JP5494121B2 - Method for producing reduced iron - Google Patents

Method for producing reduced iron Download PDF

Info

Publication number
JP5494121B2
JP5494121B2 JP2010078021A JP2010078021A JP5494121B2 JP 5494121 B2 JP5494121 B2 JP 5494121B2 JP 2010078021 A JP2010078021 A JP 2010078021A JP 2010078021 A JP2010078021 A JP 2010078021A JP 5494121 B2 JP5494121 B2 JP 5494121B2
Authority
JP
Japan
Prior art keywords
surface area
specific surface
iron
reduction
reduced iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010078021A
Other languages
Japanese (ja)
Other versions
JP2011208241A (en
Inventor
一雄 大貫
隆 澤井
毅典 佐藤
渉 永井
幸弘 上杉
祐輝 桑内
忠司 真鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2010078021A priority Critical patent/JP5494121B2/en
Publication of JP2011208241A publication Critical patent/JP2011208241A/en
Application granted granted Critical
Publication of JP5494121B2 publication Critical patent/JP5494121B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Iron (AREA)

Description

本発明は、還元鉄の製造方法に関するものであり、特に金属化率の向上させることが可能な還元鉄の製造方法に関する。   The present invention relates to a method for producing reduced iron, and more particularly to a method for producing reduced iron capable of improving the metallization rate.

近年、製鉄プロセスで発生する製鉄ダストを利用して還元鉄を製造する方法は広く用いられており、このような還元鉄の製造方法としては、例えば特許文献1に示すように、製鉄ダストや鉄鉱石と還元材である炭材とを混合した後に塊成化処理を施して塊成化物とし、この塊成化物を連続的に移動する炉床上で加熱還元する方法が知られている。
また、特許文献2には、回転床炉に装入する塊成化物の強度及び還元性を高めるため、塊成化物を構成する粒子の粒度分布について、(累積篩下30%比率粒径)/(累積篩下70%比率粒径)が1/3以下となるように粒度調整する還元鉄の製造方法が開示されている。
In recent years, a method for producing reduced iron using iron-making dust generated in an iron-making process has been widely used. As a method for producing such reduced iron, for example, as shown in Patent Document 1, iron-making dust or iron ore is used. A method is known in which stone and a carbonaceous material that is a reducing material are mixed and then agglomerated to give an agglomerated material, and this agglomerated material is heated and reduced on a hearth that continuously moves.
Further, in Patent Document 2, in order to increase the strength and reducibility of the agglomerated material charged into the rotary bed furnace, the particle size distribution of the particles constituting the agglomerated material is (cumulative sieve 30% ratio particle size) / A method for producing reduced iron is disclosed in which the particle size is adjusted so that (cumulative sieve 70% ratio particle size) is 1/3 or less.

特許文献2の発明においては、上述のように回転床炉に装入する塊成化物の強度及び還元性を高めることにより、小粒径の塊成化物や粉の発生に起因する設備トラブルの発生、さらには焼成時間の延長に伴う生産性の悪化を防止することを目的としている。
確かに塊成化物の強度及び還元性を高めることは重要ではあるが、この特許文献2に記載のものは、還元材を含め、配合する原料のメディアン粒径が62μmや110μmの条件で調べられており、工業的にこのようなレベルまで原料を破砕して粒度調整するには相当大きなエネルギーが必要となるため、還元鉄製造工程の経済性の観点で課題が非常に大きい。しかも、還元材として使用される石炭の場合、このような粒径にまで微破砕するには粉塵爆発対策も必要になってくるという問題もある。
In the invention of Patent Document 2, as described above, by increasing the strength and reducibility of the agglomerated material charged into the rotary bed furnace, the occurrence of equipment troubles due to the generation of agglomerated material and powder having a small particle size Furthermore, it aims at preventing the deterioration of productivity accompanying the extension of the baking time.
Certainly, it is important to increase the strength and reducibility of the agglomerated material, but the material described in Patent Document 2 is examined under the condition that the median particle size of the raw material to be blended including the reducing material is 62 μm or 110 μm. In order to adjust the particle size by crushing the raw material to such a level industrially, a considerable amount of energy is required, so that the problem is very large from the viewpoint of the economical efficiency of the reduced iron production process. In addition, in the case of coal used as a reducing material, there is a problem that a dust explosion countermeasure is required to finely pulverize to such a particle size.

特開2003−293020号公報JP 2003-293020 A 特開平11−12626号公報Japanese Patent Laid-Open No. 11-12626

如上に鑑み、本発明者らは、還元工程の反応促進を図り、その生産性を高める検討を行った。
原料となる製鉄プロセスで発生する製鉄ダストの粒度分布は、破砕後、1000μmから0.5μm程度までの粒径で構成されている。一方、還元材として利用される石炭は破砕しにくく、破砕後、1000μmから10μm程度までの粒径で構成され、製鉄ダストよりもやや粗い構成である、という特徴を有する。
この両者を配合して成形した塊成化物を得て、還元処理することが一般に行われているが、この方法に対して、反応速度をさらに高める改良に着目して検討を進めた。
その結果、還元材に使用する炭材については、その比表面積が大きくなると、粒子の表面の凹凸が増し、その凹みに製鉄ダストの微粒子が埋まり、凹み部分が反応に有効に寄与する一方、表面積が大きすぎると、凹みが小さくなりすぎて、製鉄ダストの微粒子が入り込まなくなり、還元速度が増加しにくいという知見を得た。
In view of the above, the present inventors have studied to enhance the productivity by promoting the reaction of the reduction process.
The particle size distribution of the iron-making dust generated in the iron-making process as a raw material is configured with a particle size from about 1000 μm to about 0.5 μm after crushing. On the other hand, coal used as a reducing material is difficult to be crushed, and is composed of particles having a particle size of about 1000 μm to about 10 μm after crushing, and has a feature that is slightly coarser than iron dust.
In general, an agglomerated product obtained by blending both of these is obtained and subjected to a reduction treatment. However, studies have been made focusing on an improvement for further increasing the reaction rate.
As a result, for the carbonaceous material used for the reducing material, as the specific surface area increases, the irregularities on the surface of the particles increase, and the fine particles of iron-making dust are buried in the dents, while the dents contribute to the reaction effectively, It was found that if the size is too large, the dent will be too small and fine particles of iron-making dust will not enter and the reduction rate will not increase easily.

