JP5058544B2 - Manufacturing method of briquette for steelmaking raw material - Google Patents

Manufacturing method of briquette for steelmaking raw material Download PDF

Info

Publication number
JP5058544B2
JP5058544B2 JP2006260259A JP2006260259A JP5058544B2 JP 5058544 B2 JP5058544 B2 JP 5058544B2 JP 2006260259 A JP2006260259 A JP 2006260259A JP 2006260259 A JP2006260259 A JP 2006260259A JP 5058544 B2 JP5058544 B2 JP 5058544B2
Authority
JP
Japan
Prior art keywords
raw material
briquette
kneader
curing
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006260259A
Other languages
Japanese (ja)
Other versions
JP2008081759A (en
Inventor
賢一 片山
芳行 御手洗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nippon Steel Nisshin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Nisshin Co Ltd filed Critical Nippon Steel Nisshin Co Ltd
Priority to JP2006260259A priority Critical patent/JP5058544B2/en
Publication of JP2008081759A publication Critical patent/JP2008081759A/en
Application granted granted Critical
Publication of JP5058544B2 publication Critical patent/JP5058544B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Glanulating (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、製鋼工程で発生する製鋼ダスト等の副産物を製団してなる製鋼原料用ブリケットの製造方法に関する。   The present invention relates to a method for producing briquettes for a steelmaking raw material formed by making a by-product such as steelmaking dust generated in a steelmaking process.

製鋼工程において、電気炉や転炉で発生する製鋼ダストや転炉ダスト、熱延工程で発生するスケール、酸洗処理工程で発生するスラリー状のスラッジを脱水し、乾燥した廃酸スラジ等、製鋼の各種工程で発生する副産物は、これを回収して製鋼原料として用いるため、製団してブリケットに成形することが一般に行われている。   Steelmaking, such as steelmaking dust and converter dust generated in electric furnaces and converters, scales generated in hot rolling processes, slurry sludge generated in pickling processes, and dried waste acid sludge in steelmaking processes The by-products generated in the various processes are collected and used as a steelmaking raw material, and therefore, it is generally performed to form a briquette.

図1は、ブリケットを製造して製鋼設備の電気炉に使用するまでの従来の工程を示すもので、製鋼ダストA、転炉ダストB、スケールC、廃酸スラジD、コークスその他Eの各種原料を個別に貯蔵するホッパーから各種原料を一定量ずつ切出し装置により切出して混練機に入れ、これにバインダー及び水を加えて混練したのち加給機により図2に示すような断面半菱型状の凹所1を形成した一対の互いに逆向きに回転するローラ2よりなる加圧成形式の製団機に押込み、凹所1に押込まれた混練物を固めて製団するようになっており、製団機で固まらなかった原料や図3に示すようなブリケット3の耳部4の欠片、或いは目標粒度以下のブリケットは、振動篩い機よりなる分級機に掛けて分離し、篩い下の原料は、混練機に戻されて再度製団化されるようになっている。一方、篩い上の原料はベルトコンベヤにより養生ヤードに搬送され、養生ヤードで自然乾燥されたのち電気炉に搬入し、投入されるようになっている。   FIG. 1 shows a conventional process from the manufacture of briquettes to use in an electric furnace of a steelmaking facility. Various raw materials for steelmaking dust A, converter dust B, scale C, waste acid sludge D, coke and other E Each raw material is cut out from a hopper that individually stores a certain amount by a cutting device, put into a kneader, kneaded with a binder and water added thereto, and then kneaded with a semi-rhombus-shaped recess as shown in FIG. It is pushed into a pressure molding type dumping machine composed of a pair of rollers 2 that rotate in opposite directions to form the place 1, and the kneaded product pushed into the recess 1 is hardened to make a group. The raw material that has not been solidified by the machine, the fragments of the ears 4 of the briquette 3 as shown in FIG. 3, or briquettes having a target particle size or less are separated by a classifier consisting of a vibration sieve, and the raw material under the sieve is Return to the kneader and re-assemble It is adapted to be. On the other hand, the raw material on the sieve is transported to a curing yard by a belt conveyor, naturally dried in the curing yard, and then carried into an electric furnace and put in.

