JP2020033582A - Granulation method of blending raw material - Google Patents
Granulation method of blending raw material Download PDFInfo
- Publication number
- JP2020033582A JP2020033582A JP2018159228A JP2018159228A JP2020033582A JP 2020033582 A JP2020033582 A JP 2020033582A JP 2018159228 A JP2018159228 A JP 2018159228A JP 2018159228 A JP2018159228 A JP 2018159228A JP 2020033582 A JP2020033582 A JP 2020033582A
- Authority
- JP
- Japan
- Prior art keywords
- ore
- mass
- drum mixer
- added
- fine powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
本発明は、核粒子が少なく微粉が多い配合原料の造粒方法に関する。 The present invention relates to a method for granulating a blended raw material having a small amount of core particles and a large amount of fine powder.
焼結原料は粉状の鉄鉱石(粉鉱石)を主原料とし、必要に応じて成分調整した副原料を配合する。そして、焼結原料に水とバインダーを混合して造粒処理することにより、焼結機へ装入する微粉量を低減している。 As a sintering raw material, powdered iron ore (fine ore) is used as a main raw material, and an auxiliary raw material whose components are adjusted as necessary is blended. Then, by mixing water and a binder with the sintering raw material and performing a granulation treatment, the amount of fine powder charged into the sintering machine is reduced.
造粒処理では、核粒子(粗粒)の周囲に微粉を付着させた造粒物(擬似粒子)を製造することが一般に行われる。造粒処理は、焼結生産性の維持改善に重要な操作であり、従来から種々検討がなされてきた。
特許文献1には、粒状物(核粒子)に対する粉状物(微粉)の量が多すぎると、造粒物の強度が低下するため、粒状物に対する粉状物の質量比を規定することが記載されている。また、特許文献1には、微粒子の炭酸カルシウムを添加することにより造粒物の強度が向上することが記載されている。
In the granulation treatment, it is generally performed to produce a granulated substance (pseudo particle) in which fine powder is attached around core particles (coarse particles). Granulation is an important operation for maintaining and improving sintering productivity, and various studies have been made in the past.
特許文献2には、返鉱を有効利用することにより焼結生産性が向上することが記載されている。特許文献2記載の発明は、ピソライト鉱石を最も多く配合した粉鉱石原料を対象としている(特許文献2の表1参照)。特許文献2には、1mm以上を80質量%以上含む返鉱を、造粒後の造粒物に添加(スコップによる手混ぜ)する発明例1や、1mm以下の返鉱を添加した焼結原料を造粒して造粒物とし、当該造粒物に1mm以上の返鉱を添加(スコップによる手混ぜ)する比較例2等が示されている。
特許文献3にも、返鉱を有効利用することにより焼結生産性が向上することが記載されている。特許文献3記載の発明は、ローブリバー鉱石とハマスレー鉱石を約7割配合した粉鉱石原料を対象としている(特許文献3の表1参照)。特許文献3には、未造粒の焼結原料をドラムミキサーで造粒する例(試験番号T1〜T3)が示され、1mm以下の粒子を約30質量%含む返鉱を、他の焼結原料と共にドラムミキサーで造粒する例やドラムミキサーで造粒処理した造粒物に添加(スコップによる手混ぜ)する例が示されている。また、試験番号T5、T6では、高速撹拌ミキサーとパンペレタイザーを用いて造粒した後に、600℃の高温返鉱をドラムミキサーで混合処理する例が示されている。 Patent Literature 3 also describes that sintering productivity is improved by effectively utilizing returned ore. The invention described in Patent Document 3 is directed to a powder ore raw material in which about 70% of Loeb River ore and Hamasley ore are blended (see Table 1 of Patent Document 3). Patent Literature 3 discloses an example of granulating an ungranulated sintering raw material with a drum mixer (test numbers T1 to T3), and returns ore containing about 30% by mass of particles of 1 mm or less to another sintering process. An example in which the raw material is granulated with a drum mixer and an example in which the raw material is added to a granulated material granulated by a drum mixer (mixing with a scoop) are shown. In Test Nos. T5 and T6, an example is shown in which after high-speed agitation is performed using a high-speed stirring mixer and a pan pelletizer, high-temperature ore return at 600 ° C. is mixed with a drum mixer.