その一方で、比表面積の大きな炭材を還元材として使用すると、実質的に空隙が多くなるため、還元後の塊成化物に空隙が多く残ってしまい、還元鉄を形成する構成粒子の接触部が減少し、全体の強度が低下するということも知見した。   On the other hand, if a carbon material with a large specific surface area is used as the reducing material, the voids are substantially increased, so that a lot of voids remain in the agglomerated product after the reduction, and the contact part of the constituent particles forming reduced iron It has also been found that the strength decreases and the overall strength decreases.

本発明は、従来の還元鉄の製造技術における上記の問題を鑑みてなされたものであり、その目的は、還元性を高めるために還元材の表面積の最適条件を規定し、高強度且つ高金属化率の還元鉄の製造方法を提供することにある。   The present invention has been made in view of the above-described problems in the conventional reduced iron manufacturing technology, and its purpose is to define an optimum condition for the surface area of the reducing material in order to enhance the reducibility, and to provide a high strength and high metal An object of the present invention is to provide a method for producing reduced iron having a conversion rate.

上記課題を解決するため、本発明の還元鉄の製造方法は、粒度分布が1000μmから0.5μmの粒径で構成された酸化鉄原料と、その酸化鉄原料よりも粗く、粒度分布が1000μmから10μmの粒径で構成された還元材とを含む塊成化物を還元炉により還元して還元鉄を製造する方法であって、前記還元材として比表面積が10〜300(m/g)の第1の炭材と比表面積が10(m/g)未満の第2の炭材とを混合して使用し、第1の炭材を使用する質量比率を還元材の全使用質量の5%以上、50%以下とすることを特徴とする。 In order to solve the above problems, the method for producing reduced iron according to the present invention includes an iron oxide raw material having a particle size distribution of 1000 μm to 0.5 μm and a coarser particle size distribution than 1000 μm. A method for producing reduced iron by agglomeration comprising a reducing material having a particle size of 10 μm in a reduction furnace, wherein the reducing material has a specific surface area of 10 to 300 (m 2 / g). The first carbon material and the second carbon material having a specific surface area of less than 10 (m 2 / g) are mixed and used, and the mass ratio in which the first carbon material is used is 5 of the total used mass of the reducing material. % Or more and 50% or less.

本発明においては、前記還元材の第1の炭材は、樹脂を主体とする使用済み製品を乾留して得られる炭素主体の粒子が含有されていることが好ましい。
この場合において、前記樹脂を主体とする使用済み製品は、廃タイヤ、廃ベルト、廃ゴムの1種または2種以上を含んでいるものとすることができる。
In the present invention, it is preferable that the first carbon material of the reducing material contains carbon-based particles obtained by dry distillation of a used product mainly containing a resin.
In this case, the used product mainly composed of the resin may include one or more of a waste tire, a waste belt, and a waste rubber.

本発明によれば、比表面積が所定範囲の第1の炭材と該第1の炭材よりも比表面積が小さい第2の炭材とを混合し、第1の炭材を使用する質量比率を還元材の全使用質量に対して所定の範囲とすることにより、この2つの炭材が有効に作用して、強度が高く且つ高金属化率の還元鉄を得ることができる。   According to the present invention, the first carbon material having a specific surface area of a predetermined range and the second carbon material having a specific surface area smaller than that of the first carbon material are mixed, and the mass ratio using the first carbon material. By setting the amount to a predetermined range with respect to the total use mass of the reducing material, these two carbonaceous materials effectively act, and reduced iron having high strength and a high metallization rate can be obtained.

本発明の還元鉄の製造方法の一実施の形態を示すプロセスフロー図である。It is a process flow figure showing one embodiment of a manufacturing method of reduced iron of the present invention. 比表面積の異なる3種類の炭材について、900℃付近の温度と還元反応に伴う重量減少速度と関係を比較したグラフである。It is the graph which compared the relationship between the temperature of 900 degreeC vicinity, and the weight reduction rate accompanying a reduction reaction about three types of carbon materials from which a specific surface area differs. 炭材の比表面積と900℃付近の還元速度指標との関係を示すグラフである。It is a graph which shows the relationship between the specific surface area of a carbonaceous material, and the reduction | restoration rate parameter | index of 900 degreeC vicinity. 炭材の比表面積と還元後の金属化率との関係を示すグラフである。It is a graph which shows the relationship between the specific surface area of a carbonaceous material, and the metallization rate after a reduction | restoration. 比表面積50(m/g)の炭材の使用比率と還元後の金属化率との関係を示すグラフである。It is a graph which shows the relationship between the use ratio of the carbonaceous material of specific surface area 50 (m < 2 > / g), and the metallization rate after reduction | restoration. 比表面積50(m/g)の炭材の使用比率と還元後の強度との関係を示すグラフである。It is a graph which shows the relationship between the use ratio of the carbonaceous material of specific surface area 50 (m < 2 > / g), and the intensity | strength after reduction | restoration. 比表面積が異なる炭材の使用比率と冷鉄源溶解炉の酸素原単位との関係を示すグラフである。It is a graph which shows the relationship between the usage-ratio of the carbon material from which a specific surface area differs, and the oxygen basic unit of a cold iron source melting furnace.

