JP2018048379A - Granulation method of mixture raw material containing return ore - Google Patents

Granulation method of mixture raw material containing return ore Download PDF

Info

Publication number
JP2018048379A
JP2018048379A JP2016185050A JP2016185050A JP2018048379A JP 2018048379 A JP2018048379 A JP 2018048379A JP 2016185050 A JP2016185050 A JP 2016185050A JP 2016185050 A JP2016185050 A JP 2016185050A JP 2018048379 A JP2018048379 A JP 2018048379A
Authority
JP
Japan
Prior art keywords
raw material
return
ore
mass
moisture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016185050A
Other languages
Japanese (ja)
Other versions
JP6986342B2 (en
Inventor
英基 長井
Hideki Nagai
英基 長井
功朗 大橋
Masaaki Ohashi
功朗 大橋
伊藤 英樹
Hideki Ito
英樹 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2016185050A priority Critical patent/JP6986342B2/en
Publication of JP2018048379A publication Critical patent/JP2018048379A/en
Application granted granted Critical
Publication of JP6986342B2 publication Critical patent/JP6986342B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method capable of suppressing generation of non-granulated fine powder compared to conventional methods and improving granulation property even in a granulation treatment by mixing a return ore with a mixture raw material.SOLUTION: The granulation method of a mixture raw material containing a return ore has a process for adding moisture of 0.5 to 3.0 mass% (outer figures) to the return ore consisting of a sintered ore powder at 120°C or less, and a process for a granulation treatment by mixing the return ore to which the moisture is added with a mixture raw material A containing no return ore. In the invention, moisture preferably adhered to the return ore is dispersed in the mixture raw material via the return ore and generation of non-granulated fine powder is suppressed.SELECTED DRAWING: Figure 1

Description

本発明は、焼結機に装入する造粒物を、返鉱を含む配合原料を用いて造粒する方法に関する。   The present invention relates to a method of granulating a granulated material charged into a sintering machine using a blended raw material containing return mineral.

焼結機に装入する焼結原料には、鉄鉱石と、石灰石などの副原料と、炭材などの凝結材と、返鉱(焼結機から排鉱される焼結ケーキを破砕して篩にかけ、篩下として得られる焼結鉱粉)などを一定の比率で配合し、水分を添加してミキサーで造粒処理した造粒物(擬似粒子)が使用される。   The sintering raw materials charged into the sintering machine include iron ore, auxiliary materials such as limestone, agglomerates such as charcoal, and return mineralization (sintering the sintered cake discharged from the sintering machine) A granulated product (pseudoparticles) obtained by blending a fixed ratio of a sintered ore powder obtained by sieving and obtaining under a sieve, adding water, and granulating with a mixer is used.

焼結機から排鉱された焼結鉱は他の配合原料に比べて温度が高いため、焼結機から排鉱された焼結鉱を直接、他の配合原料と混合して造粒すると、造粒物に含まれている水分が蒸発する。その結果、ミキサー出口から焼結機に造粒物が搬送される過程において、ベルト乗継部での落下やその他の衝撃により造粒物が崩壊する。
そこで、特許文献1では、高温(例えば500〜700℃)の返鉱(熱返鉱)のみに散水して冷却した後、他の配合原料と混合して造粒処理を行うことにより、水分の蒸発による造粒物の崩壊を防止する技術が開示されている。
Since the sinter discharged from the sintering machine has a higher temperature than other compounding raw materials, the sinter discharged from the sintering machine is directly mixed with other compounding raw materials and granulated. The water contained in the granulated product evaporates. As a result, in the process in which the granulated material is conveyed from the mixer outlet to the sintering machine, the granulated material collapses due to dropping at the belt connecting portion or other impacts.
So, in patent document 1, after sprinkling and cooling only to high temperature (for example, 500-700 degreeC) return ore (thermal return ore), it mixes with another compounding raw material, and performs a granulation process, so A technique for preventing the granulated material from collapsing due to evaporation is disclosed.

一方、造粒物の水分が多くなりすぎると、焼結機で焼成する際に焼結原料層内で過剰水分が凝縮して粒子間を閉塞し、かえって焼結ベッドの通気性を悪化させ、生産性あるいは歩留りの低下を招くといった問題が生ずる。
そこで、特許文献2では、配合原料を造粒処理した造粒物に返鉱を混合することにより、造粒物中の過剰水分を返鉱に吸収させ、造粒物の水分が所定の値になるように調整する技術が開示されている。
On the other hand, if the granulated product has too much moisture, excess moisture condenses in the sintering raw material layer when it is baked by a sintering machine and closes the space between the particles. There arises a problem that the productivity or the yield is reduced.
So, in patent document 2, by mixing a return mineral with the granulated material which carried out the granulation process of the compounding raw material, the excess moisture in a granulated material is absorbed in a return mineral, and the water | moisture content of a granulated material becomes a predetermined value. A technique for adjusting to the above is disclosed.

特開平5−9602号公報JP-A-5-9602 特開平7−62456号公報Japanese Patent Laid-Open No. 7-62456

しかしながら、本発明者らの知見では、特許文献1記載の技術は、造粒物の崩壊を抑制できるものの、返鉱を混合した配合原料は造粒後の未造粒微粉が多く、造粒性の改善を要することがわかっている。   However, according to the knowledge of the present inventors, although the technique described in Patent Document 1 can suppress the collapse of the granulated product, the blended raw material mixed with the return mineral has a lot of ungranulated fine powder after granulation, and the granulating property It is known that improvement is required.

また、特許文献2記載の技術は、造粒物の水分が所定の値となるように調整することができるが、特許文献1記載の技術と同様、未造粒微粉が多く発生し、造粒性の改善を要するという知見を本発明者らは得ている。特許文献2記載の技術の場合、配合原料を造粒処理した造粒物に返鉱を混合するため、返鉱粒子周辺に存在する配合原料に含まれる局所的な水分が減少し、結果として造粒物の崩壊や造粒できていない未造粒微粉の増加を招いていると推察される。   Moreover, although the technique of patent document 2 can be adjusted so that the water | moisture content of a granulated material may become a predetermined value, like the technique of patent document 1, many ungranulated fine powder generate | occur | produces and granulation is carried out. The present inventors have obtained the knowledge that improvement of the property is required. In the case of the technique described in Patent Document 2, since the return mineral is mixed with the granulated product obtained by granulating the blended raw material, the local moisture contained in the blended raw material present around the return mineral particles is reduced, and as a result It is presumed that the collapse of the granule and the increase of ungranulated fine powder that has not been granulated are caused.

本発明はかかる事情に鑑みてなされたもので、返鉱を配合原料に混合して造粒処理しても、従来方法に比べて未造粒微粉の発生が抑制され、造粒性を改善することが可能な方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and even when the return mineral is mixed with the blended raw material and granulated, the generation of ungranulated fine powder is suppressed as compared with the conventional method, and the granulation property is improved. The aim is to provide a possible method.

上記目的を達成するため、本発明に係る返鉱を含む配合原料の造粒方法は、
120℃以下とされた焼結鉱粉からなる返鉱に0.5〜3.0質量%(外数)の水分を添加する工程と、
返鉱を含まない配合原料Aに、水分を添加した前記返鉱を混合して造粒処理する工程とを備えることを特徴としている。
In order to achieve the above object, the granulation method of the blended raw material containing the return mineral according to the present invention,
Adding 0.5 to 3.0% by mass (outside number) of moisture to the return ore made of sintered ore powder of 120 ° C. or less;
And a step of granulating the blended raw material A not containing the return mineral with the moisture added.

ここで、「返鉱に0.5〜3.0質量%(外数)の水分を添加する」とは、水分添加前の返鉱の量を100質量%として、当該返鉱に添加する水分量を0.5〜3.0質量%とすることをいう。   Here, “adding 0.5 to 3.0% by mass (external number) of moisture to the return mineral” means that the amount of the ore before adding moisture is 100% by mass and added to the return mineral. The amount is 0.5 to 3.0% by mass.

120℃超の返鉱に水分を添加した場合、添加した水分の蒸発が顕著となる。その結果、造粒処理時に配合原料の水分が不足し、造粒性を改善することができない。従って、120℃以下の返鉱に水分を添加する必要がある。   When water is added to the returned ore over 120 ° C., evaporation of the added water becomes remarkable. As a result, the water content of the blended raw material is insufficient during the granulation treatment, and the granulation property cannot be improved. Therefore, it is necessary to add moisture to the returned ore at 120 ° C. or lower.

