタンを蒸発させた後、恒量となった時点での残留物重量を排ガス中の揮発分(タール)含有量とし、先に吸収液中へ吸引したガス量で除することによって排ガス中の揮発分(タール)濃度を算出する。
(Measurement method of volatile content in exhaust gas)
(1) Suction is performed at 1.0 to 3.0 L / min into an absorption bottle filled with dichloromethane using the exhaust gas during the pot test (from ignition to completion of sintering) as an absorption liquid.
(2) The absorption liquid after gas suction is filtered to remove dust. If there is clearly a lot of water, the water is removed by decantation.
(3) After evaporating dichloromethane by heating the absorbing solution on a hot plate at 80 ° C. or lower, the residual weight at the time when the amount becomes constant is defined as the volatile content (tar) content in the exhaust gas. The concentration of volatile matter (tar) in the exhaust gas is calculated by dividing by the amount of gas sucked into the absorbent.
焼結鍋試験の結果を表4に示す。
炭材Bはすでに広く焼結用として使用されている無煙炭であって、その排ガス中揮発分含有量は0.07g/Nm3であった。これと比較して炭材A、C〜Eのそれは概ね同等ないしそれ以下であることから、焼結での使用可能と判定した。一方、炭材F、Gのそれは炭材Bのそれの倍以上であった。かかる結果に基づいて、脱揮発割合の所望値は5質量%が好ましいとした。
尚、実施例1〜5は、粉コークスを用いた参考例と比較して、炭材の燃焼性などが異なることに起因して燃焼進行速度FFS及び成品歩留がそれぞればらつく結果となったが、生産率に関しては参考例を大きく下回ることはなかった。一方で、炭材F,Gを用いた比較例1,2は、参考例と比較して、成品歩留が大幅に低下した。これは、明らかに熱不足の状況であった。
また、排ガス中に含有される揮発分の含有量は、比較例1,2が最も多く、比較例1,2の炭材F,Gでは、焼結ベッド内で燃焼せずに放出される揮発分量が多いことが示唆された。
The results of the sintering pot test are shown in Table 4.
Carbon material B is anthracite which has already been widely used for sintering, and its volatile content in the exhaust gas was 0.07 g / Nm 3 . Compared with this, the carbonaceous materials A and C to E are almost equal to or less than that, and thus determined to be usable in sintering. On the other hand, that of carbon materials F and G was more than twice that of carbon material B. Based on these results, the desired value of the devolatilization ratio is preferably 5% by mass.
In addition, although Examples 1-5 compared with the reference example using a powder coke, it became a result from which combustion progress speed FFS and a product yield varied, respectively, originated in the combustibility etc. of a carbonaceous material differing. The production rate was not significantly below the reference example. On the other hand, in Comparative Examples 1 and 2 using the carbonaceous materials F and G, the product yield was significantly reduced as compared with the Reference Example. This was clearly a lack of heat.
The content of volatile components contained in the exhaust gas is the highest in Comparative Examples 1 and 2, and the carbonaceous materials F and G of Comparative Examples 1 and 2 are volatilized released without burning in the sintering bed. The amount was suggested to be large.
脱揮発割合が所定の範囲の石炭チャー、又は無煙炭若しくは半無煙炭を焼結用炭材として用いることによって、凝結材として使用できる炭材の種類を増やすことができ、かつ焼結鉱の生産性へ及ぼす悪影響を回避することができる。 By using coal char with an devolatilization ratio within a specified range, or anthracite or semi-anthracite as a sintering carbon material, the types of carbon materials that can be used as agglomerated material can be increased, and the productivity of sintered ore can be increased. The adverse effects can be avoided.
Claims (3)
窒素雰囲気下において、焼結時の焼結原料の昇温速度と同等の速度で加熱し、650℃における質量減少量の初期質量に対する百分率が所望値以下の石炭チャー、又は無煙炭若しくは半無煙炭(工業分析における揮発分が5質量%以下を除く)を焼結用炭材として用いることを特徴とする焼結鉱製造方法。 A method for producing sinter using coal char or anthracite or semi-anthracite as a carbon material for sintering,
In a nitrogen atmosphere, heating is performed at a rate equivalent to the temperature increase rate of the sintering raw material at the time of sintering, and a coal char whose an amount of mass reduction at 650 ° C. is less than a desired value, anthracite or semi-anthracite (industrial A method for producing a sintered ore characterized in that a volatile content in the analysis is less than 5% by mass) as a carbon material for sintering.