以下、図面に基づいて詳細に本発明を説明するに、図1は本発明に係る還元鉄の製造方法の一実施の形態を示すプロセスフロー図である。
具体的に説明すると、還元鉄の製造するに際しては、まず原料となる製鉄プロセスで発生する製鉄ダストや鉄鉱石などの酸化鉄原料と、還元材である石炭や乾留物等の炭材とをそれぞれ別々のサイロに貯蔵しておき、各サイロから一定速度で供給される前記酸化鉄原料と炭材とを破砕、混合する破砕混合工程を行う。破砕混合工程の後、該工程で生成された混合物に水分含有率調整及びバインダー添加を行って混練する混練工程を行い、さらに、該混練工程後の混合物を塊成化して塊成化物を成形する塊成化工程を行う。そして、成形された塊成化物をさらに乾燥させて含有する水分を1%未満にする乾燥工程を経た後、この乾燥した塊成化物を、回転炉床を有する還元炉に投入して還元し還元鉄とする還元処理工程を行うことにより、還元鉄が製造される。
なお、ここで製造された還元鉄の一部は、次工程の冷鉄源溶解炉操業に送られ、冷鉄源溶解炉において石炭や酸素を吹き込まれて溶解され、溶銑の製造に供される。
Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a process flow diagram showing an embodiment of a method for producing reduced iron according to the present invention.
Specifically, when producing reduced iron, firstly, iron oxide raw materials such as iron dust and iron ore generated in the iron making process as raw materials, and carbon materials such as coal and dry distillate as reducing materials, respectively. A crushing and mixing step of crushing and mixing the iron oxide raw material and the carbonaceous material that are stored in separate silos and supplied at a constant speed from each silo is performed. After the crushing and mixing step, the mixture produced in the step is subjected to a kneading step in which the moisture content is adjusted and a binder is added and kneaded, and the mixture after the kneading step is agglomerated to form an agglomerated product. Perform the agglomeration process. The molded agglomerated product is further dried to a moisture content of less than 1%, and then the dried agglomerated product is put into a reduction furnace having a rotary hearth for reduction and reduction. Reduced iron is manufactured by performing the reduction process process made into iron.
In addition, a part of the reduced iron produced here is sent to the cold iron source melting furnace operation of the next process, coal and oxygen are blown and melted in the cold iron source melting furnace, and used for the production of hot metal. .

前記破砕混合工程は、ボールミル等の破砕機に酸化鉄原料及び還元材を投入することにより行う。酸化鉄の還元反応は、構成粒子を微細化することで反応が促進されることが知られていることから、このような破砕混合工程を行うことにより酸化鉄原料及び還元材を微細化して、還元反応の促進を図るようにしている。
また、前記混錬工程は、ミックスマラー等の混練機によって行われるが、湿式で塊成化物成形する際には、水分の最適化や適切なバインダーの添加が肝要となるため、この水分調整やバインダーの混錬のために、混錬工程は非常に重要な工程となる。
The crushing and mixing step is performed by introducing the iron oxide raw material and the reducing material into a crusher such as a ball mill. Since the reduction reaction of iron oxide is known to promote the reaction by making the constituent particles finer, by performing such a crushing and mixing step, the iron oxide raw material and the reducing material are made finer, The reduction reaction is promoted.
The kneading step is performed by a kneader such as a mix muller. However, when forming agglomerates in a wet state, it is important to optimize moisture and add an appropriate binder. The kneading process is a very important process for kneading the binder.

前記塊成化工程においては、水分調整され、バインダーも添加された酸化鉄原料及び還元材の混合物(塊成化物原料)が、転動造粒や圧縮成形等によって、ブリケット、押し出し成形、ペレットなどの成形方法で塊成化される。
また、前記乾燥工程においては、湿式成形された塊成化物がそのまま還元炉内に入ると水分の蒸発に伴う熱ロスや亀裂発生に伴う塊成化物回収歩留まり低下などの問題を発生させる可能性があるため、これを防止するために行うもので、上述のように、塊成化物中の水分含有量を1%未満にまで低下させる。
さらに、還元処理工程においては、乾燥させた塊成化物を、回転炉床炉を用いて、約1200〜1300℃の雰囲気温度条件で、約20分弱の処理時間で還元させ、これにより還元鉄を得る。
In the agglomeration step, a mixture of iron oxide raw material and reducing material (agglomerated material raw material) that has been moisture-adjusted and to which a binder has also been added, such as briquette, extrusion molding, pellets, etc. by rolling granulation or compression molding, etc. It is agglomerated by the molding method.
Further, in the drying step, if the agglomerated product that has been wet-formed enters the reduction furnace as it is, there is a possibility that problems such as a heat loss accompanying evaporation of moisture and a decrease in agglomerate recovery yield due to cracking may occur. Therefore, it is performed to prevent this, and as described above, the water content in the agglomerated material is reduced to less than 1%.
Furthermore, in the reduction treatment step, the dried agglomerated material is reduced using a rotary hearth furnace under an atmospheric temperature condition of about 1200 to 1300 ° C. for a treatment time of about 20 minutes, thereby reducing the reduced iron. Get.

この還元鉄の製造方法で使用される酸化鉄原料としては、製鉄プロセスで発生する製鉄ダストや鉄鉱石などの酸化鉄が主に使用される。
一方、酸化鉄材料の還元に必要となる還元材としては、石炭や樹脂を主体とする使用済み製品を乾留して得られる炭素主体の粒子が使用される。
As the iron oxide raw material used in the method for producing reduced iron, iron oxide such as iron making dust and iron ore generated in the iron making process is mainly used.
On the other hand, as a reducing material necessary for the reduction of the iron oxide material, carbon-based particles obtained by dry distillation of used products mainly composed of coal or resin are used.

ここで、還元材に使用する炭材については、既に述べたように、その比表面積が大きくなると、粒子の表面の凹凸が増し、その凹みに製鉄ダストの微粒子が埋まり、凹み部分が反応に有効に寄与する一方、表面積が大きすぎると、凹みが小さくなりすぎて、製鉄ダストの微粒子が入り込まなくなり、還元速度が増加しにくいとの知見を得たが、この点について具体的に説明する。   Here, as already mentioned, as for the carbonaceous material used for the reducing material, as the specific surface area increases, the irregularities on the surface of the particles increase, and the fine particles of iron-making dust are buried in the depressions, and the depressions are effective for the reaction. On the other hand, when the surface area is too large, the indentation becomes too small and the fine particles of the iron-making dust do not enter and the reduction rate is difficult to increase. This point will be specifically described.