本発明では、120℃以下に冷却された返鉱に、0.5〜3.0質量%の水分を予め添加しておくことにより、返鉱に適切に付着した水分が返鉱を介して配合原料中に分散し、未造粒微粉の発生を抑制する。   In the present invention, by adding 0.5 to 3.0% by mass of water in advance to the return ore cooled to 120 ° C. or less, the moisture appropriately attached to the return ore is blended through the return ore. Disperses in the raw material to suppress generation of ungranulated fine powder.

また、本発明に係る返鉱を含む配合原料の造粒方法では、返鉱を含まない前記配合原料Aに、水分を添加した前記返鉱を混合した配合原料Bから自由水を控除した量を100質量%として、水分を添加した前記返鉱の量を15〜30質量%、前記配合原料Bに含まれる自由水の量を6〜10質量%とすることを好適とする。   Moreover, in the granulation method of the blended raw material containing the return mineral according to the present invention, the amount obtained by subtracting free water from the blended raw material B obtained by mixing the return mineral added with water to the blended raw material A not containing the return mineral. It is preferable that the amount of the returned ore added with water is 15 to 30% by mass and the amount of free water contained in the blended raw material B is 6 to 10% by mass with 100% by mass.

本発明によれば、返鉱を含む配合原料を用いて造粒処理しても、従来方法に比べて造粒性が改善されるので、焼結鉱の生産性が向上し、返鉱(焼結鉱粉)の発生量も低位で安定する。その際、配合原料Bから自由水を控除した量100質量%に対して、水分を添加した返鉱の量を15〜30質量%とすると、返鉱の余剰が発生せず、適正な生産が可能となる。加えて、配合原料Bに含まれる自由水の量を6〜10質量%とすることにより好適な造粒性が得られる。   According to the present invention, even if the granulation treatment is performed using the blended raw material containing the return mineral, the granulation property is improved as compared with the conventional method. The amount of (condensed powder) is stable at a low level. At that time, if the amount of return ore added with water is 15 to 30% by mass with respect to 100% by mass of free water deducted from blended raw material B, surplus ore surplus does not occur and proper production is achieved. It becomes possible. In addition, by setting the amount of free water contained in the blended raw material B to 6 to 10% by mass, suitable granulation properties can be obtained.

本発明に係る返鉱を含む配合原料の造粒方法では、120℃以下に冷却された返鉱に、0.5〜3.0質量%の水分を予め添加しておくことにより、返鉱に適切に付着した水分が返鉱を介して配合原料中に分散し、未造粒微粉の発生を抑制するので、従来方法に比べて造粒性を改善することができる。   In the granulation method of the compounding raw material containing the return mineral according to the present invention, by adding 0.5 to 3.0% by mass of water in advance to the return mineral cooled to 120 ° C. or lower, Moisture adhering appropriately disperses in the blended raw material via return ore and suppresses the generation of ungranulated fine powder, so that the granulation property can be improved as compared with the conventional method.

本発明の一実施の形態に係る、返鉱を含む配合原料の造粒方法のプロセスフローを示す模式図である。It is a schematic diagram which shows the process flow of the granulation method of the mixing | blending raw material containing a return mineral based on one embodiment of this invention.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態について説明し、本発明の理解に供する。   Next, embodiments of the present invention will be described with reference to the accompanying drawings to provide an understanding of the present invention.

本発明の一実施の形態に係る、返鉱を含む配合原料の造粒方法の手順について、図1を用いて説明する。
ドワイトロイド式の焼結機10では、パレット台車(図示省略)に積載された焼結原料層に対して下方から吸気することで、点火炉(図示省略)によって着火した焼結原料層は上層から下層に向けて順次燃焼する。そして、このとき発生する燃焼熱によって焼結原料が溶融して焼結ケーキとなる。製造された焼結ケーキは焼結機10の排鉱部10bから排鉱され、クラッシャー(図示省略)で破砕されて焼結鉱となる。
The procedure of the granulation method of the compounding raw material containing return ore according to one embodiment of the present invention will be described with reference to FIG.
In the droidoid-type sintering machine 10, the sintering material layer ignited by an ignition furnace (not shown) is sucked from the upper layer by sucking the sintering material layer loaded on the pallet truck (not shown) from below. It burns sequentially toward the lower layer. Then, the sintering raw material is melted by the combustion heat generated at this time to form a sintered cake. The manufactured sintered cake is discharged from the discharge portion 10b of the sintering machine 10, and is crushed by a crusher (not shown) to become a sintered ore.