上述するように製団機で製団されたブリケットは、分級機による篩い掛け、ベルトコンベヤにより搬送する際のベルトコンベヤ乗り継ぎ時での落下衝突、養生ヤードでの重機による搬出入により機械的に壊され、また養生中、ブリケットに含有される水分と原料中のCaO、MgOとの水和反応による膨張でブリケットが崩壊したりし、電気炉などの製鋼設備に投入される時点でブリケットはかなりな割合で壊れ、粉分を多く含んでいるのが常である。炉内に供給される原料に粉分が多量に含まれると、炉内での棚吊りやガス抜け悪化による生産性の悪化などのトラブルを生じがちで、こうしたトラブルを避けるため、養生ヤードのブリケットを分級機により分級し、篩い上の原料を製鋼設備に搬入していた(篩い下の原料は、混練機に戻される)。   As described above, briquettes produced by a machine are broken mechanically by sieving with a classifier, falling collisions when transferring by a belt conveyor, and loading / unloading by a heavy machine at a curing yard. During curing, the briquette collapses due to expansion due to the hydration reaction between the moisture contained in the briquette and CaO and MgO in the raw material, and when the briquette is put into a steelmaking facility such as an electric furnace, the briquette is considerable. It usually breaks in proportion and contains a lot of powder. If the raw material supplied to the furnace contains a large amount of powder, it tends to cause troubles such as shelf hanging in the furnace and productivity deterioration due to worsening of gas outflow. To avoid such problems, briquettes in the curing yard Was classified by a classifier, and the raw material on the sieve was carried into a steelmaking facility (the raw material under the sieve was returned to the kneader).

ブリケットの粉状化を避けるため、ブリケット強度を高めることも試みられ、この一環として、下記特許文献1には、混練機で混練した混練物をロータリーキルンにて800〜1300℃の温度で焼成して粒状化したのち電気炉に投入することが開示されている。
特開昭51−28516号
In order to avoid briquetting powdering, attempts have been made to increase briquette strength. As part of this, Patent Document 1 below discloses that a kneaded material kneaded by a kneader is baked at a temperature of 800 to 1300 ° C. in a rotary kiln. It is disclosed that the material is granulated and then charged into an electric furnace.
JP 51-28516

本発明者らは、養生ヤードのブリケットを分級し、篩い下の原料を混練機に戻す際のリターン量を製団総原料に対し特定の割合にすると、ブリケットの強度が向上し、製鋼設備に搬入される原料の粉率が低下することを見出した。   The present inventors classify briquettes in the curing yard, and when the return amount when returning the raw material under the sieve to the kneading machine is set to a specific ratio with respect to the total raw materials for the steel making, the strength of the briquettes is improved and the steel making facility is improved. It has been found that the powder rate of the raw material carried in decreases.

本発明は、かかる知見に基づいてなされたもので、その目的は、ブリケット強度が向上し、製鋼設備に搬入される原料の粉率が低下する製鋼原料用ブリケットの製造方法を提供しようとするものである。   The present invention has been made based on such knowledge, and its object is to provide a method for producing briquettes for steelmaking raw materials in which the briquette strength is improved and the powder rate of the raw materials carried into the steelmaking facilities is reduced. It is.

請求項1に係わる発明は、CaOを少なくとも10質量%以上含有する製鋼用原料に水溶性のバインダーを添加して混練機で混練したのち、加圧成形式の製団機により製団し、ついで養生することよりなる製鋼原料用ブリケットの製造方法において、養生後のブリケットを分級し、その篩い下を製団総原料の10〜40質量%の範囲で混練機にリターンするとともに、混練機投入原料の粒度構成が、0.85mm以下が65〜85%、0.85mm〜4.75mmが10〜20%、4.75mm以上が5〜15%になるように、篩い目サイズ及び篩い下量を調整することを特徴とする。 In the invention according to claim 1, after adding a water-soluble binder to a steelmaking raw material containing at least 10% by mass or more of CaO and kneading with a kneader, the product is formed with a pressure forming type forming machine, In the method for producing briquettes for steelmaking raw materials comprising curing, the briquettes after curing are classified, and the sieved material is returned to the kneader in the range of 10 to 40% by mass of the total raw materials of the group, and the raw materials charged into the kneader The size of the sieving and the amount under sieving are set so that the particle size composition is 65 to 85% for 0.85 mm or less, 10 to 20% for 0.85 mm to 4.75 mm, and 5 to 15% for 4.75 mm or more. It is characterized by adjusting .