即ち、炭材の比表面積が与える影響について調査するため、炭材の比表面積を変えて還元実験を行った。
具体的には、比表面積が、2(m/g)、38(m/g)、1100(m/g)という3水準の炭材を用いて、酸化鉄の還元実験を行ったところ、図2のように、比表面積が38(m/g)の炭材が、より低温から大きな還元反応が始まることがわかった。
これは、前述の炭材粒子の表面の凹凸が増すと共に、その凹みに製鉄ダストの微粒子が埋まったため、この凹み部分が反応に有効に寄与し、還元速度が増加したためだと考えられる。
一方、1100(m/g)の炭材のように、比表面積が大きすぎると、凹みが小さくなりすぎて、該凹みに製鉄ダストの微粒子が入り込まなくなるため、凹み部分による還元速度の増加への影響が小さかったものと考えられる。
That is, in order to investigate the influence of the specific surface area of the carbon material, a reduction experiment was performed by changing the specific surface area of the carbon material.
Specifically, iron oxide reduction experiments were performed using three levels of carbon materials with specific surface areas of 2 (m 2 / g), 38 (m 2 / g), and 1100 (m 2 / g). However, as shown in FIG. 2, it was found that a carbon material having a specific surface area of 38 (m 2 / g) starts a large reduction reaction at a lower temperature.
This is thought to be because the surface roughness of the aforementioned carbonaceous material particles increased, and the fine particles of iron-making dust were buried in the recesses, so that the recesses effectively contributed to the reaction and the reduction rate was increased.
On the other hand, if the specific surface area is too large, such as 1100 (m 2 / g), the dent becomes too small and fine particles of iron-making dust do not enter the dent, so that the reduction rate increases due to the dent. It is thought that the influence of was small.

なお、炭材の比表面積の測定するに際しては、粉体粒子表面に吸着占有面積が明らかとなっている気体分子を低温度で吸着させ,その量から試料の比表面積を求める方法を用い、今回は気体として窒素を使用した。また、比表面積の計算方法はBET法として知られている方法を用いた。
具体的には、まず吸着物の無い状態の試料重量を計り、次に、試料表面に窒素ガスが吸着していく過程を圧力の変化に対する吸着量の変化を求め、この結果から試料表面にだけ吸着したガス分子吸着量をBET吸着等温式より求めた。窒素分子は吸着占有面積がわかっているので、ガス吸着量より試料の表面積を算出することが可能となる。
When measuring the specific surface area of carbonaceous materials, this time, a method was used to adsorb gas molecules whose adsorption occupancy area was clear on the powder particle surface at a low temperature and to determine the specific surface area of the sample from the amount. Used nitrogen as the gas. The specific surface area was calculated using a method known as the BET method.
Specifically, first weigh the sample without adsorbate, and then determine the change in the amount of adsorption with respect to the pressure change during the process of nitrogen gas adsorption on the sample surface. The amount of adsorbed gas molecules was determined from the BET adsorption isotherm. Since the adsorption area of nitrogen molecules is known, the surface area of the sample can be calculated from the amount of gas adsorption.

この種の実験を重ねた結果、還元材として比表面積が10〜300(m/g)の炭材を還元材に使用した場合には、還元速度を増加させて還元鉄の金属化率を向上させるのに適切であることを見出した。
炭材の比表面積の範囲を10〜300(m/g)としたのは、上述のように、300(m/g)超になると、表面の凹みが小さくなりすぎて、製鉄ダストの微粒子が入り込みづらくなり、この凹み部分による還元速度の増加へ寄与が小さくなる一方、10(m/g)未満となると、表面の凹凸が少なく、製鉄ダストの微粒子が入り込む凹み自体が少なくなるため、還元速度の増加への影響が小さくなるためである。
As a result of repeated experiments of this type, when a carbon material having a specific surface area of 10 to 300 (m 2 / g) is used as the reducing material, the reduction rate is increased and the metallization rate of the reduced iron is increased. We found it appropriate to improve.
The range of the specific surface area of the carbon material is set to 10 to 300 (m 2 / g), as described above, when the surface area exceeds 300 (m 2 / g), the dent on the surface becomes too small, Fine particles are difficult to enter, and the contribution to the increase in the reduction rate due to the dents is reduced. On the other hand, when the ratio is less than 10 (m 2 / g), the surface irregularities are small, and the dents into which fine particles of iron-making dust enter are reduced. This is because the influence on the increase in the reduction rate is reduced.

その一方で、比表面積の大きな炭材を使うと、塊成化物においてはおのずと空隙部が増加することになるため、還元後の塊成化物に空隙が多く残ることになる。そうすると、還元鉄を形成する構成粒子の接触部が減少してしまうため、全体の強度が低下することが考えられる。還元後の塊成化物の強度が不足すると、次工程に搬送される際にその塊成化物が砕けて小粒径の塊成化物や粉を発生させ、それに起因する設備トラブルが発生する可能性もある。
そのため、このようなトラブルの発生を防止しうる程度の強度を確保する上では、還元材に比表面積が10(m/g)未満の炭材も混合して使用して、塊成化物の空隙を可及的に少なくすることによって、還元鉄(還元後の塊成化物)の強度を確保することが適切であることを見出した。
したがって、還元材としては、比表面積が10〜300(m/g)の第1の炭材と、比表面積が10(m/g)未満の第2の炭材の両方を使用することが必要である。
なお、炭材の比表面積については0となることはないため、使用する第2の炭材の比表面積は0を含まないことは当然である。
On the other hand, when a carbon material having a large specific surface area is used, voids are naturally increased in the agglomerated material, so that many voids remain in the agglomerated material after reduction. If it does so, since the contact part of the component particle | grains which form reduced iron will reduce, it is possible that the whole intensity | strength falls. If the strength of the agglomerated material after reduction is insufficient, the agglomerated material may break when it is transported to the next process, generating agglomerated material and powder with a small particle size, which may cause equipment troubles. There is also.
Therefore, in order to ensure the strength that can prevent the occurrence of such troubles, a carbonaceous material having a specific surface area of less than 10 (m 2 / g) is mixed with the reducing material and used for the agglomerated material. It has been found that it is appropriate to ensure the strength of reduced iron (agglomerated product after reduction) by reducing the voids as much as possible.
Accordingly, as the reducing material, both the first carbon material having a specific surface area of 10 to 300 (m 2 / g) and the second carbon material having a specific surface area of less than 10 (m 2 / g) should be used. is necessary.
In addition, since it does not become 0 about the specific surface area of a carbon material, it is natural that the specific surface area of the 2nd carbon material to be used does not contain 0.