焼結機10から排鉱された焼結鉱は一般に500〜700℃の顕熱を有しており、本実施の形態では、焼結鉱冷却機11を用いて120℃以下に冷却する。焼結鉱冷却機11には回転式焼結鉱冷却装置を使用する。
回転式焼結鉱冷却装置は、逆台形状の縦断面を有する環状のホッパー(図示省略)を備えている。焼結機10から排鉱された焼結鉱は、水平面内で回転するホッパー内に上方から連続的に投入される。一方、ホッパー内には冷却空気がホッパー下部から送給される。ホッパー内に送給された冷却空気はホッパー内の焼結鉱と熱交換して焼結鉱を冷却した後、熱回収ボイラ(図示省略)に送られ熱回収される。
The sinter discharged from the sinter 10 generally has a sensible heat of 500 to 700 ° C. In the present embodiment, the sinter is cooled to 120 ° C. or less using the sinter cooler 11. The sinter cooler 11 uses a rotary sinter cooler.
The rotary sinter cooling device includes an annular hopper (not shown) having an inverted trapezoidal longitudinal section. The sintered ore discharged from the sintering machine 10 is continuously charged from above into a hopper that rotates in a horizontal plane. On the other hand, cooling air is fed into the hopper from the lower part of the hopper. The cooling air fed into the hopper is heat-exchanged with the sintered ore in the hopper to cool the sintered ore, and then sent to a heat recovery boiler (not shown) for heat recovery.

焼結鉱冷却機11によって120℃以下に冷却された焼結鉱は篩12にかけられ、篩上の焼結鉱は高炉へ搬送され、篩下の焼結鉱粉からなる返鉱は返鉱貯蔵槽13に貯蔵される。   The sintered ore cooled to 120 ° C. or less by the sinter cooler 11 is passed through the sieve 12, the sintered ore on the sieve is conveyed to the blast furnace, and the return ore consisting of the sintered ore powder under the sieve is returned to the ore storage. It is stored in the tank 13.

返鉱貯蔵槽13から切り出された返鉱は、散水装置14によって水分が添加される。
水分添加前の返鉱量を100質量%として、当該返鉱に添加する水分量は0.5〜3.0質量%とする。
Moisture is added to the return ore cut out from the return ore storage tank 13 by the sprinkler 14.
The amount of returned mineral before the addition of water is 100% by mass, and the amount of water added to the returned ore is 0.5 to 3.0% by mass.

3.0質量%(外数)超の水分を返鉱に添加した場合、返鉱に吸収されないか付着しない水分が顕著に増加し、返鉱を搬送する搬送設備(例えばベルトコンベア)上に滞留水(水溜り)が発生する。その結果、返鉱を含まない配合原料に返鉱を添加する際に、滞留水が配合原料に添加されたり添加されなかったりして、配合原料に含まれる水分量が不安定となり、水分が過多になる部分が配合原料に生じる。また、水分過多の造粒物は、例えば焼結過程時における多量の水分蒸発に伴って崩壊し、粉が多く発生する。
一方、0.5質量%(外数)未満の水分を返鉱に添加した場合、造粒時に、配合原料中の水分を返鉱が吸水するため水分不足となり、未造粒微粉が発生する。
When more than 3.0% by mass (outside number) of water is added to the return mineral, the moisture that is not absorbed or adhered to the return mineral increases remarkably and stays on the transport equipment (for example, belt conveyor) that transports the return mineral. Water (puddle) is generated. As a result, when returning ore is added to a blended raw material that does not contain return ore, stagnant water may or may not be added to the blended raw material, resulting in an unstable amount of water contained in the blended raw material and excessive moisture. The part which becomes becomes arises in a compounding raw material. In addition, a granulated product having excessive moisture collapses, for example, with a large amount of moisture evaporation during the sintering process, and a large amount of powder is generated.
On the other hand, when less than 0.5% by mass (outside number) of moisture is added to the return mineral, the return mineral absorbs the moisture in the blended raw material during granulation, resulting in insufficient moisture and generation of ungranulated fine powder.

水分が添加された返鉱は、返鉱を含まない配合原料Aと混合され、ミキサー15(造粒機の一例)に投入される。
配合原料Aは、鉄鉱石、石灰石や硅石などの副原料、炭材などの凝結材などから構成される。
返鉱を含まない配合原料Aに、水分を添加した返鉱を混合した配合原料Bから自由水を控除した量100質量%に対して、水分を添加した返鉱の量は15〜30質量%、配合原料Bに含まれる自由水の量は6〜10質量%とする。
The returned ore to which moisture has been added is mixed with the blended raw material A that does not contain the returned ore and is put into a mixer 15 (an example of a granulator).
The blended raw material A is composed of iron ore, auxiliary materials such as limestone and meteorite, and coagulating materials such as charcoal.
The amount of return ore added with water is 15 to 30% by mass with respect to 100% by mass of free raw water subtracted from compounded raw material B obtained by mixing return ore added with water into compounded raw material A that does not contain return ore. The amount of free water contained in the blended raw material B is 6 to 10% by mass.

配合原料Bから自由水を控除した量100質量%に対して、水分を添加した返鉱の量を15〜30質量%とすると、返鉱の余剰が発生せず、適正な生産が可能となる。なお、配合原料Bから自由水を控除した量100質量%の一部である15〜30質量%の返鉱は、自由水を除いたものを指す。
また、配合原料Bから自由水を控除した量100質量%に対して、配合原料Bに含まれる自由水の量が6質量%未満であると、例えば返鉱を核としてその周囲にその他の配合原料粉が付着する造粒物では、水分が少ないため付着粉が付着せず、また付着しても造粒物が崩壊しやすい。
一方、配合原料Bに含まれる自由水の量が10質量%超の場合、配合原料に含まれる水分が過多となり、造粒が進まず、造粒機の内壁面やコンベア等に配合原料が付着して造粒処理の支障となる。また、水分過多の造粒物は、例えば焼結過程時における多量の水分蒸発に伴って造粒物が崩壊し、粉が多く発生する。
When the amount of return ore added with water is 15 to 30% by mass with respect to 100% by mass of free water deducted from the blended raw material B, surplus ore surplus does not occur and appropriate production becomes possible. . In addition, the 15-30 mass% return | returning which is a part of the amount 100 mass% which subtracted the free water from the mixing | blending raw material B refers to what remove | excluded the free water.
Further, when the amount of free water contained in the blended raw material B is less than 6% by weight with respect to 100% by weight of the blended raw material B minus free water, for example, other blends around the core of the return ore In the granulated product to which the raw material powder adheres, the adhering powder does not adhere because there is little moisture, and even if it adheres, the granulated product tends to collapse.
On the other hand, when the amount of free water contained in the blended raw material B is more than 10% by mass, the blended raw material becomes excessive, granulation does not proceed, and the blended raw material adheres to the inner wall surface of the granulator or the conveyor. This hinders the granulation process. In addition, the granulated product with excessive moisture collapses, for example, with a large amount of moisture evaporation during the sintering process, and a large amount of powder is generated.

ミキサー15による造粒処理によって製造された造粒物は、焼結機10の給鉱部10aに設置されているフィードホッパー16を介して焼結機10に投入され、焼結原料層を形成する。   The granulated product produced by the granulation process by the mixer 15 is put into the sintering machine 10 through the feed hopper 16 installed in the feed section 10a of the sintering machine 10 to form a sintered raw material layer. .

以上、本発明の一実施の形態について説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、上記実施の形態では、焼結鉱冷却機を回転型としているが、直線型でも良いことも言うまでもない。   Although one embodiment of the present invention has been described above, the present invention is not limited to the configuration described in the above-described embodiment, and is within the scope of matters described in the claims. Other possible embodiments and modifications are also included. For example, in the above embodiment, the sinter cooler is a rotary type, but it goes without saying that it may be a linear type.

本発明の効果について検証するために実施した造粒試験について説明する。
返鉱に水分を添加するときの返鉱温度、返鉱に添加する水分量、及び配合原料Bに含まれる自由水量をパラメータとして造粒試験を実施し、製造された造粒物の評価を行った。
A granulation test carried out to verify the effect of the present invention will be described.
A granulation test was conducted using the return temperature when adding moisture to the return mineral, the amount of water added to the return ore, and the amount of free water contained in the blended raw material B as parameters, and the manufactured granulated product was evaluated. It was.

造粒試験では、粒径が0.5mmアンダーの粒子を20質量%以上含有する鉄鉱石、副原料(石灰石、硅石)、凝結材(炭材)からなる配合原料Aに、水分を添加(ただし、比較例3を除く。)した返鉱を混合した配合原料Bに関して、粒径0.5mmアンダーの粒子が5〜15質量%の範囲で一定(後述するQ)となるように調整した。
配合原料Bから自由水を控除した量100質量%に対する前記返鉱の量は20質量%とした。
In the granulation test, water is added to the blended raw material A composed of iron ore containing 20% by mass or more of particles having a particle size of 0.5 mm or less, auxiliary materials (limestone, meteorite), and coagulant (carbon material) (however, With respect to the blended raw material B mixed with the returned ore obtained in Comparative Example 3, the particles having a particle size of 0.5 mm or less were adjusted to be constant (Q to be described later) in the range of 5 to 15% by mass.
The amount of the ore returned to the amount of 100% by mass obtained by subtracting free water from the raw material B was 20% by mass.

矩形状の孔(短辺4mm)を有する篩を用いて焼結鉱を篩い分けし、篩下の焼結鉱粉を返鉱として使用した。因みに、当該返鉱の粒径は、JIS Z8801−2:2000「試験用ふるい−第2部:金属製板ふるい」に記載されている公称目開き8mm(篩目は角孔)の板ふるいを全量通過する大きさ、即ち8.0mmアンダーである。   The sintered ore was sieved using a sieve having a rectangular hole (short side 4 mm), and the sintered ore powder under the sieve was used as a return ore. By the way, the particle size of the returned ore is a plate sieve having a nominal mesh size of 8 mm (the sieve mesh is a square hole) described in JIS Z8801-2: 2000 “Test sieve—Part 2: Metal plate sieve”. The size that passes through the entire amount, that is, under 8.0 mm.

水分を返鉱に添加する際の返鉱温度は、積層した返鉱に熱電対を挿入して測定した。
配合原料Bの造粒には、直径500mmの小型ドラムミキサーを使用し、配合原料Bに含まれる自由水の量を調整した後、25rpmの回転速度で3分間撹拌造粒した。
The return temperature when adding moisture to the return was measured by inserting a thermocouple into the stacked return.
For the granulation of the blended raw material B, a small drum mixer having a diameter of 500 mm was used, and after adjusting the amount of free water contained in the blended raw material B, the mixture was granulated with stirring for 3 minutes at a rotational speed of 25 rpm.

造粒処理によって得られた造粒物の評価は以下のように行った。
各試験ケースごとに、造粒処理によって得られた造粒物500gを完全乾燥(110℃の雰囲気下で24時間以上乾燥)させた後、篩(篩目:0.5mm)を使用して篩上の質量を測定し、篩下の質量(後述するP)を算出した。そして、各試験ケースについて指標GI−1(以下では、単に「GI値」と記す。)を算出した。
Evaluation of the granulated material obtained by the granulation treatment was performed as follows.
For each test case, 500 g of the granulated product obtained by the granulation treatment was completely dried (dried at 110 ° C. for 24 hours or more), and then sieved using a sieve (sieving mesh: 0.5 mm). The upper mass was measured, and the mass under the sieve (P described later) was calculated. The index GI-1 (hereinafter simply referred to as “GI value”) was calculated for each test case.

なお、上記篩(篩目:0.5mm)は、JIS Z8801−1:2006「試験用ふるい−第1部:金属製網ふるい」に記載されている公称目開き500μmの網ふるいである。   The sieve (sieving mesh: 0.5 mm) is a sieve having a nominal opening of 500 μm described in JIS Z8801-1: 2006 “Test sieve—Part 1: Metal mesh sieve”.

GI値の算出式を以下に示す。
GI値=(Q−P)/Q×100
ただし、
P:粒径が0.5mmアンダーの未造粒微粉の量(g)
Q:配合原料Bに含まれる粒径0.5mmアンダーの粉量(g)
The formula for calculating the GI value is shown below.
GI value = (Q−P) / Q × 100
However,
P: Amount of ungranulated fine powder with particle size under 0.5 mm (g)
Q: Amount of powder having a particle size of 0.5 mm or less (g) contained in the raw material B

GI値は、90以上が一般に良いとされているが、本試験では、GI値が93以上95未満を○(良)、95以上100以下を◎(優)、93未満を×(不良)とした。   A GI value of 90 or higher is generally considered to be good, but in this test, a GI value of 93 or more and less than 95 is ◯ (good), 95 or more and 100 or less is ◎ (excellent), and less than 93 is × (bad). did.

試験結果の一覧を表1に示す。なお、比較例3は、返鉱に水分を添加しなかった試験ケースであるため、返鉱温度を記載していない。また、配合原料Bの自由水量は、配合原料Bから自由水を控除した量100質量%に対する値である。   Table 1 shows a list of test results. In addition, since the comparative example 3 is a test case in which water was not added to the return mineral, the return mineral temperature is not described. Moreover, the free water amount of the mixing | blending raw material B is a value with respect to 100 mass% of quantity which remove | excluded the free water from the mixing | blending raw material B.

Figure 2018048379
Figure 2018048379

同表より以下のことがわかる。
・請求項2の要件を満足する実施例1〜3はGI値が◎、請求項1の要件を満足する実施例4はGI値が○であった。
・水分添加時の返鉱温度が120℃超であった比較例1、返鉱に添加した水分量が3.0質量%超であった比較例2、返鉱に水分を添加しなかった比較例3は、いずれもGI値が×であった。
The following can be seen from the table.
In Examples 1 to 3 that satisfy the requirement of claim 2, the GI value is ◎, and in Example 4 that satisfies the requirement of claim 1, the GI value is ○.
・ Comparative example 1 in which the return mineral temperature at the time of moisture addition was over 120 ° C., Comparative example 2 in which the amount of water added to the return mineral was more than 3.0% by mass, and comparison in which no moisture was added to the return mineral In all cases, the GI value was x.

10:焼結機、10a:給鉱部、10b:排鉱部、11:焼結鉱冷却機、12:篩、13:返鉱貯蔵槽、14:散水装置 、15: ミキサー(造粒機の一例)、16:フィードホッパー 10: Sintering machine, 10a: Feeding section, 10b: Exhaust section, 11: Sinter cooler, 12: Sieve, 13: Returning storage tank, 14: Sprinkler, 15: Mixer (for granulator Example), 16: Feed hopper

Claims (2)

120℃以下とされた焼結鉱粉からなる返鉱に0.5〜3.0質量%(外数)の水分を添加する工程と、
返鉱を含まない配合原料Aに、水分を添加した前記返鉱を混合して造粒処理する工程とを備えることを特徴とする返鉱を含む配合原料の造粒方法。
Adding 0.5 to 3.0% by mass (outside number) of moisture to the return ore made of sintered ore powder of 120 ° C. or less;
A method of granulating a blended raw material containing return ore, comprising: mixing raw material A not containing return ore with a step of granulating the returned ore added with water.
請求項1記載の返鉱を含む配合原料の造粒方法において、返鉱を含まない前記配合原料Aに、水分を添加した前記返鉱を混合した配合原料Bから自由水を控除した量を100質量%として、水分を添加した前記返鉱の量を15〜30質量%、前記配合原料Bに含まれる自由水の量を6〜10質量%とすることを特徴とする返鉱を含む配合原料の造粒方法。   In the granulation method of the blending raw material containing the return mineral according to claim 1, the amount obtained by subtracting free water from the blended raw material B obtained by mixing the return mineral added with water to the blended raw material A not containing the return mineral is 100. Mixing raw material containing return ore, characterized in that the amount of return mineral added with water is 15 to 30% by mass and the amount of free water contained in the mixing raw material B is 6 to 10% by mass. Granulation method.
JP2016185050A 2016-09-23 2016-09-23 Granulation method for compounded raw materials including return ore Active JP6986342B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016185050A JP6986342B2 (en) 2016-09-23 2016-09-23 Granulation method for compounded raw materials including return ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016185050A JP6986342B2 (en) 2016-09-23 2016-09-23 Granulation method for compounded raw materials including return ore

Publications (2)

Publication Number Publication Date
JP2018048379A true JP2018048379A (en) 2018-03-29
JP6986342B2 JP6986342B2 (en) 2021-12-22

Family

ID=61767282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016185050A Active JP6986342B2 (en) 2016-09-23 2016-09-23 Granulation method for compounded raw materials including return ore

Country Status (1)

Country Link
JP (1) JP6986342B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54152601A (en) * 1978-05-23 1979-12-01 Kawasaki Steel Co Supplying of sintered material
JPS62214138A (en) * 1986-03-14 1987-09-19 Kobe Steel Ltd Manufacture of sintered ore
JP2012126985A (en) * 2010-12-17 2012-07-05 Jfe Steel Corp Method of producing sintering material for granulation
JP2014001438A (en) * 2012-06-20 2014-01-09 Jfe Steel Corp Production method for sintered ore
JP2015193930A (en) * 2014-03-27 2015-11-05 新日鐵住金株式会社 Method for producing sintered ore
JP2016176121A (en) * 2015-03-20 2016-10-06 株式会社神戸製鋼所 Method for producing sintered ore

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54152601A (en) * 1978-05-23 1979-12-01 Kawasaki Steel Co Supplying of sintered material
JPS62214138A (en) * 1986-03-14 1987-09-19 Kobe Steel Ltd Manufacture of sintered ore
JP2012126985A (en) * 2010-12-17 2012-07-05 Jfe Steel Corp Method of producing sintering material for granulation
JP2014001438A (en) * 2012-06-20 2014-01-09 Jfe Steel Corp Production method for sintered ore
JP2015193930A (en) * 2014-03-27 2015-11-05 新日鐵住金株式会社 Method for producing sintered ore
JP2016176121A (en) * 2015-03-20 2016-10-06 株式会社神戸製鋼所 Method for producing sintered ore

Also Published As

Publication number Publication date
JP6986342B2 (en) 2021-12-22

Similar Documents

Publication Publication Date Title
JP2007113086A (en) Method for granulating raw material to be sintered
JP5375742B2 (en) Granulation method of sintering raw material
JP5315659B2 (en) Method for producing sintered ore
JP6686974B2 (en) Sintered ore manufacturing method
JP6421666B2 (en) Method for producing sintered ore
JP6102484B2 (en) Method for producing sintered ore
JP2018048379A (en) Granulation method of mixture raw material containing return ore
JP4604849B2 (en) Granulation method of sintering raw material
JP4830728B2 (en) Method for producing sintered ore
JP4087982B2 (en) Granulation method for raw materials for sintering with excellent flammability
JP2017036480A (en) Manufacturing method of sintered ore
JP4261672B2 (en) Granulation method of sintering raw material
JP2018537582A (en) Raw material processing apparatus, raw material processing method, and granulated product produced using the same
JP2018141204A (en) Production method of grain particle for carbonaceous material inner package
JP6051883B2 (en) Method for drying sintered raw material granulation
JP2018053306A (en) Method of manufacturing sintered ore and manufacturing facility line of sintered ore
JP2002371322A (en) Method for manufacturing sintered ore
JP2013036050A (en) Method of producing raw material for sintering
JP6809446B2 (en) Manufacturing method of carbon material interior particles and manufacturing method of carbon material interior sintered ore
CN106554162B (en) The manufacturing method of light weight aggregate
JP5206030B2 (en) Method for producing sintered ore
JP6724677B2 (en) Granulating apparatus and granulating method for sintering raw material
KR101430841B1 (en) Process for producing high-strength coke
JP2018127715A (en) Manufacturing method of sintered pellet, manufacturing method of reduced iron and sintered pellet
JP5979114B2 (en) Method for producing sintered ore

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200316

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201026

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20201026

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20201104

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20201110

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20210129

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20210202

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210615

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210706

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210914

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20211012

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20211109

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20211109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211129

R151 Written notification of patent or utility model registration

Ref document number: 6986342

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151