近年、核粒子となる粒状物を含む鉱石種が枯渇してきており、微粉の多い鉱石種が主となっている。複数の鉱石種を配合して一定の核粒子量を確保した配合原料としても、粉鉱石における250μmアンダー(ふるい目250μmのふるい下の粉鉱石)の微粉の割合が20質量%以上、1mmオーバー(ふるい目1mmのふるい上の粗粒鉱石)の核粒子の割合が65質量%以下にならざるを得ず、核粒子に対する微粉の割合が定常的に非常に多い状態となってきている。そのため、核粒子が少なく微粉が多い焼結原料(以下、「レス核粒子の微粉原料」と呼ぶ場合がある。)を造粒する必要性が増大している。しかし、レス核粒子の微粉原料を用いて擬似粒子を製造すると、従来に比べて、核粒子に付着する微粉が厚くなり、未造粒微粉が多く発生する。 In recent years, ore types including particulate matter serving as core particles have been depleted, and ore types with many fine powders have been mainly used. Even as a compounding raw material in which a certain amount of core particles is secured by mixing a plurality of ore types, the ratio of fine powder of 250 μm under (ore under a 250 μm sieve) in fine ore is 20% by mass or more and 1 mm over ( The ratio of the core particles of the coarse ore on the sieve having a sieve of 1 mm must be 65% by mass or less, and the ratio of the fine powder to the core particles is constantly in a very large state. Therefore, the necessity of granulating a sintering raw material having a small amount of core particles and a large amount of fine powder (hereinafter, sometimes referred to as a “fine powder raw material of loess core particles”) is increasing. However, when the pseudo particles are produced using the fine powder raw material of the loess core particles, the fine powder attached to the core particles becomes thicker than before, and more ungranulated fine powder is generated.
造粒処理にはドラムミキサーや高速撹拌機(混練機)が造粒機として一般に用いられている。ドラムミキサーは主として擬似粒子の製造に適しており、また多量の原料処理に向いているが、上述した未造粒微粉の問題が発生する。一方、ドラムミキサーに比べ、高速撹拌機は、擬似粒子のみならず、主として微粉のみから構成されるペレット粒子も造粒できるが、ドラムミキサーと同様、未造粒微粉が発生する。 A drum mixer or a high-speed stirrer (kneader) is generally used as a granulator for the granulation process. Drum mixers are primarily suitable for the production of pseudo-particles and are suitable for processing large quantities of raw materials, but suffer from the above-mentioned problem of ungranulated fines. On the other hand, compared with a drum mixer, a high-speed stirrer can granulate not only pseudo particles but also pellet particles mainly composed of only fine powder, but like a drum mixer, ungranulated fine powder is generated.
造粒処理後の未造粒微粉には、造粒されなかった微粉、造粒後の造粒物崩壊によって発生する微粉等があり、未造粒微粉が存在したままで焼結機に供給すると、焼結時の焼成速度が低下し焼結鉱の生産性が低下する。 The non-granulated fine powder after the granulation treatment includes fine powder that has not been granulated, fine powder generated by the collapse of the granulated material after granulation, and the like. In addition, the sintering rate during sintering decreases, and the productivity of sinter decreases.
特許文献1記載の発明を用いてレス核粒子の微粉原料を造粒処理した場合、微粉付着厚さの増大(粉鉱石中の微粉割合の増加)に対して、微粒子の炭酸カルシウムの添加では造粒性の向上に限界があり、未造粒微粉の増加が顕著となる。
また、特許文献2及び3記載の発明によれば一定の焼結生産性の向上が望めるが、核粒子が少なく微粉の多い鉱石種の配合を前提としていない発明であり、レス核粒子の微粉原料に対して焼結生産性の向上が期待できない。
When the fine powder raw material of the loess core particles is granulated using the invention described in
According to the inventions described in
本発明はかかる事情に鑑みてなされたもので、核粒子が少なく微粉が多い配合原料の造粒処理において、未造粒微粉を減少させて焼結鉱の生産性を向上させることが可能な方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and in a granulation process of a compounding raw material having a small number of core particles and a large amount of fine powder, a method capable of reducing ungranulated fine powder and improving the productivity of sintered ore. The purpose is to provide.
上記目的を達成するため、本発明は、複数銘柄の鉄鉱石を配合して、250μmアンダーが20質量%以上、1mmオーバーが25質量%以上65質量%以下としたものと副原料とを含む配合原料をドラムミキサーを用いて造粒処理する際に200℃以下の返鉱を添加する方法であって、
前記返鉱は、前記ドラムミキサーの入側と出側の双方で添加することとし、
250mmアンダーの前記鉄鉱石の質量をWpo、前記ドラムミキサーの入側で添加する250μmアンダーの返鉱の質量をWpr、前記ドラムミキサーの入側で添加する1mmオーバーの返鉱の質量をWrrs、前記ドラムミキサーの出側で添加する1mmオーバーの返鉱の質量をWrre、前記ドラムミキサーの全長をLとすると、
前記ドラムミキサーの入側で添加する返鉱は、0.148≧Wpr/Wpo≧0.006、且つWrrs/Wpo≧0.039とし、
前記ドラムミキサーの出側で添加する返鉱は、250μmアンダーが10質量%以下、且つWrre/Wpo≧0.062とし、0.5L〜0.98Lの範囲で添加することを特徴としている。
In order to achieve the above object, the present invention provides a blend comprising a mixture of iron ores of a plurality of brands, wherein a 250 μm under is 20% by mass or more and a 1 mm over is 25% by mass or more and 65% by mass or less and an auxiliary material. When the raw material is subjected to granulation treatment using a drum mixer, a method of adding a return of 200 ° C. or less,
The return ore is to be added on both the inlet side and the outlet side of the drum mixer,
The mass of the iron ore under 250 mm is Wpo, the mass of the returned ore under 250 μm added at the inlet of the drum mixer is Wpr, and the mass of the returned ore over 1 mm added at the inlet of the drum mixer is Wrrs. Assuming that the mass of the returned ore returned over 1 mm added at the outlet side of the drum mixer is Wrre, and the total length of the drum mixer is L,
The returned ore added at the entrance of the drum mixer is 0.148 ≧ Wpr / Wpo ≧ 0.006 and Wrrs / Wpo ≧ 0.039,
The returned ore added at the outlet side of the drum mixer is characterized in that 250 μm under is 10 mass% or less, Wrre / Wpo ≧ 0.062, and is added in the range of 0.5 L to 0.98 L.