窒素雰囲気下において、焼結時の焼結原料の昇温速度と同等の速度で加熱し、650℃における質量減少量の初期質量に対する百分率を測定することを特徴とする石炭チャー、又は無煙炭若しくは半無煙炭の評価方法。 A method for evaluating coal char or anthracite or semi-anthracite,
In a nitrogen atmosphere, the mixture is heated at a rate equivalent to the rate of temperature rise of the sintering raw material during sintering, and the percentage of the mass reduction amount at 650 ° C. with respect to the initial mass is measured. Anthracite evaluation method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014078047A JP6295791B2 (en) | 2014-04-04 | 2014-04-04 | Sinter ore production method and evaluation method of coal char or anthracite or semi-anthracite |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014078047A JP6295791B2 (en) | 2014-04-04 | 2014-04-04 | Sinter ore production method and evaluation method of coal char or anthracite or semi-anthracite |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015199976A true JP2015199976A (en) | 2015-11-12 |
JP6295791B2 JP6295791B2 (en) | 2018-03-20 |
Family
ID=54551528
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014078047A Active JP6295791B2 (en) | 2014-04-04 | 2014-04-04 | Sinter ore production method and evaluation method of coal char or anthracite or semi-anthracite |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6295791B2 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008095170A (en) * | 2005-10-31 | 2008-04-24 | Jfe Steel Kk | Method for producing sintered ore and sintering machine therefor |
JP2010126802A (en) * | 2008-12-01 | 2010-06-10 | Jfe Steel Corp | Method for producing sintered ore |
JP2010254929A (en) * | 2009-04-28 | 2010-11-11 | Nippon Steel Corp | Process for producing setting material for manufacture of sintered ore |
JP2013087342A (en) * | 2011-10-19 | 2013-05-13 | Nippon Steel & Sumitomo Metal Corp | Method for producing sintered ore |
JP2014133937A (en) * | 2013-01-11 | 2014-07-24 | Nippon Steel & Sumitomo Metal | Method for producing sintered ore |
-
2014
- 2014-04-04 JP JP2014078047A patent/JP6295791B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008095170A (en) * | 2005-10-31 | 2008-04-24 | Jfe Steel Kk | Method for producing sintered ore and sintering machine therefor |
JP2010126802A (en) * | 2008-12-01 | 2010-06-10 | Jfe Steel Corp | Method for producing sintered ore |
JP2010254929A (en) * | 2009-04-28 | 2010-11-11 | Nippon Steel Corp | Process for producing setting material for manufacture of sintered ore |
JP2013087342A (en) * | 2011-10-19 | 2013-05-13 | Nippon Steel & Sumitomo Metal Corp | Method for producing sintered ore |
JP2014133937A (en) * | 2013-01-11 | 2014-07-24 | Nippon Steel & Sumitomo Metal | Method for producing sintered ore |
Also Published As
Publication number | Publication date |
---|---|
JP6295791B2 (en) | 2018-03-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4003509B2 (en) | Reuse method of fine coke generated in coke production process | |
JP2008024984A (en) | Blast furnace operating method using woody biomass as raw material | |
JP2022033594A (en) | Method for manufacturing sintered ore | |
JP5857618B2 (en) | Method for producing sintered ore | |
JP2020186436A (en) | Manufacturing method of sintered ore | |
Ikelle et al. | The characterization of the heating properties of briquettes of coal and rice husk | |
JP2014040552A (en) | Method for producing mixed fuel and molded product | |
JP6044353B2 (en) | Method for producing sintered ore | |
JP2015078397A (en) | Method for manufacturing sintered ore | |
JP4681688B2 (en) | Iron ore sintering carbon | |
JP6295791B2 (en) | Sinter ore production method and evaluation method of coal char or anthracite or semi-anthracite | |
JP4842410B2 (en) | Method for producing solid fuel for sintering, solid fuel for sintering, and method for producing sintered ore using the same | |
JP5412940B2 (en) | Method for producing a coagulation material for sinter production | |
JP6167851B2 (en) | Method for producing coconut shell charcoal | |
JP7143714B2 (en) | Method for producing carbon material for sintering, method for selecting raw material for carbon material for sintering, and method for producing sintered ore | |
JP5811756B2 (en) | Method for producing sintered ore | |
JP6521259B2 (en) | Method of producing sintering material for producing sintered ore | |
WO2016208435A1 (en) | Ferro-coke production method | |
JP7564446B2 (en) | Method for evaluating carbonaceous materials for sintering and method for producing sintered ore | |
JP7397303B2 (en) | Method for producing sintered ore | |
JP2020186416A (en) | Sintered soot dust management method | |
Ikelle et al. | The study of briquettes produced with bitumen, CaSO4 and starch as binders | |
JP6683094B2 (en) | Evaluation method of visible level of exhaust gas from sintering machine and selection method of carbonaceous material for sintering | |
JP6016001B1 (en) | Ferro-coke manufacturing method | |
JP7469622B2 (en) | Manufacturing method of carbonaceous material for sintering and manufacturing method of sintered ore |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20161205 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20171005 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20171017 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20171102 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180123 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180205 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6295791 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |