JPS6070111A - Manufacture of ferronickel - Google Patents

Manufacture of ferronickel

Info

Publication number
JPS6070111A
JPS6070111A JP17788883A JP17788883A JPS6070111A JP S6070111 A JPS6070111 A JP S6070111A JP 17788883 A JP17788883 A JP 17788883A JP 17788883 A JP17788883 A JP 17788883A JP S6070111 A JPS6070111 A JP S6070111A
Authority
JP
Japan
Prior art keywords
coke
ore
blast furnace
ferronickel
reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17788883A
Other languages
Japanese (ja)
Inventor
Toshiyuki Matsui
松井 利幸
Kenjiro Himeno
姫野 健次郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP17788883A priority Critical patent/JPS6070111A/en
Publication of JPS6070111A publication Critical patent/JPS6070111A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/008Composition or distribution of the charge

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To increase the reactivity of ore nodules in reduction and to obtain high grade ferronickel while economically using all of coke by blending the ore nodules as a starting material with coke breeze, charging the blend into a blast furnace together with lump coke, and carrying out melting and reduction. CONSTITUTION:Coke breeze is sent to a stage for crushing and screening ore nodules as a starting material such as nodules of nickel oxide ore, and they are uniformly blended. Pulverized coal may be substituted for part of the coke breeze. The blend is charged into a blast furnace together with a flux such as limestone and lump coke as a heat source and a reducing agent, and melting and reduction are carried out. By this method, crude ferronickel having a lower P content can be manufactured at a low cost.

Description

【発明の詳細な説明】 本発明は、フェロニッケルの製造方法に関するものであ
り、特には溶鉱炉法によるフェロニッケルの製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing ferronickel, and particularly to a method for producing ferronickel using a blast furnace method.

フェロニッケル製品は、インゴット或いはショットの形
態で種々の合金の原料或いは添加剤として広く用いられ
ており、特に特殊鋼、殊にステンレス鋼のニッケル添加
剤として重要である。
Ferronickel products are widely used in the form of ingots or shots as raw materials or additives for various alloys, and are particularly important as nickel additives for special steels, especially stainless steels.

フェロニッケルは、主として酸化ニッケル鉱を原料鉱石
として、それを還元することにより製造されるが、通常
の7エロニツケル製造法としては電気炉法、クルツプレ
ン法及び溶鉱炉法がある。
Ferronickel is mainly produced by using nickel oxide ore as a raw material ore and reducing it. Typical methods for producing 7 ferronickel include an electric furnace method, a Kurzprene method, and a blast furnace method.

電気炉法は、仮焼した赤熱原料を密閉式電気炉に装入し
て還元を行うものであり、還元剤使用量は少女くそして
電力というクリーンエネルギーを使用するので、生産さ
れるフェロニッケル中の不純物、特にPが低いという長
所がある(p=o、o21゜反面、エネルギー源として
電力および重油、石炭を用いるためエネルギーコストが
高いという欠点がある。クルツプレン法は、石炭により
半溶融の状態で鉱石を還元するため、生産されるフエロ
ニメタル中の不純物量は電気炉に較べやや高い。また、
低温還元後、磁選、比重選鉱等でメタルを回収するため
、操業が複雑であり、また製品の歩留りも低いといわれ
ている。最後に、溶鉱炉法は、現行法では、コークスを
用いて溶解還元するので、エネルギーコストは安いが、
通常のコークスを用いた場合にはコークス中のPがα0
4チ程度であるだめ製造されたフェロニッケル中のPは
(11%と高い。そのため、通常は、LD転炉等でPを
001チ程度まで脱燐する必要がある。
In the electric furnace method, calcined red-hot raw materials are charged into a closed electric furnace for reduction, and since the amount of reducing agent used is small and the clean energy of electricity is used, the amount of ferronickel produced is It has the advantage of being low in impurities, especially P (p=o, o21°).On the other hand, it has the disadvantage of high energy costs because electricity, heavy oil, and coal are used as energy sources. Since the ore is reduced in a furnace, the amount of impurities in the produced ferronimetal is slightly higher than that in an electric furnace.
After low-temperature reduction, the metals are recovered by magnetic separation, gravity beneficiation, etc., which makes the operation complicated and the product yield is said to be low. Finally, the current blast furnace method uses coke for melting and reduction, so the energy cost is low, but
When normal coke is used, P in the coke is α0
The P content in the produced ferronickel is as high as 11%, which is about 4%. Therefore, it is usually necessary to dephosphorize the P to about 001% using an LD converter or the like.

以上、3つの方法の長短を概説したが、電気エネルギー
コストは今後共、益々増加するものと予想され、コスト
面から溶鉱炉法が4後の主流として見直されている。
Although the advantages and disadvantages of the three methods have been outlined above, it is expected that the cost of electrical energy will continue to increase in the future, and from a cost perspective, the blast furnace method is being reconsidered as the mainstream in the future.

従来からの溶鉱炉法においては、酸化ニッケル鉱石のよ
うな鉱石を乾燥、破砕及び整粒、混錬といった予備処理
後団鉱とし、団鉱は、石灰石等のフラックス及び熱源及
び還元剤としてのコークスを加えて溶鉱炉に投入される
。溶鉱炉においては羽口より1000℃前後の熱風が送
入され、それKより炉内で還元反応が進行する。装入物
は溶融金属即ちフェロニッケル粗メタル溶体とスラグと
に分離し、スラグはほぼ連続的に排出され、他方フェロ
ニッケル粗メタル溶体は一定時間毎に注出される。注出
されるフェロニッケル和メタルの組成は、鉱石の組成、
特にその鉄及びニッケル含有割合により決まる。通常、
ニッケル品位は20ヂ前後である。
In the conventional blast furnace method, ores such as nickel oxide ores are made into briquettes after preliminary processing such as drying, crushing, sizing, and kneading, and the briquettes are made using flux such as limestone and coke as a heat source and reducing agent. In addition, it is put into the blast furnace. In the blast furnace, hot air of around 1000° C. is introduced from the tuyere, and a reduction reaction proceeds within the furnace. The charge is separated into molten metal, ie crude ferronickel metal solution, and slag, the slag being discharged almost continuously, while the crude ferronickel metal solution is poured out at regular intervals. The composition of the poured ferronickel sum metal depends on the composition of the ore,
It is determined in particular by its iron and nickel content. usually,
The nickel grade is around 20 degrees.

こうした溶鉱炉法において還元剤及び熱源としての炭材
としては上記のようにコークス、それも塊コークスが専
ら使用されてきた。とれは、溶鉱炉法においては通気性
の確保が重要であり、コークス以外の炭材原料では粒寸
の小さいものの占める割合が多く、使用に適さないと考
えられ、またコークスにおいても分篩後の粉状物を除い
た塊コークスのみが使用できるものとされていた。除去
後の粉コークスは溶鉱炉法においては焼結を必要としな
いので有効利用を図る道が々く、やむをえず他の工程の
エネルギー源としての利用に供するか或いは売却してい
た。粉コークスはコークス原料の3〜4%を占める。
As mentioned above, coke, especially lump coke, has been used exclusively as a carbon material as a reducing agent and a heat source in such blast furnace processes. In the blast furnace method, it is important to ensure air permeability, and carbonaceous raw materials other than coke have a large proportion of small particles, making them unsuitable for use. Only lump coke, excluding solid coke, could be used. Since the removed coke powder does not require sintering in the blast furnace method, there is no way to use it effectively, and it has no choice but to be used as an energy source in other processes or sold. Coke powder accounts for 3-4% of coke raw materials.

粉コークスを溶鉱炉法において利用しうる々ら、コーク
ス原料全量を使用することができ、それだけ塊コークス
の使用量が節減でき、好都合である。
Since coke powder can be used in the blast furnace method, the entire amount of coke raw material can be used, and the amount of lump coke used can be reduced accordingly, which is advantageous.

本発明者等は粉コークスを利用する方策として、篩別後
の粉コークスを鉱石の破砕整粒工程に送り、鉱石と共に
充分に混合し、そのまま団鉱とすることによって何ら障
害なく粉コークスの利用が可能となることを見出した。
The present inventors have proposed a method for utilizing coke breeze by sending the sieved coke breeze to the ore crushing and sizing process, thoroughly mixing it with the ore, and making it into a briquette without any problems. We found that this is possible.

こうすることにより、団鉱内には粉コークスが均等に分
配され、還元作用を奏するにかえって好都合である。粉
コークス配合団鉱は、溶鉱炉装入に際して崩壊する等の
事態は生ぜず、通気性の悪化はない。コークスは、熱源
としての作用と還元剤としての作用を為すが、還元剤の
少くとも一部として従来使用されなかった粉コークスを
団鉱内に内装して使用することにより、コークス原料全
体を無駄なく使用でき、それだけ塊コークスの使用量を
節約できるだけでなく、団鉱内に内装された粉コークス
は還元反応性を向上する点できわめて有益である。
By doing so, the fine coke is evenly distributed within the briquette, which is more convenient for producing a reducing effect. The coke powder blended briquette does not collapse when charged into a blast furnace, and there is no deterioration in air permeability. Coke acts both as a heat source and as a reducing agent, but by using coke powder, which was not previously used as at least part of the reducing agent, inside the briquette, the entire coke raw material is wasted. In addition to reducing the amount of lump coke used, the coke breeze contained within the briquette is extremely beneficial in terms of improving reduction reactivity.

こうして粉状コークスを団鉱中に内装して有効利用しう
ろことは、これまで粉状物が多いという理由で使用され
力かった無煙炭に代表される石炭類のような炭材の使用
も可能であることを意味する。前述したように、コーク
ス中にはPが0.04チ程度も含まれているため、溶鉱
炉産出フェロニッケル粗メタルのP含量が高くカリ、脱
PのためLD転炉への装入が必要であった。無煙炭は安
価であるに加えて低P含量でありまた゛反応性も良く、
コークスに少くとも部分的に代替することにより従来よ
りP含量の低い粗フェロニッケルを安価に製造するとと
ができる。それにより従来実施されたLD転炉工程の負
担を軽減でき、工程の合理化から溶鉱炉法を更に一層有
利々ものとする。
By incorporating powdered coke into the briquette and making effective use of it, it is also possible to use carbonaceous materials such as coal, such as anthracite, which has traditionally been used because it contains a large amount of powder. It means that. As mentioned above, since coke contains about 0.04% of P, the ferronickel crude metal produced in the blast furnace has a high P content and potash, and must be charged to an LD converter to remove P. there were. In addition to being cheap, anthracite has a low P content and has good reactivity.
By at least partially replacing coke, crude ferronickel with a lower P content than before can be produced at low cost. As a result, the burden of the conventional LD converter process can be reduced, and the blast furnace process becomes even more advantageous in terms of streamlining the process.

斯くして本発明は、粉コークスあるいは少くとも粉状石
炭類に代替した粉コークスを配合した原料鉱石団鉱を塊
コークスと共に溶鉱炉中に装入し、鉱石の溶融還元を行
うことを特徴とするフェロニッケルの製造法を提供する
。更に本発明は、少くとも部分的に粉状石炭類に代替し
た粉コークスを配合した原料鉱石団鉱を、少くとも部分
的に塊状石炭類に代替した塊コークスと共に溶鉱炉中に
装入し、鉱石の溶融還元を行うことを特徴とするフェロ
ニッケルの製造法を提供する。
Thus, the present invention is characterized in that raw material ore briquette mixed with coke powder or at least coke powder substituted for powdered coal is charged into a blast furnace together with lump coke, and the ore is melted and reduced. Provides a method for producing ferronickel. Furthermore, the present invention charges raw ore briquette blended with coke powder, which is at least partially substituted for pulverized coal, into a blast furnace together with lump coke, which is at least partially substituted for lump coal. Provided is a method for producing ferronickel, which is characterized by performing melt reduction of ferronickel.

以下、本発明について具体的に説明する。The present invention will be explained in detail below.

団鉱に内装された炭材は団鉱と共に加熱され、結晶水と
反応してCO,H2ガスを発生し、またFe、O,等と
反応してCOガスを発生するものと考えられる。発生し
たCo、H2ガスは還元ガスとして有効に働くものと考
えられ、炭材が鉱石と接触して団鉱中に分布しているこ
とは還元反応を促進する。
It is thought that the carbonaceous material contained in the briquette is heated together with the briquette and reacts with crystal water to generate CO and H2 gases, and also reacts with Fe, O, etc. to generate CO gas. It is thought that the generated Co and H2 gases function effectively as reducing gases, and the fact that the carbonaceous material comes into contact with the ore and is distributed in the briquette promotes the reduction reaction.

団鉱形成は、結合剤を加えなくとも充分に行いうるが、
より結合力の強い団鉱を生成することが所望される時に
は適宜量の結合剤を団鉱工程において添加しても差支え
ない。
Although briquette formation can be achieved satisfactorily without the addition of a binder,
When it is desired to produce a briquette with stronger binding strength, an appropriate amount of binder may be added in the briquette process.

炭材総量のうち熱源として必要とされる量:還元に必要
とされる量は9:1位とされており、少くとも還元に必
要とされる炭材量を粉コークス或いは粉状石炭類(%に
無煙炭)によって団鉱内装体としてまかなうことが好ま
しい。
The ratio of the amount required as a heat source to the amount required for reduction out of the total amount of carbon material is said to be 9:1. % anthracite) is preferably used as the briquette inner body.

団鉱は、適量の水分と、必要なら結合剤を加え、凹面を
有する2つのロールを回転させるロールプレス、ペレタ
イザー等の設備を使用して実施される。
The briquette is carried out by adding an appropriate amount of water and, if necessary, a binder, using equipment such as a roll press, a pelletizer, etc., which rotates two rolls having concave surfaces.

本発明において粉状とは5ML寸法以下のものを呼び、
それより大きなものを塊状とする。
In the present invention, powder refers to those with a size of 5ML or less,
Make larger pieces into chunks.

実施例1 Fe 10〜13 %そしてNi 2.3〜2.5 %
の品位を有しそして27〜30チの含水量を有する酸化
ニッケル鉱石を18チ含水葉程度に乾燥した。
Example 1 Fe 10-13% and Ni 2.3-2.5%
Nickel oxide ore having a grade of 27 to 30 inches and a water content of 27 to 30 inches was dried to a water content of 18 inches.

一方、コークス原料を篩別して20〜120闘の塊コー
クスとそれ以外の粉コークスに分別した。
On the other hand, the coke raw material was sieved and separated into lump coke of 20 to 120 tons and other coke powder.

粉コークスを乾燥鉱石と共に破砕整粒し、混錬した後団
鉱とした。得られた団鉱を前記コークス及び石灰石と共
に溶鉱炉に装入し、通常の操業条件で溶鉱炉操業を行っ
た。1ケ月の操業試験の間通気性の悪化といった事態は
生ぜず、きわめて順調な操業を行いえた。1日当りの平
均鉱石処理量は361トンであり、それに対して2&2
係の塊コークス及び10チの粉コークスを使用した。1
日当り約3.74 )ンの粉コークスの利用ができたこ
とになり、それだけ塊コークスを節約しえた。
The coke powder was crushed and sized together with the dry ore, and after being kneaded, it was made into briquettes. The obtained briquette was charged into a blast furnace together with the coke and limestone, and the blast furnace was operated under normal operating conditions. During the one-month operational test, no problems such as deterioration of ventilation occurred, and the operation was extremely smooth. The average throughput of ore per day is 361 tons, compared to 2&2
A 10-inch lump coke and a 10-inch powder coke were used. 1
Approximately 3.74) tons of coke powder per day could be used, and lump coke could be saved by that much.

実施例2 〈40關サイズのものが多い無煙炭をコークスの5%代
替を目標として使用した。20m以下の寸法の粉コーク
ス及び無煙炭粉はニッケル鉱石処理工程にまわして一緒
に団鉱とした。塊状コークス+無煙炭を団鉱と共に溶鉱
炉に装入し、通常態様で操業した。生成粗フェロニッケ
ルのP含量は0.10%から109チに減少した。通風
に関する障害は発生しなかった。
Example 2 Anthracite coal, which is often 40 mm in size, was used with the aim of substituting 5% of coke. Coke powder and anthracite powder with a size of less than 20 m were sent to a nickel ore processing process and made into briquettes. Lump coke and anthracite coal were charged into a blast furnace together with briquettes, and the furnace was operated in a normal manner. The P content of the produced crude ferronickel decreased from 0.10% to 109%. No problems related to ventilation occurred.