なお、「アンダー」は、併記される寸法のふるい目のふるいを用いた際のふるい下を、「オーバー」はふるい上をそれぞれ指す。 In addition, "under" indicates the bottom of the sieve when the sieve having the size described is used, and "over" indicates the top of the sieve.
ドラムミキサーによる造粒処理では、核粒子の周囲に微粉を付着させた擬似粒子を製造する。核粒子は、主として1mmオーバーの粗粒で構成される。核粒子に付着する微粉(付着微粉)は、250μmアンダーの粒子が多く、付着せず未造粒微粉になる場合もある。 In the granulation process using a drum mixer, pseudo particles in which fine powder is attached around core particles are produced. The core particles are mainly composed of coarse particles exceeding 1 mm. The fine powder (adhered fine powder) adhering to the core particles has a large particle size of 250 μm or less, and may not be adhered to become ungranulated fine powder.
本発明が対象とする、250μmアンダーの微粉の割合が20質量%以上、1mmオーバーの粗粒の割合が25質量%以上65質量%以下の、核粒子が少なく微粉が多い鉄鉱石を造粒処理した場合、従来の擬似粒子に比べて微粉の付着厚さが厚くなる。本発明者らの知見によれば、250μmアンダーの微粉の割合が20質量%以上の鉄鉱石を造粒処理した場合、付着微粉の厚さは300μm以上となる。核粒子の多い従来の焼結原料を造粒処理した場合、微粉付着厚さが概ね150μmであることから、核粒子が少なく微粉が多い焼結原料を造粒処理した場合の微粉付着厚さは非常に厚いといえる。 Granulation treatment of iron ore with a small amount of core particles and a large amount of fine particles, in which the ratio of fine particles under 250 μm is 20% by mass or more and the ratio of coarse particles exceeding 1 mm is 25% by mass or more and 65% by mass or less, which is the object of the present invention. In this case, the attached thickness of the fine powder becomes larger than that of the conventional pseudo particles. According to the knowledge of the present inventors, when iron ore in which the ratio of fine powder under 250 μm is 20% by mass or more is granulated, the thickness of the attached fine powder is 300 μm or more. When the conventional sintering raw material having a large number of core particles is subjected to granulation treatment, the fine powder adhesion thickness is approximately 150 μm. It can be said that it is very thick.
従って、ドラムミキサーによる転動造粒では、未造粒微粉の問題に加えて、造粒した擬似粒子が造粒処理中に崩壊することが問題となる。核粒子が少なく微粉が多い鉄鉱石を高速撹拌機で造粒する場合も未造粒微粉や擬似粒子の崩壊が問題となる。
上記傾向は、添加する副原料等にも影響されるが、核粒子の減少と微粉の増加による未造粒微粉や擬似粒子の崩壊が問題となる点は変わらない。
Therefore, in rolling granulation using a drum mixer, in addition to the problem of ungranulated fine powder, there is a problem that the granulated pseudo-particles collapse during the granulation process. Even when iron ore having a small amount of core particles and a large amount of fine particles is granulated with a high-speed stirrer, disintegration of ungranulated fine particles and pseudo particles becomes a problem.
Although the above tendency is affected by the added auxiliary material, the point that the problem of disintegration of ungranulated fine powder and pseudo particles due to the decrease of core particles and the increase of fine powder remains unchanged.
そこで、本発明者らは、核粒子が少なく微粉が多い配合原料の造粒処理において未造粒微粉を減少させる方法の開発に取り組んだ。
本発明者らは種々の実験を実施することにより以下の知見を得た。
ドラムミキサーで造粒した後の擬似粒子を観察したところ、核粒子に付着している微粉に250μmアンダーの返鉱(微粉返鉱)が混入している擬似粒子の多くが付着厚さが増大していた。このことから、造粒前の焼結原料に微粉返鉱を添加すると未造粒微粉が減少することが判明した。返鉱は焼結鉱が破砕した際に発生する粉であるため、鉄鉱石粒子に比べて角ばった形状をしており、核粒子に付着した後は周囲の付着微粉の剥落(擬似粒子の崩壊)を抑制する効果があると考えられる。
Therefore, the present inventors worked on the development of a method for reducing ungranulated fine powder in the granulation treatment of a blended raw material having a small number of core particles and a large amount of fine powder.