本発明方法によると、大幅な強度アップと粉率低下が可能となった。   According to the method of the present invention, it is possible to significantly increase the strength and decrease the powder rate.

本実施形態は、図1に示すブリケット製造工程において、養生ヤードでの養生後、分級機にかけて分離した篩い下の混練機へのリターン量Wを製団総原料の10〜40質量%の範囲にしたものである。強度アップと粉率低下を達成するにはリターン量を製団総原料の10質量%以上とする必要があるが、リターン量が40質量%を越えても強度アップは頭打ちとなるのに対し、トータルバインダー量が増加してコストアップを招き、生産性が低下することから好ましくない。   In this embodiment, in the briquette manufacturing process shown in FIG. 1, after curing in the curing yard, the return amount W to the kneading machine under the sieve separated by the classifier is in the range of 10 to 40% by mass of the total raw material of the group. It is what. In order to achieve an increase in strength and a reduction in the powder rate, the return amount needs to be 10% by mass or more of the total raw material of the group. However, even if the return amount exceeds 40% by mass, the increase in strength will reach its peak. This is not preferable because the total binder amount increases, resulting in an increase in cost and a decrease in productivity.

好ましい実施形態ではまた、混練機に投入される原料の粒度構成を0.85mm以下が65〜85%、0.85〜4.75mmが10〜20%、4.75mm以上が5〜15%とする。なお製団直後の篩い下も混練機に戻されるが、その量は養生後に分級されて混練機にリターンされる量Wに比べ僅かである。   In a preferred embodiment, the particle size constitution of the raw material charged into the kneader is 65 to 85% for 0.85 mm or less, 10 to 20% for 0.85 to 4.75 mm, and 5 to 15% for 4.75 mm or more. To do. In addition, under the sieve just after the formation, the sieve is also returned to the kneader, but the amount is small compared to the amount W classified after curing and returned to the kneader.

実施例1
ステンレス製造工場で発生する表1に示す組成の原料を表2に示す割合で配合し、これにリグニン(樹脂系の水溶性バインダー)濃度50%の水溶液を原料1トン当り表4のNo.1〜No.9に示す量を添加し、更に少量の水を微調整して追添加して、処理量が時間当たり9トンの混練機により混練し、図2に示す加圧成形式の製団機で製団した。製団直後、分級機の10mm目で振動篩いにより分級し(1段目篩い)、篩い下は混練機にリターンした。一方、篩い上はベルトコンベヤにより養生ヤードへ送り、3日間自然養生した。ここで養生期間を3日とした根拠は、次の通りである。図4は本発明者らが求めたブリケットの養生時間と強度との関係を示す図で、養生開始後72時間経過すると、強度が80kgfに近付き、ほぼ飽和状態となったことによるものである。養生後、分級機の10mm目で振動篩いにより分級し(2段目篩い)、篩い下は混練機にリターンした。このときのリターン量Wは製団総原料の15〜40質量%であった。2段目篩いで分級された篩い上のブリケットは、電気炉の原料として使用した。
Example 1
The raw materials having the composition shown in Table 1 generated in a stainless steel manufacturing plant were blended in the ratio shown in Table 2, and an aqueous solution having a lignin (resin-based water-soluble binder) concentration of 50% was added to No. 1-No. The amount shown in Fig. 9 is added, and a small amount of water is finely adjusted and further added, kneaded by a kneader with a throughput of 9 tons per hour, and manufactured by a pressure molding type dumper shown in Fig. 2. I joined together. Immediately after the formation, the sieve was classified with a vibration sieve at the 10 mm position of the classifier (first stage sieve), and the sieved material was returned to the kneader. On the other hand, the sieve was sent to a curing yard by a belt conveyor and cured naturally for 3 days. The grounds for setting the curing period to 3 days are as follows. FIG. 4 is a diagram showing the relationship between the briquette curing time and the strength obtained by the present inventors. The strength approaches 80 kgf after 72 hours from the start of curing, and is almost saturated. After curing, classification was carried out with a vibration sieve (second stage sieve) at the 10 mm position of the classifier, and the sieve was returned to the kneader. The return amount W at this time was 15 to 40% by mass of the total material of the association. The briquettes on the sieve classified by the second stage sieve were used as raw materials for the electric furnace.

実施例1において、混練機に投入した原料の粒度分布、製団機で製団した直後の水分(%)、製団後の圧壊強度(kgf)、養生後のブリケットの圧壊強度(kgf)、ブリッケットの比重、10mm以下の粉の割合を示す粉率(%)、電気炉での1日当りの処理量(T/D)、溶解電力原単位指数を個別に測定し、その結果を表3及び表4に示した。なお、溶解電力原単位指数は、電気炉で原料1トン溶解するのに要した従来の電力量の平均値を100として求めたものである。   In Example 1, the particle size distribution of the raw materials charged into the kneader, the moisture (%) immediately after being formed by the clustering machine, the crushing strength after formation (kgf), the crushing strength of the briquette after curing (kgf), The specific gravity of briquettes, the powder rate (%) indicating the proportion of powder of 10 mm or less, the daily treatment amount (T / D) in the electric furnace, and the melting power intensity index were measured individually, and the results are shown in Table 3 and Table 4 shows. The melting power intensity index is obtained by setting the average value of the conventional electric energy required to melt 1 ton of raw material in an electric furnace as 100.

Figure 0005058544
Figure 0005058544

Figure 0005058544
Figure 0005058544

実施例2
リグニンの配合量及び混練機に供給される原料の粒度分布を表3及び表4に示す割合とし、1段目及び2段目の分級機の篩い目を7mm、2段目の篩い下のリターン量Wを製団総原料の25質量%又は30質量%とした以外は実施例1と同様にしてブリケットを製造し、篩い上のブリケットを電気炉の原料として使用した。
Example 2
The blending amount of lignin and the particle size distribution of the raw material supplied to the kneader are the ratios shown in Tables 3 and 4, and the sieves of the first and second stage classifiers are 7 mm and the return under the second stage sieves. A briquette was produced in the same manner as in Example 1 except that the amount W was 25% by mass or 30% by mass of the total mass of the group, and the briquette on the sieve was used as a raw material for the electric furnace.

実施例2における混練機に投入される原料の粒度分布、製団機で製団した直後の水分(%)、製団後の圧壊強度(kgf)、養生後のブリケットの圧壊強度(kgf)、ブリッケットの比重、10mm以下の粉の割合を示す粉率(%)、電気炉での1日当りの処理量(T/D)、溶解電力原単位指数を個別に測定し、その結果を表3及び表4に示した。   Particle size distribution of raw materials charged into the kneader in Example 2, moisture (%) immediately after forming with a clustering machine, crushing strength after forming (kgf), crushing strength of briquette after curing (kgf), The specific gravity of briquettes, the powder rate (%) indicating the proportion of powder of 10 mm or less, the daily treatment amount (T / D) in the electric furnace, and the melting power intensity index were measured individually, and the results are shown in Table 3 and Table 4 shows.

実施例3
リグニンの配合量及び混練機に供給される原料の粒度分布を表3及び表4に示す割合とし、1段目及び2段目の分級機の篩い目を5mm、リターン量Wを製団総原料の25質量%又は30質量%とした以外は実施例1と同様にしてブリケットを製造し、篩い上げのブリケットを電気炉の原料として使用した。
Example 3
The blending amount of lignin and the particle size distribution of the raw material supplied to the kneader are the ratios shown in Tables 3 and 4, and the sieves of the first and second stage classifiers are 5 mm, and the return amount W is the total weight of the group. A briquette was produced in the same manner as in Example 1 except that the amount was 25% by mass or 30% by mass, and a sieved briquette was used as a raw material for an electric furnace.

実施例3における混練機に投入される原料の粒度分布、製団機で製団した直後の水分(%)、製団後の圧壊強度(kgf)、養生後のブリケットの圧壊強度(kgf)、ブリッケットの比重、10mm以下の粉の割合を示す粉率(%)、電気炉での1日当りの処理量(T/D)、溶解電力原単位指数を個別に測定し、その結果を表3及び表4に示した。   Particle size distribution of raw materials put into the kneading machine in Example 3, moisture (%) immediately after forming with a clustering machine, crushing strength after forming (kgf), crushing strength of briquette after curing (kgf), The specific gravity of briquettes, the powder rate (%) indicating the proportion of powder of 10 mm or less, the daily treatment amount (T / D) in the electric furnace, and the melting power intensity index were measured individually, and the results are shown in Table 3 and Table 4 shows.

Figure 0005058544
Figure 0005058544

Figure 0005058544
Figure 0005058544

比較例1
リグニンの配合量及び混練機に供給される原料の粒度分布を表3及び表4に示す割合とし、分級機の篩い目を10mm(養生後の分級はない)、なお、リグニンの配合量は、ブリケットの性状、生産性を見ながら最大添加可能な量とした。1段目の篩い下のリターン量を表3に示されるように製団総原料の3.9〜5.1質量%とした以外は実施例1と同様にしてブリケットを製造し、そのまま電気炉の原料として使用した。
Comparative Example 1
The blending amount of the lignin and the particle size distribution of the raw material supplied to the kneader are the ratios shown in Tables 3 and 4, and the sieve of the classifier is 10 mm (there is no classification after curing). The blending amount of the lignin is: While observing the properties and productivity of briquettes, the maximum amount was added. A briquette was produced in the same manner as in Example 1 except that the return amount under the first stage sieve was changed to 3.9 to 5.1% by mass of the total raw material of the group as shown in Table 3, and the electric furnace was used as it was. Used as raw material.

比較例1における混練機に投入される原料の粒度分布、製団機で製団した直後の水分(%)、製団後の圧壊強度(kgf)、養生後のブリケットの圧壊強度(kgf)、ブリッケットの比重、10mm以下の粉の割合を示す粉率(%)、電気炉での1日当りの処理量(T/D)、溶解電力原単位指数を個別に測定し、その結果を表3及び表4に示した。   Particle size distribution of raw materials put into the kneading machine in Comparative Example 1, moisture (%) immediately after forming with a dumping machine, crushing strength after forming (kgf), crushing strength of briquette after curing (kgf), The specific gravity of briquettes, the powder rate (%) indicating the proportion of powder of 10 mm or less, the daily treatment amount (T / D) in the electric furnace, and the melting power intensity index were measured individually, and the results are shown in Table 3 and Table 4 shows.

比較例2
リグニンの配合量及び混練機に供給される原料の粒度分布を表3及び表4に示す割合とし、1段目及び2段目の分級機の篩い目を10mm、2段目の篩い下のリターン量を5.4〜9.6wt%とした以外は実施例1と同様にしてブリケットを製造し、篩い上のブリケットを電気炉の原料として使用した。なお、リグニンの配合量は、ブリケットの性状、生産性を見ながら最大添加可能な量とした。
Comparative Example 2
The blending amount of the lignin and the particle size distribution of the raw material supplied to the kneader are the ratios shown in Tables 3 and 4, and the sieves of the first and second classifiers are 10 mm and the return under the second stage sieves. A briquette was produced in the same manner as in Example 1 except that the amount was 5.4 to 9.6 wt%, and the briquette on the sieve was used as a raw material for the electric furnace. The blending amount of lignin was set to the maximum amount that could be added while checking the properties and productivity of briquettes.

比較例2における混練機に投入される原料の粒度分布、製団機で製団した直後の水分(%)、製団後の圧壊強度(kgf)、養生後のブリケットの圧壊強度(kgf)、ブリッケットの比重、10mm以下の粉の割合を示す粉率の割合(%)、電気炉での1日当りの処理量(T/D)、溶解電力原単位指数を個別に測定し、その結果を表3及び表4に示した。   Particle size distribution of raw materials charged into the kneader in Comparative Example 2, moisture (%) immediately after forming in the clustering machine, crushing strength after forming (kgf), crushing strength of briquette after curing (kgf), The specific gravity of briquette, the ratio of the powder ratio indicating the ratio of powder of 10 mm or less (%), the daily treatment amount in the electric furnace (T / D), and the melting power intensity index are individually measured, and the results are shown in Table 3 and Table 4.