Claims (1)

【特許請求の範囲】 1)粉コークスあるいは少くとも部分的に粉状石炭類に
代替した粉コークスを配合した原料鉱石団鉱を塊コーク
スと共に溶鉱炉中に装入し、鉱石の溶融還元を行うこと
を特徴とするフェロニッケルの製造法。 2)少くとも部分的に粉状石炭類に代替した粉コークス
を配合した原料鉱石団鉱を、少くとも部分的に塊状石炭
類に代替した塊コークスと共に溶鉱炉中に装入し、鉱石
の溶融還元を行うことを特徴トスる7エロニツケルの製
造法。 3)石炭類が無煙炭である特許請求の範囲第2項記載の
方法。
[Scope of Claims] 1) Raw material ore briquette blended with coke powder or coke powder substituted at least partially by powdered coal is charged into a blast furnace together with lump coke, and the ore is smelted and reduced. A method for producing ferronickel characterized by: 2) Charge the raw material ore briquette blended with pulverulent coke that has at least partially replaced pulverized coal into a blast furnace together with lump coke that has at least partially replaced pulverized coal, and melt and reduce the ore. A manufacturing method for 7-Elonitsuker characterized by performing the following steps. 3) The method according to claim 2, wherein the coal is anthracite.
JP17788883A 1983-09-28 1983-09-28 Manufacture of ferronickel Pending JPS6070111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17788883A JPS6070111A (en) 1983-09-28 1983-09-28 Manufacture of ferronickel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17788883A JPS6070111A (en) 1983-09-28 1983-09-28 Manufacture of ferronickel

Publications (1)

Publication Number Publication Date
JPS6070111A true JPS6070111A (en) 1985-04-20

Family

ID=16038810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17788883A Pending JPS6070111A (en) 1983-09-28 1983-09-28 Manufacture of ferronickel

Country Status (1)

Country Link
JP (1) JPS6070111A (en)

Similar Documents

Publication Publication Date Title
CN103627835A (en) Method for treating nickel smelting furnace slag
CN102758085A (en) Method for producing nickel-iron alloy by smelting red earth nickel mineral at low temperature
WO2016103812A1 (en) Method for smelting nickel oxide ore
WO2004090175A1 (en) Method for producing improved coal for use in metallurgy, and method for producing reduced metal and slag containing oxidized nonferrous metal
JP5958576B1 (en) Saprolite ore smelting method
US4613363A (en) Process of making silicon, iron and ferroalloys
CN111394647A (en) Vanadium-containing pig iron and method for preparing vanadium-containing pig iron by smelting vanadium-containing steel slag
US3276859A (en) Process for the reduction of metals from oxide
JPS60255937A (en) Manufacture of cold-bound briquette
WO2009145348A1 (en) Method for manufacturing pig iron
DE3347685C1 (en) Process for the production of ferromanganese
CN116875759A (en) Recycling recovery method for recovering iron from laterite-nickel ore high-pressure leaching residues
US4434001A (en) Method for manufacturing metal from fine-grain metal-oxide material
US3849113A (en) Process for the production of crude ferronickel
JPH1053820A (en) Treatment of metal compounds of steel dust, sludge and/ or ore
NO159968B (en) INSTALLATION SYSTEM WITH SKETCH CONTACT.
KR20080112818A (en) Method for recovering high value metals from waste materials of steel making process
US1334004A (en) Process for the treating of titaniferous iron ore
JPS6070111A (en) Manufacture of ferronickel
JPS6342315A (en) Smelting-reduction of ore
US4443250A (en) Process of producing sponge iron by a direct reduction of iron oxide-containing materials
JP2020056052A (en) Smelting method for oxide ore
JPS6043444A (en) Method for recovering valuable metal from special steel dust and sludge
JP2011179090A (en) Method for producing granulated iron
JP3848453B2 (en) Manufacturing method of metallic iron