The present inventors have obtained the following findings by performing various experiments.
Observation of the pseudo-particles after granulation with a drum mixer revealed that many of the pseudo-particles in which fine particles adhering to the core particles were mixed with returned ore under 250 μm (fine particle returned ore) increased in adhesion thickness. I was From this, it has been found that when fine powder refining is added to the sintering raw material before granulation, ungranulated fine powder is reduced. Since returned ore is powder generated when sinter is crushed, it has a more angular shape than iron ore particles, and after being attached to core particles, the surrounding attached fine powder is peeled off (collapse of pseudo particles). ) Is considered to be effective.
しかし、微粉返鉱の添加によっても未造粒微粉が残存する。
当該未造粒微粉は、200℃以下且つ1mmオーバーの返鉱(粗粒返鉱)を添加してドラムミキサーで転動造粒することにより減少する。この効果は、ドラムミキサー造粒前と、ドラムミキサーでの一定時間造粒後の2回に分けて粗粒返鉱を添加した際に最も大きくなる。これは、核粒子の少ない焼結原料を造粒するに当たって、核粒子となる粗粒返鉱が初期造粒時点においても一定量必要であり、さらに造粒中盤から後半において、新たな核粒子として添加した粗粒返鉱に、造粒時に残存した未造粒微粉が付着するためであると考えられる。
However, ungranulated fine powder remains even by the addition of fine powder returned.
The ungranulated fine powder is reduced by rolling and granulating with a drum mixer by adding returned ore (coarse ore return) of 200 ° C. or less and over 1 mm. This effect is greatest when the coarse-grained ore is added twice before granulation of the drum mixer and after granulation for a certain time in the drum mixer. This is because, when granulating a sintering raw material with a small number of core particles, a certain amount of coarse-grained ore returned as core particles is necessary even at the time of initial granulation, and as new core particles in the middle and late stages of granulation. It is considered that ungranulated fine powder remaining during granulation adheres to the added coarse-grained ore.
また、本発明に係る配合原料の造粒方法では、前記鉄鉱石をその粒径によって2以上のグループに分割し、平均粒径が最も小さい前記グループの鉄鉱石に、生石灰及び/又は消石灰からなるバインダーを、生石灰換算で該グループの鉄鉱石全量の外掛けで0.5質量%以上6質量%以下の量加え、高速撹拌機に装入した後に前記ドラムミキサーの入側に装入してもよい。 Further, in the method for granulating a blended raw material according to the present invention, the iron ore is divided into two or more groups according to its particle diameter, and the iron ore of the group having the smallest average particle diameter is formed of quicklime and / or slaked lime. The binder may be added in an amount of 0.5% by mass or more and 6% by mass or less in terms of quicklime in terms of the total amount of iron ore in the group, and charged into the high-speed stirrer, and then charged into the inlet side of the drum mixer. Good.
本発明が対象とするレス核粒子の微粉原料を2以上のグループに分割した後の、平均粒径が最も小さいグループの鉄鉱石(以下、「超レス核粒子微粉原料」とも呼ぶ。)は、さらに核粒子が少なく微粉が多い粒度構成となる。超レス核粒子微粉原料に対し、生石灰及び/又は消石灰を加えて高速撹拌機による造粒を実施すると、微粉のみで構成される擬似粒子(以下、「P型粒子」とも呼ぶ。)が形成され、ドラムミキサー内で微粉を付着させる核粒子として作用する。 The iron ore of the group having the smallest average particle diameter after dividing the fine powder raw material of the loess core particles targeted by the present invention into two or more groups (hereinafter also referred to as “ultra-less core fine particle raw material”) is as follows. Further, the particle size is such that the core particles are small and the fine powder is large. When quicklime and / or slaked lime are added to the ultraless core particle fine powder raw material and granulation is performed by a high-speed stirrer, pseudo particles composed of only fine powder (hereinafter, also referred to as “P-type particles”) are formed. , Acts as core particles for adhering fine powder in a drum mixer.
本発明に係る配合原料の造粒方法では、核粒子が少なく微粉が多い配合原料に微粉返鉱及び粗粒返鉱を添加してドラムミキサー造粒を施した後、再度、粗粒返鉱添加によるドラムミキサー造粒を施す。これにより、焼結生産性を有意に向上できる程度に未造粒微粉を減少させることができる。 In the method for granulating the blended raw material according to the present invention, the fine powder returned and the coarse ground return are added to the raw material having a small number of core particles and the fine powder is subjected to drum mixer granulation, and then the coarse return is added again. Granulation by drum mixer. As a result, ungranulated fine powder can be reduced to such an extent that sintering productivity can be significantly improved.
続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態について説明し、本発明の理解に供する。 Next, embodiments of the present invention will be described with reference to the accompanying drawings to provide an understanding of the present invention.