さらに、還元鉄の高金属化率の実現と強度との両立を図る上では、比表面積が10〜300(m/g)である第1の炭材を使用する質量比率を、還元材の全使用質量の5%以上、50%以下とすることが適切であることを見出した。
第1の炭材を使用する質量比率を還元材の全使用質量の5%〜50%の範囲としたのは、第1の炭材の質量比率が還元材の全使用質量の5%未満である場合は、還元速度を向上させる働きの高い第1の炭材の量が少ないため高金属化率への寄与が小さく、一方で質量比率が50%超となると、塊成化物の空隙が多くなり還元後の塊成化物の強度が落ちて砕けやすくなるためである。
Furthermore, in order to achieve both the realization of the high metalization rate of reduced iron and the strength, the mass ratio using the first carbonaceous material having a specific surface area of 10 to 300 (m 2 / g) It has been found that it is appropriate that the total mass used is 5% or more and 50% or less.
The reason why the mass ratio in which the first carbon material is used is in the range of 5% to 50% of the total used mass of the reducing material is that the mass ratio of the first carbon material is less than 5% of the total used mass of the reducing material. In some cases, the amount of the first carbon material that has a high function of improving the reduction rate is small, so that the contribution to the high metallization rate is small. On the other hand, when the mass ratio exceeds 50%, there are many voids in the agglomerated material. This is because the strength of the agglomerated product after the reduction is reduced and it becomes easy to break.

ところで、発明者らは、第1の炭材として最適な比表面積の大きい炭材を得るため、鋭意検討を行った結果、このような第1の炭材は有機物の乾留処理を行うことにより得ることが好ましいことを知見した。
乾留の対象物である有機物としては、樹脂を主体とする使用済み製品であることが好ましく、例えば廃タイヤ、廃ベルト、廃ゴムが含まれ、これらを単体あるいは複数混合して乾留処理することができ、これにより比表面積の大きい第1の炭材を比較的容易に入手することが可能となる。
これらの製品の共通の特徴は、粒状のカーボンブラックを含有することである。カーボンブラックは一般に0.1μm以下の大きさの粒子であり、樹脂を主体とする使用済み製品内では微細なカーボンブラックが凝集した形態で存在していると考えられる。これを乾留すると、カーボンブラックの周りの樹脂が熱分解し、カーボンブラックが凝集した骨格を残しながら、表面に凹凸ある炭材(乾留炭化物)が形成され、炭材の比表面積を増大させると推定される。
By the way, as a result of intensive studies in order to obtain a carbon material having a large specific surface area that is optimal as the first carbon material, the inventors obtained such a first carbon material by performing a carbonization treatment of organic matter. It was found that this is preferable.
The organic matter that is the subject of dry distillation is preferably a used product mainly composed of resin, for example, waste tires, waste belts, waste rubber are included, and these can be subjected to dry distillation treatment by mixing them alone or in combination. Thus, the first carbon material having a large specific surface area can be obtained relatively easily.
A common feature of these products is that they contain granular carbon black. Carbon black is generally a particle having a size of 0.1 μm or less, and it is considered that fine carbon black is present in an aggregated form in a used product mainly composed of resin. When this is carbonized, the resin around the carbon black is thermally decomposed, leaving a carbon black aggregated skeleton, and forming an uneven carbon material (carbonized carbonized) on the surface, presuming to increase the specific surface area of the carbon material Is done.

乾留方式としては、例えば、外熱式ロータリーキルンを用いることができる。この外熱式ロータリーキルンは、外気を遮断する構造を有していて、通常1〜5rpm程度の回転数で回転しながら、片側から廃タイヤ等の被乾留物を投入することができるようになっている。キルンの外熱部の加熱温度は、通常、600℃〜700℃程度であり、被乾留物は、キルンの円筒外側から加熱され徐々に温度が上昇し、キルン出口までに、そのゴム部分が熱分解ガス化し、残りのカーボンブラック、廃タイヤであればワイヤー等が固形物として分離される。そして、このカーボンブラックを主体とする熱分解の固体物質が、還元材として最適な範囲の比表面積を有した第1の炭材となる。   As the dry distillation method, for example, an external heating type rotary kiln can be used. This external heat type rotary kiln has a structure that blocks the outside air, and can normally feed dry matter such as waste tires from one side while rotating at a rotational speed of about 1 to 5 rpm. Yes. The heating temperature of the externally heated part of the kiln is usually about 600 ° C. to 700 ° C., and the to-be-dried product is heated from the outside of the kiln cylinder and gradually rises in temperature, and the rubber part is heated up to the kiln outlet. If it is decomposed and gasified and the remaining carbon black and waste tires are used, wires and the like are separated as solids. The pyrolytic solid substance mainly composed of carbon black becomes the first carbon material having a specific surface area in the optimum range as the reducing material.