表3及び表4に示されるように、実施例1〜3は、比較例1及び2に比べ、バインダー原単位は最大で2割程度増えており、製団後の強度、とりわけ養生後の強度が格段に向上し、製団後のブリケットの水分含有量が低下すると共に10mm以下の粉率%が格段に低下した。これは、混練機にリターンする養生後の篩い下が、混練及び製団する際の骨材となること、養生後の篩い下に含まれるバインダーは、水分が低下していることから原料によく馴染んで原料の固化反応を促進させ、また水分の低下により混練機で新規に添加するバインダーが、篩い下に含まれるバインダー量に影響されることなく添加できてトータルバインダー量が増えたことによるものと考えられる。   As shown in Table 3 and Table 4, in Examples 1 to 3, the binder basic unit increased by about 20% at maximum compared to Comparative Examples 1 and 2, and the strength after the formation, especially the strength after curing. However, the moisture content of the briquette after the formation was reduced and the powder percentage% of 10 mm or less was significantly reduced. This is because the sieving after curing that returns to the kneading machine becomes an aggregate when kneading and forming, and the binder contained in the sieving after curing is well used as a raw material because the moisture is reduced. This is due to the increase in the total amount of binder that can be added without being affected by the amount of binder contained under the sieve, as the binder added to the material accelerates the solidification reaction of the raw material, and the newly added binder in the kneader due to the decrease in moisture it is conceivable that.

実施例1〜3の養生後のブリケットの水分含有量(養生後のブリケットは表3に示される製団直後の水分含有量より通常2〜3%程度低下する。)及び粉率が低下することから電気炉内のブリケットの棚吊りや吹上げが抑えられるようになり、処理量も比較例1及び2に比べ増加することができ、また電気炉での低エネルギーの溶解が可能となって効率的な処理が可能となった。ここで電気炉での低エネルギーでの溶解が可能となった理由として次のことが考えられる。電気炉に投入された原料は、炉内を下降するにつれ、ガスにより予熱乾燥されて溶解されるが、実施例1〜3のブリケットは比較例1、2のブリケットに比べ、粉率が低いためにガス抜けが良好となり、また比重の高いことからブリケットへの熱伝達が向上し、これによりブリケットを溶解するのに要するエネルギーが低減されるものと考えられる。   The moisture content of the briquettes after curing in Examples 1 to 3 (the briquettes after curing are usually reduced by about 2-3% from the moisture content immediately after the formation shown in Table 3) and the powder rate are reduced. From this, it is possible to suppress briquette shelves and blow-ups in the electric furnace, the processing amount can be increased as compared with Comparative Examples 1 and 2, and low energy melting in the electric furnace is possible and efficiency is improved. Processing became possible. The following can be considered as the reason why melting at low energy in an electric furnace is possible. As the raw material charged into the electric furnace descends in the furnace, it is preheated and melted by gas, but the briquettes of Examples 1 to 3 have a lower powder rate than the briquettes of Comparative Examples 1 and 2. In addition, it is considered that the outgassing becomes good and the heat transfer to the briquette is improved due to the high specific gravity, thereby reducing the energy required to dissolve the briquette.

従来のブリケット製造工程を示す図。The figure which shows the conventional briquette manufacturing process. 製団機を構成するローラの断面図。Sectional drawing of the roller which comprises a dumpling machine. 製団後の耳部を備えたブリケットの拡大断面図。The expanded sectional view of the briquette provided with the ear | edge part after a team. ブリケットの養生時間と強度の関係を示す図。The figure which shows the relationship between the curing time of briquette and intensity | strength.

符号の説明Explanation of symbols

1・・凹所
2・・ローラ
3・・ブリケット
4・・耳部
1 .. Recess 2. Roller 3. Briquette 4. Ear

Claims (1)

CaOを少なくとも10質量%以上含有する製鋼用原料に水溶性のバインダーを添加して混練機で混練したのち、加圧成形式の製団機により製団し、ついで養生することよりなる製鋼原料用ブリケットの製造方法において、養生後のブリケットを分級し、その篩い下を製団総原料の10〜40質量%の範囲で混練機にリターンするとともに、混練機投入原料の粒度構成が、0.85mm以下が65〜85%、0.85mm〜4.75mmが10〜20%、4.75mm以上が5〜15%になるように、篩い目サイズ及び篩い下量を調整することを特徴とする製鋼原料用ブリケットの製造方法。
For steelmaking raw materials, comprising adding a water-soluble binder to a steelmaking raw material containing at least 10% by mass of CaO and kneading with a kneader, then forming with a pressure forming type forming machine and then curing. In the briquette manufacturing method, the cured briquette is classified, and the sieved material is returned to the kneader in the range of 10 to 40% by mass of the total raw material of the group , and the particle size constitution of the kneader input raw material is 0.85 mm. Steelmaking characterized by adjusting the sieve size and the amount of sieving so that the following is 65 to 85%, 0.85 mm to 4.75 mm is 10 to 20%, and 4.75 mm or more is 5 to 15%. A method for manufacturing raw material briquettes.
JP2006260259A 2006-09-26 2006-09-26 Manufacturing method of briquette for steelmaking raw material Active JP5058544B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006260259A JP5058544B2 (en) 2006-09-26 2006-09-26 Manufacturing method of briquette for steelmaking raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006260259A JP5058544B2 (en) 2006-09-26 2006-09-26 Manufacturing method of briquette for steelmaking raw material

Publications (2)

Publication Number Publication Date
JP2008081759A JP2008081759A (en) 2008-04-10
JP5058544B2 true JP5058544B2 (en) 2012-10-24

Family

ID=39352918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006260259A Active JP5058544B2 (en) 2006-09-26 2006-09-26 Manufacturing method of briquette for steelmaking raw material

Country Status (1)

Country Link
JP (1) JP5058544B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012067351A (en) * 2010-09-22 2012-04-05 Kobe Steel Ltd Apparatus and method for manufacturing agglomerate
CN102719664B (en) * 2011-03-30 2013-07-31 鞍钢股份有限公司 Pellet binder and adding device and adding method thereof
JP6051677B2 (en) * 2012-08-21 2016-12-27 新東工業株式会社 Granulator

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6033319A (en) * 1983-08-04 1985-02-20 Nippon Kokan Kk <Nkk> Manufacture of unburnt briquette
JPH0971824A (en) * 1995-09-05 1997-03-18 Nkk Corp Production of non-calcined agglomerate
JPH11106821A (en) * 1997-09-29 1999-04-20 Nkk Corp Production of agglomerated raw material for steelmaking
JPH11229047A (en) * 1998-02-07 1999-08-24 Nippon Jiryoku Senko Kk Raw material for iron-making and production therefor
JP3502011B2 (en) * 2000-04-24 2004-03-02 株式会社神戸製鋼所 Manufacturing method of carbonized interior agglomerates
JP2004052052A (en) * 2002-07-22 2004-02-19 Tetsugen Corp Agglomeration process of steel dust

Also Published As

Publication number Publication date
JP2008081759A (en) 2008-04-10

Similar Documents

Publication Publication Date Title
JP5571345B2 (en) Method for producing briquettes, method for producing reduced metals, and method for separating zinc or lead
JPS6035292B2 (en) glass manufacturing method
KR20150071388A (en) Method for manufacturing sintered iron ore
JP5984139B2 (en) Briquette manufacturing method
CN106536765A (en) Method for producing pellets and method for producing iron-nickel alloy
JP5058544B2 (en) Manufacturing method of briquette for steelmaking raw material
JP2007525597A (en) Process for producing mixed raw materials for sintering
JPH11193423A (en) Iron oxide pellet and its manufacture, and reduced iron pellet and its manufacture
CN103482848A (en) Pelletizing production process for glass batch mixture
US20230203607A1 (en) Biomass Direct Reduced Iron
CN101463421A (en) Method for producing pellet ore by adding iron scale
JP2001348625A (en) Method for producing pellet for iron-marking raw material
KR100675348B1 (en) Two type binder and method for preparing briquette of the used steel using the same
JP5365044B2 (en) Ferro-coke manufacturing method
KR101185362B1 (en) A production method of briquette using waste materials of steel making
Bizhanov et al. Experience with the use of extrusion briquettes (brex) to make ferrosilicomanganese
JP2015137379A (en) Non-burning carbonaceous material interior ore for blast furnace and manufacturing method therefor
RU2506325C2 (en) Method for producing extrusion-type briquette (breks) for metal melting
CN113186392B (en) Pelletizing method for realizing efficient utilization of metallurgical solid waste
JP6333770B2 (en) Method for producing ferronickel
WO2005111248A1 (en) Semi-reduced sintered ore and method for production thereof
JP2001348610A (en) Slag formation promoter
JP3635252B2 (en) Method for reducing metal oxide
JP6323835B2 (en) Briquette and manufacturing method thereof
JP5887210B2 (en) Binder for molding briquette containing metal oxide for use in steel reduction and melting process and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120801

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5058544

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250