[第1の実施の形態に係る配合原料の造粒方法]
図1に、本発明の第1の実施の形態に係る配合原料の造粒方法のフローを示す。
本実施の形態では、核粒子が少なく微粉が多い配合原料をドラムミキサー10を用いて造粒処理する際に返鉱を添加する。
一般に返鉱は、焼成後の焼結鉱を高炉へ投入するのに適した大きさに粉砕する際に発生する微粉であって、高炉へ投入するのに適さない程度の小さな粒径の焼結鉱粉を指し、1mmアンダーの微粉が多く含まれている。
[Method of Granulating Compounding Raw Material According to First Embodiment]
FIG. 1 shows a flow of a granulation method of a compounding raw material according to the first embodiment of the present invention.
In the present embodiment, when the compounded raw material having a small amount of core particles and a large amount of fine powder is subjected to granulation using the
Generally, returned ore is fine powder that is generated when sinter after firing is pulverized to a size suitable for introduction into a blast furnace, and has a small particle size that is not suitable for introduction into a blast furnace. It refers to mineral powder and contains a lot of fine powder under 1 mm.
配合原料は、複数銘柄の鉄鉱石14を配合して250μmアンダーが20質量%以上、1mmオーバーの粗粒が25質量%以上65質量%以下としたものと副原料とを含んでいる。副原料は、炭材や石灰石などである。
The blending raw material contains a mixture of
前述したように、250μmアンダーの微粉の割合が20質量%以上の鉄鉱石を造粒処理した場合、付着微粉21の厚さは300μm以上となるため、ドラムミキサー10による転動造粒では、造粒した擬似粒子が造粒処理中に崩壊することが問題となる。また、1mmオーバーの粗粒を65質量%以下としたのは近年の鉄鉱石事情による。
一方、1mmオーバーの粗粒が25質量%を下回ると、本発明によっても顕著な焼結生産性改善効果を得ることができなかった。これは、核粒子20が過少となったため、付着微粉21の厚さが極端に厚くなり、本発明によっても擬似粒子構造を維持できないためと考えられる。
なお、250μmアンダーの微粉の上限値は規定していないが、1mmオーバーの粗粒が25質量%以上65質量%以下であるため、通常の鉄鉱石(焼結原料)を使用すれば、粒度分布の実態から60質量%以下程度となる。
As described above, when iron ore in which the ratio of fines under 250 μm is 20% by mass or more is granulated, the thickness of the attached
On the other hand, when the amount of coarse particles exceeding 1 mm is less than 25% by mass, a remarkable sintering productivity improvement effect cannot be obtained even by the present invention. This is presumably because the
Although the upper limit of the fine powder under 250 μm is not specified, the coarse particles exceeding 1 mm are 25% by mass or more and 65% by mass or less. Is about 60% by mass or less from the actual state.
返鉱には200℃以下の低温返鉱を使用する。これは、200℃超、例えば返鉱の温度が400℃程度の場合、造粒水の不規則な蒸発を招き、造粒性が安定しないからである。 For the ore return, use low-temperature return at 200 ° C or lower. This is because, when the temperature exceeds 200 ° C., for example, the temperature of the ore return is about 400 ° C., irregular evaporation of the granulation water is caused, and the granulation property is not stabilized.
返鉱はドラムミキサー10の入側と出側の双方で添加する。
以下の説明では、250mmアンダーの鉄鉱石14の質量をWpo、ドラムミキサー10の入側で添加する250μmアンダーの返鉱(微粉返鉱)16の質量をWpr、ドラムミキサー10の入側で添加する1mmオーバーの返鉱(粗粒返鉱)17の質量をWrrs、ドラムミキサー10の出側で添加する1mmオーバーの返鉱(粗粒返鉱)18の質量をWrreとする。
また、ドラムミキサー10の中盤から後半にかけて、粗粒返鉱18を新たに核粒子として添加する位置までに造粒されていない微粉や、一旦造粒されたものの擬似粒子の崩壊によって発生した微粉を中間未造粒微粉22と呼び、ドラムミキサー10出側(造粒処理後)の造粒されていない微粉を最終未造粒微粉23と呼ぶ場合がある。
The returned ore is added on both the input side and the output side of the
In the following description, the mass of
Further, from the middle to the latter half of the
ドラムミキサー10の入側で添加する返鉱は、0.148≧Wpr/Wpo≧0.006、且つWrrs/Wpo≧0.039とする。
微粉返鉱16は核粒子20への付着微粉21となるが、鉄鉱石14と比較して角ばった形状をしているため、鉄鉱石粒子からなる付着微粉21の剥落を防止する効果がある(中間未造粒微粉22の低減)。
上記効果を維持するためには、250mmアンダーの鉄鉱石14が増加するにつれて、その剥落を防止するために必要となる微粉返鉱16も増加させなければならないと考えられる。そのため、250mmアンダーの鉄鉱石14との質量比(Wpr/Wpo)をもって微粉返鉱16の下限値(0.006)を決定した。