以上、本発明の還元鉄の製造方法について述べたが、上述の還元鉄の製造方法によれば、還元材として、還元速度を向上させて高金属化率に寄与する比表面積が一定範囲の大きさの第1の炭材と、還元鉄(還元後の塊成化物)の強度確保に有効な比表面積が第1の炭材よりも小さい第2の炭材とを混合し、第1の炭材を使用する質量比率を還元材の全使用質量に対して所定の範囲とすることにより、高金属化率且つ高強度の還元鉄を安定的に得ることができる。   As mentioned above, although the manufacturing method of the reduced iron of this invention was described, according to the manufacturing method of the above-mentioned reduced iron, the specific surface area which improves a reduction rate and contributes to a high metallization rate as a reducing material is large with a fixed range. The first carbon material is mixed with a second carbon material having a specific surface area effective for securing the strength of reduced iron (agglomerated material after reduction) smaller than that of the first carbon material. By setting the mass ratio at which the material is used within a predetermined range with respect to the total used mass of the reducing material, it is possible to stably obtain reduced iron with a high metalization rate and high strength.

炭材の比表面積が還元に与える影響を調べるため、比表面積を変化させた還元材を用いて還元実験を行った。
還元実験に際しては、上述の実施の形態と同様の工程を実施した。即ち、製鉄プロセスで発生する製鉄ダストと種々の比表面積の炭材を原料として、ボールミルで破砕後、バインダーとしてコーンスターチを加えて、混錬、水分調整を行い、ブリケット方式で成型した塊成化物を製造し、乾燥工程で水分1%未満にしたのち、炉温1250℃の回転炉床炉で20分の還元処理を行った。
図3に使用した炭材の比表面積に対する還元速度指標(900℃における還元速度)との関係を示す。
また、図4に使用した炭材の比表面積に対する還元後の金属化率(全鉄分濃度に対する金属鉄分の比率)との関係を示す。
In order to investigate the effect of the specific surface area of the carbon material on the reduction, reduction experiments were performed using a reducing material having a different specific surface area.
In the reduction experiment, the same steps as those in the above embodiment were performed. In other words, using iron-making dust generated in the iron-making process and carbon materials with various specific surface areas as raw materials, after crushing with a ball mill, adding corn starch as a binder, kneading and moisture adjustment, agglomerates molded by briquette method After manufacturing and making the moisture less than 1% in the drying step, reduction treatment was performed for 20 minutes in a rotary hearth furnace at a furnace temperature of 1250 ° C.
FIG. 3 shows the relationship between the reduction rate index (reduction rate at 900 ° C.) with respect to the specific surface area of the carbonaceous material used.
Moreover, the relationship with the metallization rate after reduction | restoration with respect to the specific surface area of the carbonaceous material used for FIG. 4 (ratio of metal iron content with respect to the total iron content density | concentration) is shown.

図3に示すように、炭材の比表面積が10(m/g)〜300(m/g)の範囲では、還元鉄の金属化率向上に有効な還元速度が得られていることがわかる。
また、図4に示すように、炭材の比表面積が10(m/g)〜300(m/g)の範囲では、83%以上の高い金属化率を実現することができることがわかる。
この結果、還元速度及び高金属化率から勘案すると、還元材に使用する炭材の比表面積には最適な範囲があることがわかった。特に、炭材の比表面積が10(m/g)〜300(m/g)の範囲にある場合は、十分な還元速度及び高金属化率が得られることがわかった。
As shown in FIG. 3, when the specific surface area of the carbon material is in the range of 10 (m 2 / g) to 300 (m 2 / g), a reduction rate effective for improving the metallization rate of reduced iron is obtained. I understand.
Moreover, as shown in FIG. 4, when the specific surface area of a carbon material is the range of 10 (m < 2 > / g) -300 (m < 2 > / g), it turns out that a 83% or more high metalization rate is realizable. .
As a result, it was found that there is an optimum range for the specific surface area of the carbonaceous material used for the reducing material, considering the reduction rate and the high metalization rate. In particular, it was found that when the specific surface area of the carbon material is in the range of 10 (m 2 / g) to 300 (m 2 / g), a sufficient reduction rate and a high metallization rate can be obtained.

比表面積が10(m/g)〜300(m/g)である第1の炭材の使用比率と還元鉄の金属化率、及び強度を確認するため、第1の炭材の使用比率を変更させて還元事件を行った。
具体的には、還元材として、比表面積が50(m/g)の第1の炭材と、2(m/g)の第2の炭材とを混合して用い、実施例1と同様に還元処理を実施した。なお、第1の炭材については、還元材の全使用質量に対する質量比率を変更させて実験を行った。
図5に比表面積が50(m/g)のものを使用した比率に対する還元後の金属化率との関係を示す。
また、図6に比表面積が50(m/g)のものを使用した比率に対する還元後の還元鉄の強度との関係を示す。
Use of the first carbon material in order to confirm the use ratio of the first carbon material having a specific surface area of 10 (m 2 / g) to 300 (m 2 / g), the metallization rate of reduced iron, and the strength. A reduction case was conducted with the ratio changed.
Specifically, as a reducing material, a first carbon material having a specific surface area of 50 (m 2 / g) and a second carbon material having a specific surface area of 2 (m 2 / g) are mixed and used. The reduction treatment was carried out in the same manner as above. In addition, about the 1st carbon material, it experimented by changing the mass ratio with respect to the total use mass of a reducing material.
FIG. 5 shows the relationship between the metallization ratio after reduction and the ratio using a specific surface area of 50 (m 2 / g).
FIG. 6 shows the relationship between the reduced iron strength after reduction with respect to the ratio using a specific surface area of 50 (m 2 / g).

