JP5979114B2 - Method for producing sintered ore - Google Patents

Method for producing sintered ore Download PDF

Info

Publication number
JP5979114B2
JP5979114B2 JP2013215025A JP2013215025A JP5979114B2 JP 5979114 B2 JP5979114 B2 JP 5979114B2 JP 2013215025 A JP2013215025 A JP 2013215025A JP 2013215025 A JP2013215025 A JP 2013215025A JP 5979114 B2 JP5979114 B2 JP 5979114B2
Authority
JP
Japan
Prior art keywords
raw material
cleaning
sintered ore
dust
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013215025A
Other languages
Japanese (ja)
Other versions
JP2015078400A (en
Inventor
友規 衣笠
友規 衣笠
大山 伸幸
伸幸 大山
隆英 樋口
隆英 樋口
祥和 早坂
祥和 早坂
直幸 竹内
直幸 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2013215025A priority Critical patent/JP5979114B2/en
Publication of JP2015078400A publication Critical patent/JP2015078400A/en
Application granted granted Critical
Publication of JP5979114B2 publication Critical patent/JP5979114B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Processing Of Solid Wastes (AREA)

Description

本発明は、DL(ドワイトロイド)式焼結機を使用する焼結鉱の製造方法、特に製鉄所内で発生する清掃回収物を焼結用配合原料に配合して焼結鉱を製造する方法に関する。   TECHNICAL FIELD The present invention relates to a method for producing a sintered ore using a DL (dwightroid) type sintering machine, and more particularly, to a method for producing a sintered ore by blending a cleaning recovered material generated in an ironworks with a compounding raw material for sintering. .

DL式焼結機による焼結鉱の製造では、各種の原料が配合された焼結鉱製造用配合原料(以下、単に配合原料という)を燃焼・凝結させるが、配合原料としては、大きく焼結鉱自体の原料となる主原料と、焼結鉱の成分を調整する副原料とがある。主原料としては粉鉄鉱石(シンターフィード)、粉鉱、返鉱等があり、副原料としては石灰石、生石灰、珪石、ドロマイト、蛇紋岩等がある。また他に、配合原料を焼結させるために必要な凝結材としての炭材(粉コークスや無煙炭等)がある。   In the production of sintered ore using a DL-type sintering machine, a raw material for sinter production (hereinafter simply referred to as a “mixed raw material”) containing various raw materials is combusted and condensed. There are a main raw material that is a raw material of the ore itself, and a secondary raw material that adjusts the components of the sintered ore. The main raw materials include fine iron ore (sinter feed), fine ore, and return ore, and auxiliary raw materials include limestone, quicklime, quartzite, dolomite, and serpentine. In addition, there are carbonaceous materials (such as powdered coke and anthracite) as a coagulant necessary for sintering the blended raw materials.

配合原料は造粒機に搬送され、粉コークスを内装した、あるいは外装した擬似粒子に造粒される。擬似粒子は焼結機のパレットに層状に装入・充填され、充填層の最上部に点火される。その後、充填層の下方から空気が吸引されることによって焼結原料中のコークスが燃焼し、焼結反応が充填層の上部から下部に向かって進行する。充填層の下部まで焼結された塊状物(いわゆる焼結ケーキ)は、焼結機の排鉱部で粗破砕された後、クーラーで冷却され、焼結鉱となる。このように、焼結鉱の製造方法は、原料中に燃料を内装あるいは外装し、原料の充填層を上部から下部に通過する燃焼ガスの伝熱によって燃料を燃焼させることが大きな特徴である。
凝結材の燃焼性は、焼結鉱の品質及び生産性に大きく影響する。燃焼ムラがあると焼結鉱の強度や耐還元粉化性といった品質が低下し、歩留が低下してしまう。よって、焼結鉱の製造では、原料に内・外装された凝結材の燃焼効率を向上させることが重要とされる。
The blended raw material is conveyed to a granulator and granulated into pseudo particles with or without powder coke. The quasi-particles are charged and filled in layers on the pallet of the sintering machine and ignited at the top of the packed bed. Then, coke in the sintering raw material is combusted by sucking air from below the packed bed, and the sintering reaction proceeds from the upper part to the lower part of the packed bed. The lump (so-called sintered cake) sintered to the lower part of the packed bed is roughly crushed in the discharge portion of the sintering machine, and then cooled by a cooler to become sintered ore. As described above, the sinter ore manufacturing method is characterized in that the fuel is burned by heat transfer of the combustion gas that is provided with the fuel inside or outside the raw material and passes through the packed bed of the raw material from the upper part to the lower part.
The combustibility of the agglomerated material greatly affects the quality and productivity of the sintered ore. If there is uneven combustion, the quality of the sintered ore, such as the strength and resistance to reduction dusting, will decrease, and the yield will decrease. Therefore, in the production of sintered ore, it is important to improve the combustion efficiency of the agglomerated material internally and externally provided on the raw material.

一方、近年、凝結材である粉コークスや無煙炭等の調達コストが上昇するという傾向がある。そのため、これらを補完する新たな凝結材が望まれており、本発明者らは、凝結材として、製鉄所内で採取される清掃回収物、特に各種のカーボン(C)を含有するダスト(以下「カーボン含有ダスト」という)が存在する清掃回収物に着目した。
製鉄所内において回収される清掃回収物を活用して焼結鉱を製造する技術を見てみると、特許文献1に記載の技術がある。ここではまず、鉄鉱石、SiO含有原料、石灰石系粉原料及び固体燃料系粉原料からなる焼結原料を準備し、これらを撹拌混合用ドラムミキサーで混合して混合原料を生成する。そしてこの混合原料をディスクペレタイザーで造粒して擬似粒子を生成し、この擬似粒子を外層形成用ドラムミキサーに供給する。このとき同時に、固体燃料系粉原料及びこれに対して5〜40質量%の割合で用意された高カーボンダストとして、CDQ集塵粉、鉄粉製造時の集塵粉及び貯骸槽の集塵粉を使用する技術が提案されている。
On the other hand, in recent years, there is a tendency that the procurement cost of coagulated materials such as powdered coke and anthracite coal increases. Therefore, a new aggregating material that complements these is desired, and the present inventors, as agglomerated material, have collected dust collected in the steelworks, particularly dust containing various carbons (C) (hereinafter referred to as “the agglomerated material”). Attention was paid to cleaning materials that contain “carbon-containing dust”.
Looking at the technology for producing sintered ore by utilizing the collected cleaning material collected in the steelworks, there is a technology described in Patent Document 1. Here, first, a sintered raw material composed of iron ore, a SiO 2 -containing raw material, a limestone powder raw material and a solid fuel powder raw material is prepared, and these are mixed with a stirring and mixing drum mixer to produce a mixed raw material. The mixed raw material is granulated with a disk pelletizer to generate pseudo particles, and the pseudo particles are supplied to an outer layer forming drum mixer. At the same time, the solid fuel system powder raw material and the high carbon dust prepared at a ratio of 5 to 40% by mass with respect to this, CDQ dust collection powder, dust collection powder during iron powder production and dust collection of the storage tank Techniques using powder have been proposed.

特開2013−036051号公報JP 2013-036051 A

しかし、特許文献1の技術では、製鉄所内で採取される清掃回収物の内、集塵機からの回収物として乾燥状態のダスト、すなわち、CDQ集塵粉、鉄粉製造時の集塵粉及び貯骸槽の集塵粉を使用するにすぎないため、これら以外のダストを含んだ製鉄所内で採取される清掃回収物全量から見た場合、清掃回収物の再利用率は高くなかった。そのため、清掃回収物全量を再利用可能な技術が求められていた。
本発明は、上記した未解決の問題を解決するために案出されたものであって、焼結鉱製造時の配合原料として製鉄所内で採取される清掃回収物を使用し、焼結鉱の品質を低下させず、かつ、焼結鉱の生産性を低下させないで、清掃回収物全量を再利用することができる技術を提供することを目的とする。
However, in the technique of Patent Document 1, among the collected cleaning materials collected in the steelworks, the dust collected in the dry state as the collected material from the dust collector, that is, the CDQ dust collecting powder, the dust collecting powder and the debris at the time of iron powder manufacturing are collected. Since only the dust collected from the tank was used, the recycling rate of the cleaning recovered material was not high when viewed from the total amount of the cleaning recovered material collected in the steelworks containing other dust. For this reason, a technology that can reuse the entire amount of collected cleaning materials has been demanded.
The present invention has been devised in order to solve the above-mentioned unsolved problems, and uses a cleaning recovered material collected in a steelworks as a blending raw material at the time of sinter ore production. It is an object of the present invention to provide a technique capable of reusing the entire amount of the collected cleaning product without reducing the quality and without reducing the productivity of the sintered ore.

本発明者らは、上記問題を検証したところ、製鉄所内で採取される清掃回収物には、各種のカーボン(C)や鉄分も含有されているが、これを焼結用原料として使用する場合、配合原料中の清掃回収物の配合割合が増加するほど、配合原料中の清掃回収物に起因するカーボン含有ダスト(集塵機からの回収物として乾燥状態のダスト及び回収された石炭粉など)の偏在の影響が大きくなり、焼結鉱品質に悪影響を与えるとの知見を得た。以下にその理由を示す。   As a result of verifying the above problems, the present inventors have found that the collected cleaning materials collected in the steelworks also contain various carbon (C) and iron, but this is used as a raw material for sintering. As the blending ratio of the cleaning recovered material in the blended raw material increases, the uneven distribution of carbon-containing dust (such as dry dust and recovered coal powder as the recovered material from the dust collector) due to the cleaning recovered material in the blended raw material It has been found that the influence of slag increases and it adversely affects the quality of sintered ore. The reason is shown below.

(清掃回収物)
まず、清掃回収物に起因するカーボン含有ダストは、落下回収物を除くと、一般に、粒径が約1mm以下の微細粒子の集合体であり、かつ湿分や油分も含むため、その粘度が他の焼結用の原料の粒子と比較して高くなる。そのため、清掃回収物(カーボン含有ダスト)は、他の原料に配合されると配合原料中に偏在する。
図9に、清掃回収物1´と、清掃回収物1´とともに配合される各種の原料2a〜2dとが積層された配合原料の積み山14の断面を示す。清掃回収物1は、積み山14の上方から積み付けた場合、図示のように、他の配合される各原料2a〜2dのごとく山裾まで落下しない。清掃回収物1は、積み山14の中腹で停止したり、左右の傾斜面のうち一方の傾斜面(図2では右側)に偏って堆積したりする。また層の厚みも不均等一である。このように、配合原料の積み山14を形成する時点で、清掃回収物1が、積み山14中に均等な層厚でまんべんなく存在するように積層させることは困難である。すなわち、払い出し作業の際、清掃回収物1の配合原料4中の偏在を抑制することは非常に困難である。
(Cleaning collection)
First, the carbon-containing dust caused by the collected cleaning material is generally an aggregate of fine particles having a particle size of about 1 mm or less, excluding falling recovered material, and also contains moisture and oil. It becomes higher than the particles of the raw material for sintering. For this reason, the cleaning recovery product (carbon-containing dust) is unevenly distributed in the blended raw material when blended with other raw materials.
FIG. 9 shows a cross section of a pile 14 of the blended raw material in which the cleaning recovered material 1 ′ and various raw materials 2a to 2d blended together with the cleaning recovered material 1 ′ are stacked. When the cleaning collection 1 is stacked from above the stack 14, it does not fall down to the skirt as in the other blended raw materials 2 a to 2 d as shown in the figure. The collected cleaning material 1 is stopped at the middle of the pile 14 or is accumulated on one inclined surface (right side in FIG. 2) of the left and right inclined surfaces. The layer thickness is also uneven. As described above, at the time of forming the pile 14 of the blended raw material, it is difficult to stack the cleaning recovery products 1 so that they are uniformly present in the pile 14 with an equal layer thickness. That is, it is very difficult to suppress the uneven distribution of the cleaning recovered material 1 in the blended raw material 4 during the payout operation.

そこで、本発明者らは、配合原料中に偏在した清掃回収物によって、擬似粒子の燃焼時に焼結鉱に形成される気孔構造が、どの程度影響を受けるかを確認する予備実験1を行った。
初めに、実験に用いた清掃回収物について説明する。清掃回収物は主として、以下の(α)〜(γ)の各構成物を、各々質量比で1/3ずつ有している。
(α)湿ダスト
製鉄所内の側溝から採取される湿分を含むダスト状の回収物であり、主に鉱石粉、石炭粉が含まれる。水分が高くスラリー状であり、バキュームカーなどで運ばれる。鉄鉱石、石炭粉が飛散し、雨水により流れ、所内排水を行う側溝に沈殿したものである。
(β)乾ダスト
集塵機から回収される乾燥状態のダストであり、カーボン及び鉄含有量が高い集塵粉である。例えば、CDQ集塵粉、鉄粉製造時の集塵粉及び貯骸槽の集塵粉、製鋼関係集塵機で回収された集塵粉がある。
(γ)難分離性回収物
荷揚げ時に回収された回収物であり、荷役バース等で落下した鉱石、石炭、焼結鉱製造用副原料などが混合している。各種のカーボン(C)を含有する他、鉄分も含有している。
表1に、清掃回収物の主な成分濃度の一例を示す。
Therefore, the present inventors conducted a preliminary experiment 1 for confirming to what extent the pore structure formed in the sintered ore during the combustion of the pseudo particles is affected by the cleaning recovery material unevenly distributed in the blended raw material. .
First, the collected cleaning material used in the experiment will be described. The cleaning collection mainly has the following components (α) to (γ), each having a mass ratio of 1/3.
(Α) Wet dust It is a dust-like recovered material containing moisture collected from a gutter inside the steelworks, and mainly contains ore powder and coal powder. It has a high moisture content and is in the form of a slurry, which is carried by a vacuum car or the like. Iron ore and coal powder are scattered, flowed by rainwater, and settled in a gutter that drains in-house.
(Β) Dry dust Dust collected from a dust collector in a dry state and having a high carbon and iron content. For example, there are CDQ dust collection powder, dust collection powder at the time of iron powder production, dust collection powder in a storage tank, and dust collection powder collected by a steelmaking related dust collector.
(Γ) Difficult-to-separate recovered materials These are recovered materials at the time of unloading, and are mixed with ore, coal, secondary raw materials for manufacturing sintered ores, etc. that have fallen at the cargo handling berth. In addition to containing various carbon (C), it also contains iron.
Table 1 shows an example of main component concentrations of the collected cleaning material.

Figure 0005979114
Figure 0005979114

(予備実験1)
次に、この清掃回収物を用いた予備実験1を説明する。
予備実験1には、粉コークス以外のベース質量35kgの配合原料を用意した。カーボン含有ダストとして清掃回収物の配合原料中の配合割合を10質量%とするとともに、3.37質量%の粉コークスを配合原料に外掛けで用いた。
また直径300mm、高さ400mmの円筒型の焼結用の焼結鍋を2つ用意した。一方の焼結鍋(1a)には配合原料中の清掃回収物を均等に分散して配置するとともに、他方の鍋(1b)には、上記と同量の清掃回収物を偏在させた。本予備実験1の均等分散配置の焼結鍋(1a)は、配合原料中に清掃回収物を添加する際、40秒以上攪拌し均等分散した後、造粒したものを使用した。また偏在の鍋(1b)は、配合原料に清掃回収物を添加する際、20秒以下で攪拌し混合した後、造粒したものを使用した。
(Preliminary experiment 1)
Next, the preliminary experiment 1 using this cleaning collection thing is demonstrated.
In the preliminary experiment 1, a blended raw material having a base mass of 35 kg other than the powder coke was prepared. As the carbon-containing dust, the blending ratio of the cleaning recovered material in the blended raw material was set to 10% by mass, and 3.37% by mass of powder coke was used as an outer coating for the blended raw material.
Two cylindrical sintering pots having a diameter of 300 mm and a height of 400 mm were prepared. In one sintering pot (1a), the cleaning recovered material in the blended raw material was uniformly dispersed and arranged, and the same amount of the cleaning recovered material was unevenly distributed in the other pot (1b). The sintering pot (1a) of the uniform dispersion arrangement of the preliminary experiment 1 was a granulated powder after stirring and dispersing uniformly for 40 seconds or more when adding the cleaning recovered material to the blended raw material. In addition, the unevenly distributed pan (1b) used was granulated after stirring and mixing for 20 seconds or less when adding the cleaning recovered material to the blended raw material.

カーボン含有ダストを偏在させた焼結鍋(1b)では、カーボン含有ダストを3分の1ずつ小分けし、小分けした各カーボン含有ダストを、焼結鍋を高さ方向に3層に区分した各層に配置した。その際、小分けされた各カーボン含有ダストを、焼結鍋を平面視で120度の中心角を有する扇状の状態で、互いに高さ方向に重ならないように配置した。このように焼結鍋(1b)には、カーボン含有ダストを3分の1ずつ、3か所に分散配置して偏在させた。そして、各焼結鍋の上部の粉コークスに点火後360秒間の内部の燃焼状態を、CTスキャナを用いて観測した。また燃焼後、各焼結鍋で得られた焼結鉱のサンプルを、焼結鍋から取り出して各々を観察した。   In the sintering pot (1b) in which the carbon-containing dust is unevenly distributed, the carbon-containing dust is subdivided by one third, and each subdivided carbon-containing dust is divided into three layers in the sintering pot divided into three layers. Arranged. At that time, the subdivided carbon-containing dusts were arranged so as not to overlap each other in the height direction in a fan-like state having a central angle of 120 degrees in a plan view. As described above, the carbon-containing dust was unevenly distributed and distributed in three places in the sinter pan (1b) by one third. And the internal combustion state for 360 seconds after ignition to the powder coke of the upper part of each sintering pot was observed using CT scanner. Moreover, after combustion, samples of sintered ore obtained in each sintering pot were taken out from the sintering pot and observed.

その結果、カーボン含有ダストを均等分散配置した焼結鍋(1a)の場合、燃焼開始から終了までの間、内部の溶融帯が水平のまま燃焼が進行した。また得られた焼結鉱サンプルを見ると、配合原料全体で未燃部分が殆ど無く、カーボン含有ダストも殆ど燃焼していた。一方、カーボン含有ダストを3分散配置で偏在させた焼結鍋(1b)の場合、溶融帯が水平とならず、燃焼ガスの流れが偏ることが判明した。また得られた焼結鉱サンプルを見ると、内部に大きな空洞が発生しており、配合原料全体で未燃部分が焼結鍋(1a)の場合より多く発生していた。また、カーボン含有ダストにも未燃部分が多く発生していた。   As a result, in the case of the sintering pot (1a) in which the carbon-containing dust was evenly distributed, the combustion proceeded while the inner melting zone was horizontal from the start to the end of the combustion. Moreover, when the obtained sintered ore sample was seen, there was almost no unburned part in the whole compounding raw material, and the carbon containing dust was also almost burning. On the other hand, in the case of the sintering pot (1b) in which carbon-containing dust is unevenly distributed in a three-dispersion arrangement, it has been found that the melting zone is not horizontal and the flow of combustion gas is uneven. Moreover, when the obtained sintered ore sample was seen, the big cavity generate | occur | produced inside and many unburned parts generate | occur | produced in the whole mixing | blending raw material rather than the case of a sintering pot (1a). Moreover, many unburned portions were also generated in the carbon-containing dust.

また、各焼結鉱内部に形成される気孔をブランチ状に細線化処理し、各焼結鍋から得られたブランチを比較した。その結果、カーボン含有ダストを均等分散配置した焼結鍋(1a)の場合と、カーボン含有ダストを3分散配置で偏在させた焼結鍋(1b)の場合のいずれも、燃焼終了後の最終的な気孔面積は殆ど同じであった。また各焼結鍋のブランチ密度を比較すると、均等分散配置の焼結鍋(1a)のサンプルは、3分散配置の焼結鍋(1b)のサンプルに比べて、燃焼終了時のブランチ密度が小さくなり、均等分散配置の焼結鍋(1a)のサンプルの方が、より大きな気孔構造へと成長していることがわかった。   Moreover, the pores formed inside each sintered ore were thinned into a branch shape, and the branches obtained from the respective sintering pots were compared. As a result, both in the case of the sintering pot (1a) in which the carbon-containing dust is uniformly distributed and in the case of the sintering pot (1b) in which the carbon-containing dust is unevenly distributed in the three-dispersion arrangement, the final after combustion is completed. The pore area was almost the same. Moreover, when the branch density of each sintering pot is compared, the branch density at the end of combustion is smaller in the sample of the sintering pot (1a) of the uniform dispersion arrangement than in the sample of the sintering pot (1b) of the three dispersion arrangement. Thus, it was found that the sample of the uniformly distributed sintering pot (1a) grew to a larger pore structure.

(造粒機による偏在抑制効果の検証)
次に、本発明者らは、配合原料中にカーボン含有ダストが偏在するという事象に加え、この偏在という問題に対して、従来の焼結鉱の製造過程によっては清掃回収物中のカーボン含有ダストの偏在を緩和する効果が薄いという知見を得た。例えば、焼結鉱製造時には一般的には、造粒機としてドラムミキサーが用いられており、このドラムミキサーの中に清掃回収物が他の原料とともに装入されることになる。
(Verification of uneven distribution suppression effect by granulator)
Next, in addition to the phenomenon that the carbon-containing dust is unevenly distributed in the blended raw material, the present inventors have dealt with the problem of this uneven distribution, depending on the conventional manufacturing process of sintered ore, We obtained the knowledge that the effect of alleviating the uneven distribution of is weak. For example, a drum mixer is generally used as a granulator at the time of manufacturing a sintered ore, and the cleaning recovered material is charged into the drum mixer together with other raw materials.

通常、ドラムミキサー内に投入された原料は、ドラムミキサー前半で混合・攪拌作用が生じ、その後、造粒となるが、その過程は、ドラムミキサー内壁に沿って持ち上げられる運動と、配合原料の表面を一方向に転動・落下する運動とを繰り返すことにより行われる。この一方向の転動・落下運動は、原料の付着と剥離を繰り返して所定の粒径の擬似粒子を造粒する上では有効であるが、配合原料中で清掃回収物を分散させ、カーボン含有ダストの偏在を解消するには十分ではない。また、持ち上げられる運動においては、原料の粒子相互の移動が生じないので、カーボン含有ダストが分散されることはない。
そのため、この造粒機で造粒された擬似粒子を焼結機で燃焼させると、焼結パレットの中で燃焼しやすい部分と燃焼し難い部分が生じ、部分的な燃焼ムラを引き起こし、焼結鉱の品質や生産性を低下させると考えられる。
Normally, the raw material put into the drum mixer is mixed and stirred in the first half of the drum mixer, and then granulated. The process is the movement of lifting along the inner wall of the drum mixer and the surface of the blended raw material. This is done by repeating the rolling and falling motion in one direction. This unidirectional rolling / falling motion is effective for granulating pseudo particles with a predetermined particle size by repeatedly attaching and peeling the raw material, but disperses the cleaning recovered material in the blended raw material and contains carbon. It is not enough to eliminate the uneven distribution of dust. In addition, since the movement of the raw material does not cause movement of the raw material particles, the carbon-containing dust is not dispersed.
Therefore, when the pseudo particles granulated by this granulator are burned by a sintering machine, a portion that is easy to burn and a portion that is difficult to burn are generated in the sintering pallet, causing partial combustion unevenness and sintering. It is thought to reduce the quality and productivity of the ore.

(予備実験2)
次に、本発明者らは、清掃回収物が含有するカーボン含有ダストの偏在の度合によって、得られる焼結鉱の品質がどの程度影響を受けるかを確認する予備実験2を行った。
予備実験2に用いる焼結用の各原料の配合割合は、上記予備実験1と同じ割合とし、コークス以外の配合原料のベース質量は35kgとした。
また予備実験1と同じ焼結鍋を3つ用意した。3つの焼結鍋の内2つは、予備実験1と同じようにカーボン含有ダストが均等分散配置の焼結鍋(2a)と、予備実験1と同じようにカーボン含有ダストが3分散配置の焼結鍋(2b)とした。残りの1つの焼結鍋(2c)には、カーボン含有ダストを一旦3分の1ずつ小分けし、小分けしたカーボン含有ダストを、焼結鍋を高さ方向に3層に区分された各層に配置した。その際、各層のカーボン含有ダストをさらに5等分し、5等分されたカーボン含有ダストの内1つを、焼結鍋を平面視した円の中心部に配置した。また残りの5等分されたカーボン含有ダストの内残りの4つを焼結鍋の内壁面に沿って等間隔で配置した。このように焼結鍋(2c)にはカーボン含有ダストを15分の1ずつ、15か所に分散配置して偏在させた。
(Preliminary experiment 2)
Next, the present inventors conducted a preliminary experiment 2 for confirming to what extent the quality of the obtained sintered ore is affected by the degree of uneven distribution of the carbon-containing dust contained in the cleaning recovered material.
The mixing ratio of the raw materials for sintering used in the preliminary experiment 2 was the same as that in the preliminary experiment 1, and the base mass of the mixed raw materials other than coke was 35 kg.
Moreover, three same sintering pots as those in the preliminary experiment 1 were prepared. Two of the three sintering pots are a sintering pot (2a) in which the carbon-containing dust is uniformly distributed as in the preliminary experiment 1, and a sintering pot in which the carbon-containing dust is in the three dispersion arrangement as in the preliminary experiment 1. A pan (2b) was obtained. In the remaining one sintering pot (2c), the carbon-containing dust is subdivided into one third at a time, and the subdivided carbon-containing dust is arranged in each layer divided into three layers in the height direction. did. At that time, the carbon-containing dust of each layer was further divided into five equal parts, and one of the carbon-containing dusts divided into five equal parts was arranged at the center of a circle in plan view of the sintering pot. Further, the remaining four carbon-containing dusts divided into five equal parts were arranged at equal intervals along the inner wall surface of the sintering pot. In this way, the carbon-containing dust was distributed and distributed unevenly at 15 places in the sintering pot (2c) at a ratio of 1/15.

そして、各焼結鍋を用いて配合原料を燃焼し、焼結鍋で得られた各々の焼結鉱のサンプルの、焼成時間、強度(TI)、成品の歩留、成品の生産率、還元指数(RI)、還元粉化指数(RDI)を測定した。
その結果、焼成時間、強度(TI)、還元指数(RI)、還元粉化指数(RDI)に関し、各焼結鍋(2a)〜(2c)間の違いは小さく、殆ど同じであった。
また成品の歩留に関しては、図7に示すように、3分散配置の焼結鍋(2b)は約56%であったのに対し、15分散配置の焼結鍋(2c)は、約61%と上昇した。さらに均等分散配置の焼結鍋(2a)は、約69%と大きく上昇した。
And each compounding raw material is burned using each sintering pot, and the firing time, strength (TI), product yield, product production rate, reduction of each sintered ore sample obtained in the sintering pot An index (RI) and a reduced powder index (RDI) were measured.
As a result, regarding the firing time, strength (TI), reduction index (RI), and reduction powdering index (RDI), the differences between the sintering pots (2a) to (2c) were small and almost the same.
Regarding the yield of the finished product, as shown in FIG. 7, the sintering pot (2b) with 3 dispersions was about 56%, whereas the sintering pot (2c) with 15 dispersions was about 61%. % And rose. Furthermore, the evenly-distributed sintering pot (2a) rose as much as about 69%.

また成品の生産率に関し、図8に示すように、3分散配置の焼結鍋(2b)は約1.17[t/h・m]であったのに対し、15分散配置の焼結鍋(2c)は、約1.24[t/h・m]と上昇した。さらに均等分散配置の焼結鍋(2a)は約1.47[t/h・m]と大きく上昇した。
上記した予備実験1の結果、造粒機による偏在抑制効果の検証及び予備実験2の結果に基づき、本発明者らは、焼結鉱の製造過程において、配合原料中のカーボン含有ダストの均等分散性を向上させることで、得られる焼結鉱の品質及び生産率を低下させることなく、カーボン含有ダストの使用量を増加することができるという知見を得た。本発明はこれらの知見に基づいてなされたものであり、その要旨を以下に述べる。
As for the production rate of the product, as shown in FIG. 8, the 3 dispersive sintering pot (2b) was about 1.17 [t / h · m 2 ], whereas the 15 dispersive sintering pot was The pan (2c) rose to about 1.24 [t / h · m 2 ]. Furthermore, the sintering pot (2a) of the uniform distribution rose greatly to about 1.47 [t / h · m 2 ].
As a result of the preliminary experiment 1 described above, based on the verification of the uneven distribution suppression effect by the granulator and the result of the preliminary experiment 2, the present inventors distributed the carbon-containing dust evenly in the blended raw material in the manufacturing process of the sintered ore. As a result, it was found that the amount of carbon-containing dust used can be increased without lowering the quality and production rate of the obtained sintered ore. The present invention has been made based on these findings, and the gist thereof will be described below.

本発明のある態様に係る焼結鉱は、焼結鉱の原料の鉄鉱石と、焼結鉱の成分を調整する副原料、製鉄所内で回収された清掃回収物とを含む配合原料を、前記清掃回収物中のカーボン含有ダストが前記配合原料中に均等に分散するように攪拌する配合原料攪拌工程と、当該攪拌された配合原料に、凝結材である炭材を加えて擬似粒子を造粒する造粒工程と、当該造粒された擬似粒子を焼結して焼結鉱を製造する焼結工程と、を有する。 Sintered ore according to one aspect of the present invention, the iron ore in the sinter feedstock and auxiliary materials for adjusting the components of the sintered ore, the mixed material containing a cleaning recovered material recovered in steel works, A mixing raw material stirring step for stirring so that the carbon-containing dust in the cleaning recovered material is uniformly dispersed in the mixing raw material, and a carbon material as a coagulating material is added to the stirred mixing raw material to form pseudo particles. A granulating step of granulating and a sintering step of sintering the granulated pseudo particles to produce a sintered ore.

ここで、前記清掃回収物中のカーボン含有ダストが前記配合原料中に均等に分散するように攪拌する、とは、焼結鉱の原料の鉄鉱石、及び焼結鉱の成分を調整する副原料に、製鉄所内で回収された清掃回収物を混合して、これらが配合された配合原料を得る混合工程を経て得られた前記配合原料を、さらにまた、攪拌する工程を加えるものであり、この構成によれば、カーボン含有ダストを他の配合用原料に混合した後であって、かつ配合原料を造粒機に装入する前に、攪拌することにより、清掃回収物中のカーボン含有ダストが配合原料中に均等に分散するようになるのである。   Here, stirring is performed so that the carbon-containing dust in the cleaning recovered material is uniformly dispersed in the blended raw material, and the iron ore of the raw material of the sintered ore and the auxiliary raw material for adjusting the components of the sintered ore In addition, the cleaning material collected in the steel mill is mixed, and the blended raw material obtained through the mixing step of obtaining the blended raw material in which these are blended is further added with a stirring step. According to the configuration, after the carbon-containing dust is mixed with the other raw materials for blending and before the blended raw material is charged into the granulator, the carbon-containing dust in the cleaning recovered material is stirred. It becomes evenly dispersed in the blended raw material.

また、前記清掃回収物の前記配合原料中の配合割合を2質量%以上10質量%以下としてもよい。2質量%以上としたのは、これより少ない場合、従来と比較してカーボン含有ダストの配合割合を大きく増加できないからである。また10質量%以下としたのは、これより多い場合、カーボン含有ダストの配合原料中の偏在の影響が出始め、擬似粒子の燃焼性が劣化するからである。
また、前記配合原料に含まれる前に、前記清掃回収物を攪拌する清掃回収物攪拌工程をさらに有することとしてもよい。
また、前記清掃回収物中の塊状物を粉砕する粉砕工程を、前記配合原料に含まれる前にさらに有することとしてもよい。
Moreover, it is good also considering the mixture ratio in the said mixing | blending raw material of the said cleaning recovery thing as 2 mass% or more and 10 mass% or less. The reason why it is set to 2% by mass or more is that when it is less than this, the blending ratio of the carbon-containing dust cannot be greatly increased as compared with the conventional case. Further, the reason why it is set to 10% by mass or less is that if it is more than this, the influence of uneven distribution in the raw material of carbon-containing dust begins to appear, and the flammability of the pseudo particles deteriorates.
Moreover, it is good also as having the cleaning collection thing stirring process which stirs the said cleaning collection thing before it is contained in the said mixing | blending raw material .
Moreover, it is good also as having further the grinding | pulverization process which grind | pulverizes the lump in the said cleaning collection | recovery thing, before it is contained in the said mixing | blending raw material .

従って本発明に係る焼結鉱の製造方法によれば、造粒機に装入される前の配合原料中の清掃回収物に含まれるカーボン含有ダストの均等分散性が高まるので、焼結鉱の配合原料中の清掃回収物の配合割合を増大させても、未燃焼ダストの発生量を抑え、擬似粒子の燃焼性が向上する。よって、焼結鉱製造時の配合原料として製鉄所内で採取される清掃回収物を使用し、焼結鉱の品質を低下させず、かつ、焼結鉱の生産性を低下させないで、清掃回収物全量を再利用することができる。また、清掃回収物中に含まれるカーボン含有ダストの使用量を増大させ、その分凝結材の使用量を低減することができる。また、清掃回収物の鉄含有物の有効利用もできる。   Therefore, according to the method for producing sintered ore according to the present invention, the even dispersibility of the carbon-containing dust contained in the cleaning recovered material in the blended raw material before being charged into the granulator is increased. Even if the blending ratio of the cleaning recovered material in the blended raw material is increased, the generation amount of unburned dust is suppressed, and the flammability of the pseudo particles is improved. Therefore, the cleaning recovery material collected in the ironworks is used as a raw material for the production of the sintered ore, the quality of the sintered ore is not deteriorated, and the productivity of the sintered ore is not deteriorated. The entire amount can be reused. Moreover, the usage-amount of the carbon containing dust contained in a cleaning collection | recovery thing can be increased, and the usage-amount of a condensing material can be reduced by the part. Moreover, the iron-containing thing of cleaning collection | recovery material can also be used effectively.

本発明の実施形態に係る焼結鉱の製造方法を説明する模式図である。It is a schematic diagram explaining the manufacturing method of the sintered ore which concerns on embodiment of this invention. 清掃回収物の製造方法を説明する模式図である。It is a schematic diagram explaining the manufacturing method of a cleaning collection thing. 本発明の実施形態に係る焼結鉱の製造方法を説明するフローチャートである。It is a flowchart explaining the manufacturing method of the sintered ore which concerns on embodiment of this invention. 本実施形態に係る配合原料の積み山の中の清掃回収物の状態を説明する図である。It is a figure explaining the state of the cleaning collection thing in the pile of compound raw materials concerning this embodiment. 清掃回収物の配合割合と焼結鉱の強度の関係を示す図である。It is a figure which shows the relationship between the mixture ratio of a cleaning collection | recovery thing, and the intensity | strength of a sintered ore. 清掃回収物の配合割合と焼結鉱の生産率の関係を示す図である。It is a figure which shows the relationship between the mixing | blending ratio of a cleaning collection | recovery thing, and the production rate of a sintered ore. 清掃回収物の偏在条件と焼結鉱の歩留りの関係を示す図である。It is a figure which shows the relationship between the uneven distribution conditions of cleaning collection | recovery, and the yield of a sintered ore. 清掃回収物の偏在条件と焼結鉱の生産率の関係を示す図である。It is a figure which shows the relationship between the uneven distribution conditions of cleaning collection | recovery, and the production rate of a sintered ore. 従来における配合原料の積み山の中の清掃回収物の状態を説明する図である。It is a figure explaining the state of the cleaning collection thing in the pile of conventional compounding raw materials.

本発明の実施形態に係る焼結鉱の製造方法は、焼結鉱の原料の鉄鉱石、及び焼結鉱の成分を調整する副原料に、製鉄所内で回収された清掃回収物を混合し、混合して得られた配合原料を焼結させて焼結鉱を製造するものである。以下、その構成を、図面を参照して説明する。なお、図中に示された焼結鉱の製造過程において用いられる各設備及び各装置の形状、大きさ又は比率は適宜簡略化及び誇張して示されている。   In the method for producing sintered ore according to the embodiment of the present invention, the iron ore of the raw material of the sintered ore, and the auxiliary raw material for adjusting the components of the sintered ore are mixed with the cleaning recovered material collected in the ironworks, The blended raw material obtained by mixing is sintered to produce a sintered ore. The configuration will be described below with reference to the drawings. In addition, the shape, size, or ratio of each equipment and each device used in the manufacturing process of the sintered ore shown in the drawing is appropriately simplified and exaggerated.

(設備の全体構成)
まず本発明の実施形態に係る焼結鉱の製造方法が実施される主な設備を、図1を用いて原料ヤードと焼結機を中心に説明する。
原料ヤード内には、清掃回収物1、焼結鉱の原料となる各種の配合用原料2及び炭材3が、各々積み山11、12、13とされて準備されている。清掃回収物1は、前記した様に、製鉄所で発生した各種のダストがひとつにまとめられ清掃回収物とされ、これがカーボンを含有する清掃回収物1の積み山11となる。配合用原料2は、鉄鉱石等の主原料又は副原料を構成する各原料であり、原料毎に積み山12が形成されている。また炭材3は、単独で積み山13が形成されるか、貯蔵ホッパーで保管、あるいは、必要の都度、製造されている。
(Overall configuration of equipment)
First, the main equipment in which the manufacturing method of the sintered ore which concerns on embodiment of this invention is implemented is demonstrated centering on a raw material yard and a sintering machine using FIG.
In the raw material yard, the cleaning recovered material 1, various raw materials for blending 2 and the carbonaceous material 3 as raw materials for the sintered ore are prepared as piles 11, 12, and 13, respectively. As described above, in the cleaning collection 1, various dusts generated in the ironworks are collected into a cleaning collection, and this becomes the pile 11 of the cleaning collection 1 containing carbon. The raw material 2 for mixing | blending is each raw material which comprises main raw materials or auxiliary materials, such as iron ore, and the pile 12 is formed for every raw material. In addition, the carbonaceous material 3 is formed with a pile 13 alone, stored in a storage hopper, or manufactured whenever necessary.

原料ヤードには、リクレーマ等の払い出し装置、スタッカ等の積み付け装置が配設されている(ともに不図示)。清掃回収物1、各種の配合用原料2及び炭材3は、各々の配合割合に応じて、払い出し装置によって所定量払い出される。清掃回収物1及び各種の配合用原料2は、製鉄所内でこれらを配合する場所であるハンドリング場に、積み付け装置によって逐次的に積み付けされ、各原料が積層された配合原料4の積み山14(図2参照)が形成される。さらに配合原料4はこの積み山14から所定量払い出された後、ベルトコンベア等の搬送装置(不図示)に積み付けされ、ドラムミキサー、ペレタイザーなどの造粒機8まで搬送される。   The raw material yard is provided with a discharging device such as a reclaimer and a stacking device such as a stacker (both not shown). The cleaning collected material 1, the various raw materials 2 for mixing, and the charcoal material 3 are paid out in a predetermined amount by the paying-out device in accordance with the respective mixing ratios. The collected material 1 for cleaning and various raw materials 2 for mixing are sequentially stacked by a loading device at a handling place where these are mixed in an ironworks, and a pile of mixed raw materials 4 in which the respective raw materials are stacked. 14 (see FIG. 2) is formed. Further, after a predetermined amount is dispensed from the pile 14, the blended raw material 4 is loaded on a conveyor (not shown) such as a belt conveyor and conveyed to a granulator 8 such as a drum mixer or pelletizer.

また原料ヤードには、図1に示すように、積み山14に積み付けるに当たり、清掃回収物1に含まれる粗粒粒子を粉砕する粉砕装置7及び清掃回収物1を攪拌するための第一攪拌装置6aが備えられる。粉砕装置7は、清掃回収物1に含まれる比較的粒径が大きい粒子を、焼結に有効に用いるために小さくする。こうした粒子としては、ダストが固まり塊状になったもの、荷揚げ時の落鉱・落炭・落副原料の回収物である塊状物を指す。   In addition, as shown in FIG. 1, in the raw material yard, when loading the pile 14, the pulverizer 7 for crushing coarse particles contained in the cleaning collection 1 and the first stirring for stirring the cleaning collection 1 A device 6a is provided. The pulverizing apparatus 7 reduces the size of the particles contained in the cleaning collection 1 so as to be effectively used for sintering. As such particles, dust is agglomerated and agglomerated, and agglomerated material that is recovered from falling or mining coal, falling coal at the time of unloading.

また第一攪拌装置6aとしては、例えばアイリッヒミキサー(商品名)等の高速攪拌羽根を有する攪拌装置が用いられる。この第一攪拌装置6aにより、積み山11の清掃回収物1を攪拌することにより、清掃回収物1内の粒度差に基づく含有水分の不均一の解消、ダストなど細粒粒子が集合した凝集粒子を解砕し、積み山14への層状の積み付けを可能にするのである。尚、ダストなど細粒粒子が集合した凝集粒子を放置すると積み山14の積み付け時の偏在が発生し、凝集粒子は周囲の粉体を付着させ成長し、偏在がますます発生することになり、この第一攪拌装置6aにより積み付け時の不均一さ発生を阻止する。   Further, as the first stirring device 6a, for example, a stirring device having a high-speed stirring blade such as an Eirich mixer (trade name) is used. By agitating the cleaning collection 1 of the pile 11 with the first stirring device 6a, the non-uniformity of water content based on the particle size difference in the cleaning collection 1 is eliminated, and aggregated particles in which fine particles such as dust are gathered Is crushed and enables layered loading on the pile 14. In addition, if the agglomerated particles in which fine particles such as dust are gathered are left unbalanced when the piles 14 are stacked, the agglomerated particles will grow by adhering the surrounding powder, and the uneven distribution will increase. The first stirrer 6a prevents the occurrence of non-uniformity during stacking.

また、焼結機9の上流側には、積み山14から搬送された配合原料4を攪拌・解砕するために、上記した第一攪拌装置6aと同じ攪拌装置である第二攪拌装置6bが、造粒機8の手前に配設されている。また焼却機9の上流側には第二攪拌装置6bで攪拌された配合原料4を装入して擬似粒子5を造粒する造粒機8と、造粒された擬似粒子5を装入して焼結鉱を製造する焼結機9とが備えられ、これらの各装置間を連結して、配合原料4又は擬似粒子5を搬送する搬送装置(不図示)が備えられる。   Further, on the upstream side of the sintering machine 9, in order to stir and pulverize the blended raw material 4 conveyed from the pile 14, a second stirring device 6b which is the same stirring device as the first stirring device 6a described above is provided. It is arranged in front of the granulator 8. Further, on the upstream side of the incinerator 9, a granulating machine 8 for charging the mixed raw material 4 stirred by the second stirring device 6 b and granulating the pseudo particles 5, and the granulated pseudo particles 5 are charged. And a sintering machine 9 for producing sintered ore, and a conveying device (not shown) for conveying the blended raw material 4 or the pseudo particles 5 by connecting these devices.

(清掃回収物の製造方法)
次に、本実施形態で用いる清掃回収物の製造方法を、図2を用いて説明する。
清掃回収物1は、上記した(α)〜(γ)の3つの銘柄が質量比で各々1/3ずつ含まれている。例えば、湿ダスト1a及び乾ダスト1bは各々33質量%、難分離性回収物1cは34質量%といった具合である。湿ダスト1aは、含有水分が高いため、焼結用原料として利用する場合、乾燥させる必要があるため、ショベルカー等を用いて一旦乾ダスト1bと混合し、予め混合物1dとして含有水分を調整する。このように、湿ダスト1aと乾ダスト1bとを混合して水分調整を行うため、乾燥工程は不要となる。
(Manufacturing method of cleaning collection)
Next, the manufacturing method of the cleaning | collection collection material used by this embodiment is demonstrated using FIG.
The cleaning collection 1 includes the above-described three brands (α) to (γ), each having a mass ratio of 1/3. For example, the wet dust 1a and the dry dust 1b are each 33% by mass, and the hardly separable recovered material 1c is 34% by mass. Since the wet dust 1a has a high moisture content, it must be dried when used as a raw material for sintering. Therefore, the wet dust 1a is once mixed with the dry dust 1b using a shovel car or the like, and the moisture content is adjusted in advance as a mixture 1d. . Thus, since the moisture adjustment is performed by mixing the wet dust 1a and the dry dust 1b, the drying step is not necessary.

次に、湿ダスト1aと乾ダスト1bの混合物1dは、荷揚げ時の落鉱・落炭・落副原料の回収物である難分離性回収物1cと、ショベルカー等を用いて混合される。この混合されたものの中に焼結用原料として不適な粗大粒子(例えば粒径20mmを超える粒子)が混在しないように、篩目20mm以下のものを、本実施形態で使用する清掃回収物1として篩によって篩い出し、利用する。当該清掃回収物1は、図1における原料ヤードに積み山11として、一旦積み付けられる。
このようにして、本実施形態に係る清掃回収物が製造される。
Next, the mixture 1d of the wet dust 1a and the dry dust 1b is mixed using a shovel car or the like with a hardly separable recovered material 1c, which is a recovered material of falling or falling coal or falling auxiliary material at the time of unloading. In order to prevent coarse particles (for example, particles having a particle size exceeding 20 mm) that are not suitable as a raw material for sintering from being mixed in the mixed material, those having a sieve size of 20 mm or less are used as the cleaning and recovering material 1 used in the present embodiment. Sift through a sieve and use. The cleaning collection 1 is once stacked as a pile 11 in the raw material yard in FIG.
Thus, the cleaning collection thing concerning this embodiment is manufactured.

(焼結鉱の製造方法)
次に、上記した清掃回収物を用いた本実施形態に係る焼結鉱の製造方法を、図1及び図3に示すフローチャートを用いて説明する。
まず、清掃回収物1の積み山11から、積み付け装置を用いて清掃回収物1を所定量払い出す。次に、払い出した清掃回収物1に含まれる塊状物を、粉砕装置7を用いて粉砕する(粉砕工程、S1)。
次に、塊状物が粉砕された清掃回収物1を、第一攪拌装置6aを用いて攪拌する(清掃回収物攪拌工程、S2)。この攪拌工程により、清掃回収物1中に混在する複数のダスト混合物を均一化し、積み山14に積み付けやすくする。
(Method for producing sintered ore)
Next, the manufacturing method of the sintered ore which concerns on this embodiment using the above-mentioned cleaning collection thing is demonstrated using the flowchart shown in FIG.1 and FIG.3.
First, a predetermined amount of the cleaning / collecting material 1 is paid out from the pile 11 of the cleaning / collecting material 1 by using a loading device. Next, the lump contained in the discharged and collected cleaning product 1 is pulverized using the pulverizer 7 (pulverization step, S1).
Next, the cleaning recovery product 1 in which the lump is pulverized is stirred using the first stirring device 6a (cleaning recovery product stirring step, S2). By this stirring step, a plurality of dust mixtures mixed in the cleaning / collecting material 1 are made uniform and easily stacked on the stack 14.

次に、攪拌された清掃回収物1を、積み付け装置を用いて、複数の配合用原料2とともに積層されるように、ハンドリング場の積み山14に積み付けて、図4に示すように、清掃回収物1と配合用原料2(2a〜2d)とを混合する(混合工程、S3)。これにより、粉鉄鉱石、副原料及び清掃回収物1が配合された配合原料4を得る。図4における清掃回収物1は、図9の場合に比べると、層の厚みの不均一さが抑制されるとともに、場所によっては積み山の山裾まで落下する箇所もあるが、依然として、配合原料4中に偏って堆積する。
そこで次に、得られた配合原料4を、第二攪拌装置6bを用いて攪拌し、清掃回収物1が配合原料4中に均等に分散するように攪拌する(配合原料攪拌工程、S4)。これにより、配合原料4中の清掃回収物1を構成する各粒子に、攪拌によって、配合原料4中における清掃回収物1の均等分散性を高める。
Next, the cleaning collection 1 that has been agitated is stacked on the stack 14 of the handling field so as to be stacked together with a plurality of compounding raw materials 2 using a stacking device, as shown in FIG. The cleaning recovered material 1 and the mixing raw material 2 (2a to 2d) are mixed (mixing step, S3). Thereby, the mixing | blending raw material 4 with which the fine iron ore, the auxiliary | assistant raw material, and the cleaning recovery material 1 were mix | blended is obtained. As compared with the case of FIG. 9, the cleaning collection 1 in FIG. 4 suppresses the non-uniformity of the layer thickness, and depending on the location, there are places where it falls down to the bottom of the pile, but the blended raw material 4 still remains. Accumulate in the middle.
Then, the obtained blended raw material 4 is stirred using the second stirring device 6b, and stirred so that the cleaning recovered product 1 is evenly dispersed in the blended raw material 4 (blended raw material stirring step, S4). Thereby, each particle | grains which comprise the cleaning recovery material 1 in the mixing | blending raw material 4 raises the uniform dispersibility of the cleaning recovery thing 1 in the mixing | blending raw material 4 by stirring.

次に、攪拌された配合原料4を造粒機8に装入する。このとき、造粒機8に炭材3として粉コークスを加えて造粒(内装)し、擬似粒子5を造粒する(造粒工程、S5)。あるいは、配合原料4を造粒機8に装入して造粒すると共に、造粒機8の排出側より粉コークスを加えて擬似粒子5の周囲に粉コークスを付着(外装)させる。これにより擬似粒子5に凝結材(燃料)を内装あるいは外装させる。擬似粒子5は、清掃回収物1を加えた配合原料4から造粒されるので、粉コークスとともに、清掃回収物1が含有するカーボンも凝結材(燃料)として内装されることとなる。
次に、造粒された擬似粒子5を焼結機9の焼結パレット(不図示)に装入して充填し、充填層に点火して所定時間燃焼して焼結させる(焼結行程、S6)。そして、得られた焼結ケーキに粗破砕・冷却等の後工程を行って焼結鉱を得る。このようにして、本実施形態に係る焼結鉱の製造方法が構成される。
Next, the stirred blended raw material 4 is charged into the granulator 8. At this time, powder coke is added to the granulator 8 as the carbonaceous material 3 and granulated (interior), and the pseudo particles 5 are granulated (granulation step, S5). Alternatively, the blended raw material 4 is charged into the granulator 8 for granulation, and powder coke is added from the discharge side of the granulator 8 to adhere (exterior) the powder coke around the pseudo particles 5. As a result, the coagulant (fuel) is provided inside or outside the pseudo particles 5. Since the pseudo particles 5 are granulated from the blended raw material 4 to which the cleaning / recovery 1 is added, the carbon contained in the cleaning / recovery 1 as well as the powder coke is incorporated as a coagulant (fuel).
Next, the granulated pseudo particles 5 are charged into a sintering pallet (not shown) of the sintering machine 9 and filled, and the packed bed is ignited and burned for a predetermined time to be sintered (sintering process, S6). Then, post-processes such as coarse crushing and cooling are performed on the obtained sintered cake to obtain sintered ore. Thus, the manufacturing method of the sintered ore which concerns on this embodiment is comprised.

(実証試験)
本発明者らは、本実施形態に係る焼結鉱の製造方法を用いて製造した焼結鉱の品質及び生産性を実証するための試験を行った。その結果を、表2、図5及び図6を用いて説明する。この試験で用いたカーボン含有ダストは上記した清掃回収物1である。また凝結材の炭材3として粉コークスのみを用いた。
(Verification test)
The present inventors conducted a test for demonstrating the quality and productivity of a sintered ore manufactured using the method for manufacturing a sintered ore according to this embodiment. The results will be described with reference to Table 2, FIG. 5 and FIG. The carbon-containing dust used in this test is the above-mentioned cleaning recovery product 1. Moreover, only the powder coke was used as the carbonaceous material 3 of a condensing material.

Figure 0005979114
Figure 0005979114

表2に、実証試験(1)〜(4)で用いた配合原料4中の各原料及び外掛け粉コークスの割合を示す。ここで清掃回収物1の配合原料4中の配合割合を、試験(1)0%、試験(2)2%、試験(3)5%、試験(4)10%と、4パターン設定した。清掃回収物1はいずれの場合も焼結鍋に均等分散配置して、配合原料4を燃焼させた。ここでの焼結鍋は、上記(予備実験1)における焼結鍋(1a)と同様に、配合原料中に清掃回収物を添加する際、40秒以上攪拌し均等分散した後、造粒したものを使用した。実証試験(1)〜(4)で得られた各々の焼結鉱の強度(TI)を図5に、また生産率を図6に示す。   In Table 2, the ratio of each raw material in the mixing | blending raw material 4 used by the demonstration tests (1)-(4) and outer-powder coke is shown. Here, the blending ratio of the cleaning recovered material 1 in the blended raw material 4 was set to 4 patterns: test (1) 0%, test (2) 2%, test (3) 5%, test (4) 10%. In any case, the cleaning recovered material 1 was uniformly distributed in the sintering pot, and the blended raw material 4 was burned. As in the case of the sintering pot (1a) in (Preliminary Experiment 1), the sintering pot here was granulated after stirring and evenly dispersing for 40 seconds or more when adding the recovered material to the blended raw material. I used something. FIG. 5 shows the strength (TI) of each sintered ore obtained in the demonstration tests (1) to (4), and FIG. 6 shows the production rate.

図5に示すように、清掃回収物1を全く含まない場合である試験(1)で得られた強度に対し、試験(2)〜(4)での各強度は、いずれも僅かに上回った。また図6に示すように、試験(1)での生産率に対し、試験(2)〜(4)での各生産率は、いずれも僅かに上回った。よって、本実施形態に係る焼結鉱の製造方法を用いれば、清掃回収物1の配合原料4中の配合割合を2質量%以上としても、10質量%以下においては、焼結鉱の強度を低下させることがないとともに、焼結鉱の生産性を低下させることがないことを実証できた。   As shown in FIG. 5, each intensity | strength in test (2)-(4) exceeded all slightly with respect to the intensity | strength obtained by the test (1) which is a case where the cleaning collection material 1 is not included at all. . Moreover, as shown in FIG. 6, each production rate in tests (2) to (4) slightly exceeded the production rate in test (1). Therefore, if the manufacturing method of the sintered ore according to the present embodiment is used, the strength of the sintered ore is reduced at 10% by mass or less even when the mixing ratio of the cleaning recovered material 1 in the compounding raw material 4 is 2% by mass or more. It was proved that the productivity of the sintered ore was not lowered while it was not lowered.

また、表2に示すとおり、試験(1)〜(4)のように清掃回収物1の配合割合を増加させる程、粉コークスの使用量を減少させることができた。また同様に粉鉄鉱石(1種類のヤンディー粉及び2種類のカラジャス粉)、石灰石の使用量も、各々減少させることができた。また清掃回収物1の配合割合が5質量%及び10質量%の場合、試験(1)の場合より珪石の使用量を減少させることができた。   Moreover, as shown in Table 2, the usage-amount of the powder coke was able to be decreased, so that the compounding ratio of the cleaning collection | recovery 1 was increased like tests (1)-(4). Similarly, the amounts of powdered iron ore (one kind of yandy powder and two kinds of carajas powder) and limestone were also reduced. Moreover, when the mixing | blending ratio of the cleaning collection | recovery 1 was 5 mass% and 10 mass%, the usage-amount of the silica stone was able to be reduced rather than the case of a test (1).

(効果)
本実施形態に係る焼結鉱の製造方法によれば、焼結鉱の配合原料中におけるカーボン含有ダストである清掃回収物の配合割合を増大させても、配合原料中の清掃回収物の均等分散性が高まるので、未燃焼ダストの発生量を抑え、擬似粒子の燃焼性が向上する。よって、焼結鉱製造時の配合原料として製鉄所内で採取される清掃回収物を使用し、焼結鉱の品質を低下させず、かつ、焼結鉱の生産性を低下させないで、清掃回収物全量を再利用することができる。また、清掃回収物中に含まれるカーボン含有ダストの使用量を増大させ、その分凝結材の使用量を低減することができる。また、清掃回収物の鉄含有物の有効利用もできる。また、従来よりも焼結鉱の製造時の清掃回収物の使用量を増加させ、その分、粉コークスの使用量を低減することができる。
(effect)
According to the method for producing a sintered ore according to the present embodiment, even if the blending ratio of the cleaning recovered material that is carbon-containing dust in the blended raw material of the sintered ore is increased, the cleaning dispersion evenly distributed in the blended raw material. Therefore, the generation amount of unburned dust is suppressed, and the flammability of the pseudo particles is improved. Therefore, the cleaning recovery material collected in the ironworks is used as a raw material for the production of the sintered ore, the quality of the sintered ore is not deteriorated, and the productivity of the sintered ore is not deteriorated. The entire amount can be reused. Moreover, the usage-amount of the carbon containing dust contained in a cleaning collection | recovery thing can be increased, and the usage-amount of a condensing material can be reduced by the part. Moreover, the iron-containing thing of cleaning collection | recovery material can also be used effectively. Moreover, the usage-amount of the cleaning collection | recovery at the time of manufacture of a sintered ore can be increased compared with the past, and the usage-amount of a powder coke can be reduced by that much.

また、本実施形態に係る焼結鉱の製造方法によれば、清掃回収物の配合原料中の比率を2質量%以上10質量%以下とし、品質及び生産性の点で従来2%以上とすることが困難であったカーボン含有ダストの配合割合を増加することができる。2質量%以上としたのは、これより少ない場合は従来と比較してカーボン含有ダストの配合割合を大きく増加できないからである。また10質量%以下としたのは、これより多い場合は、カーボン含有ダストの配合原料中の偏在の影響が出始め、擬似粒子の燃焼性が劣化するからである。   Moreover, according to the manufacturing method of the sintered ore concerning this embodiment, the ratio in the mixing | blending raw material of cleaning collection | recovery shall be 2 mass% or more and 10 mass% or less, and it is 2% or more conventionally in terms of quality and productivity. It is possible to increase the blending ratio of the carbon-containing dust that has been difficult to achieve. The reason why it is set to 2% by mass or more is that when it is less than this, the blending ratio of the carbon-containing dust cannot be greatly increased as compared with the conventional case. Further, the reason why it is set to 10% by mass or less is that when it is more than this, the influence of uneven distribution in the raw material of carbon-containing dust begins to appear, and the flammability of the pseudo particles deteriorates.

また、本実施形態に係る焼結鉱の製造方法によれば、清掃回収物を配合用原料に混合する前に予め攪拌し、清掃回収物内部における複数のダストの分散性を高める。これにより、清掃回収物の配合原料中の偏在を抑制することができる。
また、本実施形態に係る焼結鉱の製造方法においては、清掃回収物は塊状物を有する。そして塊状物を粉砕してその粒径を小さくする。加えて、その後粉砕された塊状物を含む清掃回収物を攪拌する。このように他の原料と混合し易くした清掃回収物と配合用原料とを混合して配合原料中に用いるので、焼結鉱の製造に有用な塊状物を有効に活用することができる。
Moreover, according to the manufacturing method of the sintered ore which concerns on this embodiment, before mixing a cleaning recovery material with the raw material for a mixing, it stirs beforehand and improves the dispersibility of the some dust inside a cleaning recovery material. Thereby, the uneven distribution in the mixing | blending raw material of a cleaning collection thing can be suppressed.
Moreover, in the manufacturing method of the sintered ore which concerns on this embodiment, a cleaning collection | recovery has a lump. The lump is then pulverized to reduce its particle size. In addition, the cleaning collection containing the crushed lump is then stirred. As described above, the cleaning recovered material easily mixed with other raw materials and the raw material for blending are mixed and used in the blended raw material, so that a lump useful for the production of sintered ore can be effectively utilized.

また、本実施形態に係る焼結鉱の製造方法を用いれば、配合原料を積層する積み山において清掃回収物を均等に分散させることが非常に困難な場合であっても、清掃回収物の配合原料中の均等分散性を高め、清掃回収物の使用量を増加させることができる。
また、本実施形態に係る焼結鉱の製造方法によれば、カーボン含有ダストである清掃回収物に鉄分(Fe)が含まれているので、清掃回収物の使用量を増加させることにより、主原料の粉鉄鉱石の使用量を減少させることができる。これにより、粉鉄鉱石の調達コストを低減することができる。また同様に、清掃回収物に珪酸分(SiO)及び酸化カルシウム(CaO)が含まれているので、副原料(珪石及び石灰石)の使用量を減少させることができる。
In addition, if the method for producing sintered ore according to the present embodiment is used, even if it is very difficult to evenly distribute the cleaning recovered material in the pile where the mixing raw materials are stacked, the cleaning recovered material is mixed. It is possible to increase the even dispersibility in the raw material and increase the amount of the collected cleaning material.
Further, according to the method for producing sintered ore according to the present embodiment, since the cleaning component that is carbon-containing dust contains iron (Fe), the use of the cleaning recovery item increases the main amount. The amount of raw iron ore used can be reduced. Thereby, the procurement cost of a fine iron ore can be reduced. Similarly, since the cleaning recovery contains silicic acid (SiO 2 ) and calcium oxide (CaO), the amount of auxiliary materials (silica and limestone) used can be reduced.

また、本実施形態においてカーボン含有ダストとして用いる清掃回収物は、製鉄所内での発生量が比較的多い。よって清掃回収物は、年々蓄積量が増加し、その在庫が原料ヤードのスペースを圧迫する要因となる傾向がある。よって、本実施形態に係る焼結鉱の製造方法により清掃回収物の使用量を増加させることにより、原料ヤードのスペースを広げ、原料ヤードを有効に活用することができる。   In addition, the amount of cleaning collected used as carbon-containing dust in the present embodiment is relatively large in the steelworks. Therefore, the amount of the collected cleaning materials increases year by year, and the stock tends to be a factor that presses the space of the raw material yard. Therefore, by increasing the amount of the collected cleaning material used by the method for producing sintered ore according to the present embodiment, the space of the raw material yard can be expanded and the raw material yard can be effectively utilized.

(その他)
尚、本実施形態に係る焼結鉱の製造方法の実施においては、清掃回収物を、第一攪拌装置及び第二攪拌装置(いずれもアイリッヒミキサー)を用いて攪拌するが、本発明の実施において清掃回収物を均等に分散させる方法はこの形態に限定されるものではない。アイリッヒミキサー以外の攪拌装置を用いてもよいし、機械を用いることなく人の手によって行ってもよい。要は、配合用原料に清掃回収物を混合した後であって、かつ擬似粒子の造粒前に、配合原料中の清掃回収物の均等分散性を高めればよい。
(Other)
In addition, in implementation of the manufacturing method of the sintered ore which concerns on this embodiment, although a cleaning collection thing is stirred using a 1st stirring apparatus and a 2nd stirring apparatus (all are Eirich mixers), implementation of this invention However, the method for evenly distributing the cleaning recovered material is not limited to this form. A stirring device other than the Eirich mixer may be used, or it may be performed manually without using a machine. In short, it is only necessary to increase the uniform dispersibility of the cleaning recovered material in the mixed raw material after mixing the cleaning recovered material with the mixing raw material and before granulating the pseudo particles.

また、本実施形態に係る焼結鉱の製造方法においては、原料ヤードに形成された各配合用原料及び清掃回収物の各々の積み山から各原料を払い出し、払い出された各原料をハンドリング場で積層してひとつの積み山を形成することで各原料を混合しているが、原料の混合はこの形態に限定されるものではない。例えば、各原料は夫々専用の貯蔵設備に収容され、その貯蔵設備から都度取り出されて混合されてもよい。
また、本実施形態に係る焼結鉱の製造方法において、ともに原料ヤードに備えられる粉砕装置及び第一攪拌装置は、夫々別箇の装置とされているが、この形態に限定されず、これら2つの機能を有するひとつの装置とされてもよい。
Further, in the method for producing sintered ore according to the present embodiment, each raw material is dispensed from each pile of each compounding raw material and cleaning recovered formed in the raw material yard, and each discharged raw material is handled at the handling ground. The raw materials are mixed by stacking together to form one pile, but the mixing of the raw materials is not limited to this form. For example, each raw material may be accommodated in a dedicated storage facility, taken out from the storage facility each time, and mixed.
Further, in the method for producing sintered ore according to the present embodiment, the pulverization apparatus and the first stirring apparatus that are both provided in the raw material yard are separate apparatuses. However, the present invention is not limited to this form. It may be a single device having one function.

1 清掃回収物
2 配合用原料
3 炭材
4 配合原料
5 擬似粒子
6a 第一攪拌装置
6b 第二攪拌装置
7 粉砕装置
8 造粒機
9 焼結機
DESCRIPTION OF SYMBOLS 1 Cleaning collection material 2 Raw material for mixing | blending 3 Charcoal material 4 Compounding raw material 5 Pseudo particle 6a 1st stirring apparatus 6b 2nd stirring apparatus 7 Crushing apparatus 8 Granulator 9 Sinter machine

Claims (4)

焼結鉱の原料の鉄鉱石と、焼結鉱の成分を調整する副原料、製鉄所内で回収された清掃回収物とを含む配合原料を、前記清掃回収物中のカーボン含有ダストが前記配合原料中に均等に分散するように攪拌する配合原料攪拌工程と、
当該攪拌された配合原料に、凝結材である炭材を加えて擬似粒子を造粒する造粒工程と、
当該造粒された擬似粒子を焼結して焼結鉱を製造する焼結工程と、を有する焼結鉱の製造方法。
And iron ore in the sinter feedstock and auxiliary materials for adjusting the components of the sintered ore, the mixed material containing a cleaning recovered material recovered in steel works, carbon-containing dust of the cleaning recovery thereof in said formulation A mixing raw material stirring step of stirring so as to be evenly dispersed in the raw material;
A granulation step of granulating pseudo particles by adding a carbonaceous material that is a coagulant to the stirred blended raw material;
A sintering step of sintering the granulated pseudo particles to manufacture a sintered ore.
前記清掃回収物の前記配合原料中の配合割合を2質量%以上10質量%以下としたことを特徴とする請求項1に記載の焼結鉱の製造方法。   2. The method for producing a sintered ore according to claim 1, wherein a blending ratio of the cleaning recovered material in the blended raw material is 2% by mass or more and 10% by mass or less. 前記配合原料に含まれる前に、前記清掃回収物を攪拌する清掃回収物攪拌工程をさらに有する請求項1又は2に記載の焼結鉱の製造方法。 The manufacturing method of the sintered ore of Claim 1 or 2 which further has the cleaning collection thing stirring process which stirs the said cleaning collection thing before it is contained in the said mixing | blending raw material . 前記清掃回収物中の塊状物を粉砕する粉砕工程を、前記配合原料に含まれる前にさらに有する請求項1〜3のいずれか一項に記載の焼結鉱の製造方法。 The manufacturing method of the sintered ore as described in any one of Claims 1-3 which further has the grinding | pulverization process which grind | pulverizes the lump in the said cleaning collection | recovery thing, before being included in the said mixing | blending raw material .
JP2013215025A 2013-10-15 2013-10-15 Method for producing sintered ore Active JP5979114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013215025A JP5979114B2 (en) 2013-10-15 2013-10-15 Method for producing sintered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013215025A JP5979114B2 (en) 2013-10-15 2013-10-15 Method for producing sintered ore

Publications (2)

Publication Number Publication Date
JP2015078400A JP2015078400A (en) 2015-04-23
JP5979114B2 true JP5979114B2 (en) 2016-08-24

Family

ID=53010073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013215025A Active JP5979114B2 (en) 2013-10-15 2013-10-15 Method for producing sintered ore

Country Status (1)

Country Link
JP (1) JP5979114B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6489092B2 (en) * 2016-09-28 2019-03-27 Jfeスチール株式会社 Sinter ore manufacturing method and sintered ore manufacturing equipment line

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51149804A (en) * 1975-06-19 1976-12-23 Nippon Steel Corp A method for preliminary treatment of sintering materials

Also Published As

Publication number Publication date
JP2015078400A (en) 2015-04-23

Similar Documents

Publication Publication Date Title
JP5699567B2 (en) Method for producing sintered ore
JP5644955B2 (en) Granulation method of sintering raw material
CN104334756A (en) Method for manufacturing granulating raw material for sintering, device for manufacturing same, and method for manufacturing sintered ore for blast furnace
JPH0121855B2 (en)
JP2015193930A (en) Method for producing sintered ore
JP2009052141A (en) Method for reducing electric furnace dust
JP6519005B2 (en) Method of producing sintered ore
JP5979114B2 (en) Method for producing sintered ore
JP2006321935A (en) Method and facilities for producing coke
TWI775855B (en) Method of operating a sinter plant and method of operating a blast furnace in a blast furnace plant
JP5365044B2 (en) Ferro-coke manufacturing method
JP6468367B2 (en) Method for producing sintered ore
JP2006348309A (en) Process for production of cokes and productive facilities therefor
JP2002371322A (en) Method for manufacturing sintered ore
JP6887717B2 (en) Charcoal interior granulated particles for sinter production and sinter production method using them
JP5928731B2 (en) Manufacturing method and apparatus for granulating raw material for sintering
JP6954236B2 (en) Manufacturing method and manufacturing equipment for coal interior sintered ore
JP7024647B2 (en) Granulation method of raw material for sintering
JP5494121B2 (en) Method for producing reduced iron
JPH10130653A (en) Method for pretreating coal for coke making and production of coke
JP3738583B2 (en) Method of blending fine coke into sintering raw material
JP2019116684A (en) Manufacturing method of carbonaceous material inner package particle, and manufacturing method of carbonaceous material inner package sintered ore
JP5831397B2 (en) Method for producing sintered ore
JP5842843B2 (en) Ferro-coke manufacturing method
JP2020094248A (en) Manufacturing method of carbonaceous material inner package particle, and manufacturing method of carbonaceous material inner package sintered ore

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160711

R150 Certificate of patent or registration of utility model

Ref document number: 5979114

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250