一方、鉄鉱石粒子からなる付着微粉21に対して過度に微粉返鉱16を添加すると、鉄鉱石粒子からなる付着微粉21の剥落防止効果が飽和する。本発明者らの知見では、Wpr/Wpoの値が0.148であれば効果が飽和する。
なお、微粉返鉱16に代えて微粒炭酸カルシウム粉末を使用した場合には同様の効果を得ることができなかった。これは、返鉱との形状差異によるものと考えられる。
The returned ore added at the input side of the
Although the fine powder returned
In order to maintain the above effect, it is considered that as the
On the other hand, if the
In addition, when fine calcium carbonate powder was used instead of
また、核粒子が少なく微粉が多い配合原料に対して、角ばった形状の粗粒返鉱17をドラムミキサー10入側から補填することにより、核粒子20一個当たりの付着微粉厚み増大を抑制しつつ、鉄鉱石粒子からなる付着微粉21の剥落も抑制できる。粗粒返鉱17が核粒子となることによりドラムミキサー10前段での中間未造粒微粉22が減少する。
上記効果を維持するためには、250mmアンダーの鉄鉱石14が増加するにつれて、その剥落を防止するために必要となる粗粒返鉱17も増加させなければならないと考えられる。そのため、250mmアンダーの鉄鉱石14との質量比(Wrrs/Wpo)をもって粗粒返鉱17の下限値(0.039)を決定した。
In addition, for the blended raw material having a small amount of core particles and a large amount of fine powder, the coarse-
In order to maintain the above effect, it is considered that as the
ドラムミキサー10の出側で添加する返鉱は、微粉返鉱16が10質量%以下、且つWrre/Wpo≧0.062とする。
ドラムミキサー10内で擬似粒子は付着厚みを増大させていくが、付着しきれなかった微粉は中間未造粒微粉22となる。そこで、ドラムミキサー10出側から、まだ微粉が付着しておらず角ばった表面を有している粗粒返鉱18を新たに添加することにより、その凹凸面で中間未造粒微粉22を捕捉して最終未造粒微粉23を低減させる。
250mmアンダーの鉄鉱石14が増加するほど、中間未造粒微粉22は増加し、粗粒返鉱18の必要量は増加すると考えられる。そのため、250mmアンダーの鉄鉱石14との質量比(Wrre/Wpo)をもって粗粒返鉱18の下限値(0.062)を決定した。
微粉を減少させる必要があるため、ドラムミキサー10の出側で添加する微粉返鉱16は10質量%以下と規定した(0質量%でも良い)。
As for the ore return added at the outlet side of the
In the
It is considered that as the
Since it is necessary to reduce the fines, the fines returned 16 added at the outlet of the
Wrrs/WpoとWrre/Wpoに関して、未造粒微粉の低減を阻害する影響はなく、上限はとくに定めない。しかし、WrreとWrrsの合計が焼結工程で発生する1mmオーバーの返鉱の量を上回らない範囲で実施することが望ましく、操業状況に基づけば概ね上限値は双方とも1.5程度である。 Regarding Wrrs / Wpo and Wrre / Wpo, there is no effect of inhibiting reduction of ungranulated fine powder, and the upper limit is not particularly defined. However, it is desirable to carry out the process in a range where the sum of Wrre and Wrrs does not exceed the amount of returned ore that exceeds 1 mm generated in the sintering process, and both upper limits are generally about 1.5 based on operating conditions.
なお、Wpr/Wpo、Wrrs/Wpo、Wrre/Wpoは質量比であるが、比率を取るため、単位時間当たりにドラムミキサー10へ供給する質量、例えばトン/時間を単位として用いても良い。
In addition, Wpr / Wpo, Wrrs / Wpo, and Wrre / Wpo are mass ratios. However, in order to obtain a ratio, mass supplied to the
ドラムミキサー10の出側で返鉱を添加する位置は、ドラムミキサー10の全長をLとして0.5L〜0.98Lとする。
0.98L超の場合、添加した粗粒返鉱18に中間未造粒微粉22を付着させる期間が短く、最終未造粒微粉23の低減効果が限定される。
一方、0.5L未満の場合も最終未造粒微粉23の低減効果が限定される。これは、本発明が、粗粒返鉱17、18をドラムミキサー10の入側とドラムミキサー10の中盤〜後半の2か所で添加することにより最終未造粒微粉23を顕著に減少させる効果を得るものであるが、0.5L未満の場合は中間未造粒微粉22の低減が十分ではなく、実質的に2か所の添加ではなく入側1か所添加の効果となるためである。
The position where the return ore is added at the outlet side of the
In the case of more than 0.98 L, the period for attaching the intermediate ungranulated
On the other hand, in the case of less than 0.5 L, the effect of reducing the final ungranulated
[第2の実施の形態に係る配合原料の造粒方法]
図2に、本発明の第2の実施の形態に係る配合原料の造粒方法のフローを示す。
本実施の形態における配合原料の構成、並びに返鉱の添加量及び添加位置は第1の実施の形態と同様である。
[Granulation method of compounding raw material according to second embodiment]
FIG. 2 shows a flow of a method for granulating compounded raw materials according to the second embodiment of the present invention.