この結果、図5に示すように、比表面積が50(m/g)のもの、つまり第1の炭材を用いる比率を増せば金属化率が高くなることがわかった。これにより、比表面積が大きい第1の炭材が還元鉄の金属化率の向上に多大な影響を与えていることが実証された。
その一方で、図6に示すように、第1の炭材を用いる比率を高めると、還元鉄(還元後の塊成化物)の圧潰強度が低下することがわかった。これにより、還元鉄の強度は、比表面積の大きな炭材を使う比率が影響することがわかった。なお、比表面積の大きな炭材を使うことによる還元鉄の強度の低下については、既に述べたように、塊成化物に比表面積の大きな炭材が多く使われるとおのずと空隙が多くなるため、還元後にその空隙が残って還元鉄を形成する構成粒子の接触部が減少し、全体として脆くなってしまうためであると考えられる。
As a result, as shown in FIG. 5, it was found that the metallization rate increases when the specific surface area is 50 (m 2 / g), that is, the ratio of using the first carbon material is increased. Thereby, it was demonstrated that the 1st carbon material with a large specific surface area has had a great influence on the improvement of the metallization rate of reduced iron.
On the other hand, as shown in FIG. 6, it was found that the crushing strength of reduced iron (agglomerated product after reduction) decreased when the ratio of using the first carbon material was increased. Thereby, it turned out that the intensity | strength of reduced iron influences the ratio which uses a carbon material with a large specific surface area. Note that the reduction in the strength of reduced iron due to the use of a carbon material with a large specific surface area, as already mentioned, will naturally increase the number of voids when a carbon material with a large specific surface area is used in the agglomerate. It is thought that this is because the voids remain afterwards and the contact portions of the constituent particles forming the reduced iron are reduced and become brittle as a whole.

比表面積が10(m/g)〜300(m/g)である第1の炭材の使用比率と還元鉄の強度との関係をさらに詳しく調べるため、実験を行った。
この実験は、還元材として、比表面積が5、10、50、300(m/g)である炭材と、比表面積が2(m/g)の炭材とを混合して用い、還元鉄を還元処理工程の次の工程である冷鉄源溶解炉操業(図1参照)で溶解し、酸素原単位を調べた。
ここで冷鉄源溶解炉は、転炉を改造し、溶銑を炉内に残しながら、酸素と石炭とを吹き込んで、その燃焼熱で還元鉄などの冷鉄源を溶解し溶銑を製造するものである。酸素原単位は還元鉄の金属化率が高いほど、かつ、冷鉄源溶解炉内へ留まる率が高いほど、低下する傾向があり、還元鉄の品質を示す指標となる。
なお、冷鉄源溶解炉内へ留まる率が高いという意味は、還元鉄の強度が高く、溶解炉の上方から還元鉄が投入された場合、塊状のまま溶解炉内に落下するため、炉内ガスの上昇気流に打ち勝って炉内に留まることを示している。逆に、還元鉄の強度が低い場合には、溶解炉の上方から還元鉄が投入された際に、割れて小さな粒子が多いために炉内ガスの上昇気流に乗って炉外へ排出されるため、冷鉄源溶解炉内へ留まる率が低くなる。
この実験の結果を図7に示す。
An experiment was conducted to examine in more detail the relationship between the ratio of the first carbon material having a specific surface area of 10 (m 2 / g) to 300 (m 2 / g) and the strength of reduced iron.
In this experiment, as a reducing material, a carbon material having a specific surface area of 5, 10, 50, 300 (m 2 / g) and a carbon material having a specific surface area of 2 (m 2 / g) are mixed and used. The reduced iron was melted in the cold iron source melting furnace operation (see FIG. 1), which is the next step after the reduction treatment step, and the oxygen intensity was examined.
Here, the cold iron source melting furnace remodels the converter, blows oxygen and coal while leaving the hot metal in the furnace, and melts the cold iron source such as reduced iron with its combustion heat to produce hot metal. It is. The oxygen basic unit tends to decrease as the metallization rate of the reduced iron is higher and the rate of staying in the cold iron source melting furnace is higher, and is an index indicating the quality of the reduced iron.
Note that the high rate of staying in the cold iron source melting furnace means that the strength of reduced iron is high, and when reduced iron is introduced from above the melting furnace, it falls into the melting furnace as a lump, so It shows that it stays in the furnace overcoming the gas updraft. On the other hand, when the strength of the reduced iron is low, when the reduced iron is introduced from the upper side of the melting furnace, it breaks and there are many small particles, so it gets out of the furnace on the rising air flow of the furnace gas For this reason, the rate of staying in the cold iron source melting furnace is lowered.
The result of this experiment is shown in FIG.

この結果、比表面積が10〜300(m/g)の炭材の場合、その混合比率が50%以下であれば、溶解炉の酸素原単位は、比表面積が2(m/g)の炭材のみ使用した場合、すなわち、図7の横軸が0の場合の酸素原単位を下回ることが分かった。
これは、比表面積が10〜300(m/g)の炭材の使用比率が50%以上であると、還元鉄の強度が低下して、次工程への持ち運び時に割れて還元鉄の小片が増し、溶解炉内への投入歩留まりが低下することや、還元鉄の小片が空気と触れて再酸化し、溶解炉内に投入時の還元鉄の金属化率が低下するためと考えられる。
また、比表面積が10〜300(m/g)の炭材の使用比率が5%未満であれば、溶解炉の酸素原単位は、比表面積が2(m/g)の炭材のみを使用した場合の酸素原単位に比べて大差無かった。この理由は、この程度の使用量では金属化率の向上効果が小さいためと考えられる。
さらに、比表面積が5(m/g)のものを使用した場合には、比表面積が2(m/g)の炭材のみを使用した場合と比較しても改善効果が小さいことが分かった。
したがって、比表面積が10〜300(m/g)の炭材の場合、その混合比率が5%以上、50%以下であれば、搬送等に際して十分な程度の強度を有した還元鉄を得ることができることが実証された。

As a result, in the case of a carbonaceous material having a specific surface area of 10 to 300 (m 2 / g), if the mixing ratio is 50% or less, the oxygen basic unit of the melting furnace has a specific surface area of 2 (m 2 / g). It was found that when only the carbonaceous material was used, that is, below the oxygen consumption rate when the horizontal axis in FIG.
This is because when the use ratio of the carbonaceous material having a specific surface area of 10 to 300 (m 2 / g) is 50% or more, the strength of the reduced iron is reduced, and the reduced iron pieces are cracked when carried to the next process. This is thought to be due to a decrease in the yield of charging into the melting furnace and a reduction in the metallization rate of the reduced iron at the time of charging into the melting furnace.
Moreover, if the usage rate of the carbonaceous material having a specific surface area of 10 to 300 (m 2 / g) is less than 5%, the oxygen basic unit of the melting furnace is only the carbonaceous material having a specific surface area of 2 (m 2 / g). Compared to the oxygen consumption rate when using. The reason for this is considered to be because the effect of improving the metallization rate is small with this amount of use.
Furthermore, when a specific surface area of 5 (m 2 / g) is used, the improvement effect may be small compared to the case of using only a carbon material with a specific surface area of 2 (m 2 / g). I understood.
Therefore, in the case of a carbonaceous material having a specific surface area of 10 to 300 (m 2 / g), if the mixing ratio is 5% or more and 50% or less, reduced iron having a sufficient degree of strength for transportation or the like is obtained. It has been demonstrated that it can.

Claims (3)

粒度分布が1000μmから0.5μmの粒径で構成された酸化鉄原料と、その酸化鉄原料よりも粗く、粒度分布が1000μmから10μmの粒径で構成された還元材とを含む塊成化物を還元炉により還元して還元鉄を製造する方法であって、前記還元材として比表面積が10〜300(m/g)の第1の炭材と比表面積が10(m/g)未満の第2の炭材とを混合して使用し、第1の炭材を使用する質量比率を還元材の全使用質量の5%以上、50%以下とすることを特徴とする還元鉄の製造方法。 An agglomerate comprising an iron oxide raw material having a particle size distribution of 1000 μm to 0.5 μm and a reducing material which is coarser than the iron oxide raw material and has a particle size distribution of 1000 μm to 10 μm. A method for producing reduced iron by reduction in a reduction furnace, wherein the reducing material is a first carbon material having a specific surface area of 10 to 300 (m 2 / g) and a specific surface area of less than 10 (m 2 / g). The second carbon material is mixed and used, and the mass ratio in which the first carbon material is used is 5% or more and 50% or less of the total used mass of the reducing material. Method. 前記還元材の第1の炭材は、樹脂を主体とする使用済み製品を乾留して得られる炭素主体の粒子が含有されていることを特徴とする請求項1に記載の還元鉄の製造方法。 2. The method for producing reduced iron according to claim 1, wherein the first carbon material of the reducing material contains carbon-based particles obtained by dry distillation of a used product mainly containing a resin. . 前記樹脂を主体とする使用済み製品は、廃タイヤ、廃ベルト、廃ゴムの1種または2種以上を含んでいることを特徴とする請求項2に記載の還元鉄の製造方法。   3. The method for producing reduced iron according to claim 2, wherein the used product mainly composed of the resin includes one or more of a waste tire, a waste belt, and a waste rubber.
JP2010078021A 2010-03-30 2010-03-30 Method for producing reduced iron Active JP5494121B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010078021A JP5494121B2 (en) 2010-03-30 2010-03-30 Method for producing reduced iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010078021A JP5494121B2 (en) 2010-03-30 2010-03-30 Method for producing reduced iron

Publications (2)

Publication Number Publication Date
JP2011208241A JP2011208241A (en) 2011-10-20
JP5494121B2 true JP5494121B2 (en) 2014-05-14

Family

ID=44939593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010078021A Active JP5494121B2 (en) 2010-03-30 2010-03-30 Method for producing reduced iron

Country Status (1)

Country Link
JP (1) JP5494121B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6387868B2 (en) * 2015-03-09 2018-09-12 住友金属鉱山株式会社 Method for producing zinc oxide ore

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3845893B2 (en) * 1996-03-15 2006-11-15 株式会社神戸製鋼所 Metal iron manufacturing method
JP4348387B2 (en) * 2007-10-19 2009-10-21 新日本製鐵株式会社 Method for producing pre-reduced iron

Also Published As

Publication number Publication date
JP2011208241A (en) 2011-10-20

Similar Documents

Publication Publication Date Title
KR101405478B1 (en) Method for manufacturing coal bruquettes and apparatus for the same
JP4996105B2 (en) Vertical coal interior agglomerates
WO2011034195A1 (en) Process for producing ferro coke
JP6540359B2 (en) Modified carbon material for producing sintered ore and method for producing sintered ore using the same
JPH0121855B2 (en)
JP4113820B2 (en) Method for producing reduced metal raw material agglomerate and method for producing reduced metal
KR101193275B1 (en) Process for producing pre-reduced iron
WO2012049974A1 (en) Process for production of reduced iron
JP5494121B2 (en) Method for producing reduced iron
JP4532313B2 (en) Manufacturing method of carbonized material agglomerates
JP5365044B2 (en) Ferro-coke manufacturing method
CA2423166C (en) Method for making reduced iron
JP4267390B2 (en) Method for producing ferro-coke for blast furnace
JP2013221187A (en) Method for producing agglomerate
JP6062316B2 (en) Method for producing molded solid fuel
JP5394695B2 (en) Method for reforming non-caking coal with low coalification degree, molding for modifying non-caking coal, and method for producing coke
JP6384598B2 (en) Ferro-coke manufacturing method
JP3837845B2 (en) Method for producing reduced iron
JP5979114B2 (en) Method for producing sintered ore
WO2024116616A1 (en) Sintered ore manufacturing method
JP3723521B2 (en) Reduced iron manufacturing method and crude zinc oxide manufacturing method using blast furnace wet dust
JP5842843B2 (en) Ferro-coke manufacturing method
JP2024078406A (en) Sinter manufacturing method
JP2013199701A (en) Method for producing agglomerate
JP2002327181A (en) Method for producing coke for blast furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120209

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140217

R151 Written notification of patent or utility model registration

Ref document number: 5494121

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350