The configuration of the blended raw materials, the amount and position of the returned ore in this embodiment are the same as those in the first embodiment.
本実施の形態では、鉄鉱石14をその粒径によって2以上のグループ(ここでは、鉄鉱石14a、15のグループ)に分割し、平均粒径が最も小さいグループの鉄鉱石15に、生石灰及び/又は消石灰からなるバインダーを、生石灰換算で該グループの鉄鉱石全量の外掛けで0.5質量%以上6質量%以下の量加え、高速撹拌機11に装入してP型粒子24を製造する。そして、他の配合原料及び返鉱16、17と共にP型粒子24をドラムミキサー10の入側に装入する。P型粒子24はドラムミキサー10内で微粉が付着してP型粒子24aとなる。
In the present embodiment, the
発明者らの実験では、超レス核粒子微粉原料(本発明が対象とするレス核粒子の微粉原料を2以上のグループに分割した後の、平均粒径が最も小さいグループの鉄鉱石)に対して生石灰を0.5質量%以上加えた後に、第1の実施の形態に係る配合原料の造粒方法を実施することで、さらに最終未造粒微粉23を低減できたことから、生石灰及び/又は消石灰からなるバインダーの添加量を、生石灰換算で超レス核粒子微粉原料全量の外掛けで0.5質量%以上としている。生石灰添加量が0.5質量%未満の場合、P型粒子24が脆弱となり、ドラムミキサー10で造粒中にP型粒子24、24aが崩壊する。
一方、超レス核粒子微粉原料に対して過度に生石灰を添加すると、P型粒子24aの強度上昇効果が飽和する。本発明者らの知見では、生石灰の添加量が6質量%で効果が飽和する傾向が確認された。
In the experiments by the inventors, the ultra-less core particle fine powder raw material (iron ore of the group having the smallest average particle size after dividing the fine powder material of the loess core particle targeted by the present invention into two or more groups) was used. After adding 0.5% by mass or more of quicklime, the method of granulating the blended raw material according to the first embodiment further reduced the final ungranulated
On the other hand, if the quick lime is excessively added to the ultra-less core particle fine powder raw material, the effect of increasing the strength of the P-
以上、本発明の実施の形態について説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。 As described above, the embodiments of the present invention have been described. However, the present invention is not limited to the configurations described in the above-described embodiments, and is considered within the scope of the matters described in the claims. It also includes other embodiments and modified examples.
本発明の効果について検証するために実施した検証試験について説明する。
表1に試験結果の一覧を示す。なお、表中の「+」は「オーバー」、「−」は「アンダー」を意味する。
A verification test performed to verify the effect of the present invention will be described.
Table 1 shows a list of test results. In the table, "+" means "over" and "-" means "under".
造粒機には、内径(直径)が1mのバッチ式ドラムミキサー試験機を使用した。造粒処理速度は25rpm、造粒時間は4分間とした。造粒中に返鉱を添加する条件では、焼結原料の造粒を一旦停止して返鉱を添加した後に造粒を再開した。返鉱添加前後の合計造粒時間は4分間である。 As the granulator, a batch type drum mixer tester having an inner diameter (diameter) of 1 m was used. The granulation speed was 25 rpm and the granulation time was 4 minutes. Under the condition of adding the ore return during the granulation, the granulation of the sintering raw material was temporarily stopped, and after adding the return ore, the granulation was restarted. The total granulation time before and after the reversion addition is 4 minutes.
鉄鉱石には250μmアンダーの微粉の割合が20質量%のものを使用した。
副原料として、粉コークスを4質量%、石灰石を10質量%、カンラン岩を1質量%配合した。
ドラムミキサーによる造粒後の焼成前水分は8.0質量%一定とした。
The iron ore used had a fine powder content of less than 250 μm and a ratio of 20% by mass.
As auxiliary materials, 4% by mass of coke breeze, 10% by mass of limestone, and 1% by mass of peridotite were blended.
The moisture before firing after granulation by a drum mixer was kept constant at 8.0% by mass.
実施例1〜4及び比較例3〜10では、ドラムミキサーで処理した造粒物を100質量%(水を除く)として、返鉱をドラムミキサー入側から3質量%、出側から2質量%それぞれ添加した。
比較例1は、返鉱を添加していない。比較例2は、返鉱を添加せず、炭酸カルシウムをドラムミキサー入側から3質量%添加した。比較例11は、ドラムミキサー入側で返鉱を添加せず炭酸カルシウムを3質量%添加し、出側で返鉱を2質量%添加した。
In Examples 1 to 4 and Comparative Examples 3 to 10, the granulated material treated by the drum mixer was regarded as 100% by mass (excluding water), and the ore returned was 3% by mass from the inlet side of the drum mixer and 2% by mass from the outlet side. Each was added.
Comparative Example 1 did not include the return ore. In Comparative Example 2, calcium carbonate was added in an amount of 3% by mass from the inlet side of the drum mixer without adding the ore return. In Comparative Example 11, calcium carbonate was added at 3% by mass without adding remineralization on the drum mixer input side, and remineralization was added at 2% by mass on the output side.
ドラムミキサー入側及び出側の所定位置において添加する返鉱は、事前にロータップシェーカーによる機械ふるい分けを実施し、各試験条件におけるWpr/Wpo、Wrrs/Wpo、Wrre/Wpoに合致するように粒度調整を行った。
鉄鉱石の粒度確認及び返鉱の粒度調整は、事前に各原料を乾燥させた後(絶乾後)、JIS Z8801−1「試験用ふるい−第1部:金属製網ふるい」に記載の公称目開き(0.25mmと1.0mm)のふるいに対し、300秒間ロータップシェーカーによる機械ふるい分けを行って(分級して)、ふるい上とふるい下を計測し、以下に示す式で算出して粒度確認、または算出した粒径分布割合となるように粒度調整を行った。
Xmmアンダー:ふるい目Xmmのふるいを用い、「(ふるい下の質量)/(ふるい上の質量+ふるい下の質量)×100(質量%)」で算出。
Xmmオーバー:ふるい目Xmmのふるいを用い、「(ふるい上の質量)/(ふるい上の質量+ふるい下の質量)×100(質量%)」で算出。
The returned ore to be added at predetermined positions on the inlet and outlet sides of the drum mixer is subjected to mechanical sieving using a low tap shaker in advance, and the particle size is adjusted to match Wpr / Wpo, Wrrs / Wpo, and Wrre / Wpo under each test condition. Adjustments were made.
After confirming the particle size of iron ore and adjusting the particle size of returned ore, after drying each raw material in advance (after absolute drying), the nominal size described in JIS Z8801-1 "Test sieve-Part 1: Metal mesh sieve" A sieve with openings (0.25 mm and 1.0 mm) is subjected to mechanical sieving using a low tap shaker for 300 seconds (classified), and the upper and lower sieves are measured and calculated by the following formula. The particle size was confirmed or adjusted so that the calculated particle size distribution ratio was obtained.
Xmm under: Using a sieve with a sieve mesh of Xmm, calculated by "(mass under sieve) / (mass over sieve + mass under sieve) x 100 (mass%)".
Xmm over: Calculated as "(mass on sieve) / (mass on sieve + mass under sieve) x 100 (mass%)" using a sieve with a sieve mesh of Xmm.
ドラムミキサー出側で返鉱を添加する位置は、実製造工程における連続式ドラムミキサーへの適用を想定して、ドラムミキサーの全長Lを基準としてα×Lとした際の値を記載しているが、以下の式により算出した。
α=返鉱添加までの造粒時間(分)/4(分)
例えば、返鉱添加までの造粒時間を3分とした場合、添加後の造粒時間が1分となるため、返鉱添加位置は0.75Lとなる。
なお、連続式ドラムミキサーは、ドラムを傾斜させることによって、ドラムの一方の開口部から供給した焼結原料を造粒しながら他方の開口部へ搬送して他方の開口部から造粒物を排出する装置である。
The position where the return ore is added at the drum mixer outlet side is described as a value when α × L based on the total length L of the drum mixer assuming application to a continuous drum mixer in an actual manufacturing process. Was calculated by the following equation.
α = Granulation time (min) / 4 (min) until the return ore addition
For example, if the granulation time until the addition of the return is 3 minutes, the granulation time after the addition is 1 minute, and the return addition position is 0.75 L.
In the continuous drum mixer, the sintering raw material supplied from one opening of the drum is conveyed to the other opening while granulating, and the granulated material is discharged from the other opening by inclining the drum. It is a device to do.
実施例4では、鉄鉱石をその粒径によって2グループに分け、平均粒径の小さいグループ(250μmアンダーの微粉の割合が30質量%)を、その全量の外掛けで0.5質量%の生石灰と共にアイリッヒミキサー(高速撹拌機)に装入して事前造粒した後、他のグループの鉄鉱石と共にドラムミキサーに装入して造粒した。 In Example 4, the iron ore was divided into two groups according to its particle size, and a group having a small average particle size (the ratio of fine powder under 250 μm was 30% by mass) was divided into 0.5% Was charged into an Erich mixer (high-speed stirrer) and pre-granulated, and then charged together with iron ore of another group into a drum mixer and granulated.
焼結試験は、ドラムミキサーで造粒処理を行った造粒物を焼結鍋に装入し、鍋試験(焼結鍋試験)により実施した。焼成時間は、原料上部への着火開始から鍋直下で計測している排ガス温度が最高点となる時点(一般にBTPと呼ぶ。)までの時間とした。
そして、鍋試験の結果から焼結生産性を以下に示す式で算出し、比較例1に対する相対値を生産性改善率として記載した。
焼結生産性(ton/day/m2)=焼結鉱製造量(ton/鍋)÷鍋断面積(m2)÷焼成時間(day/鍋)
ここで、焼結鉱製造量は、鍋試験で得られた焼成物を2mの高さから4回落下させ、6mmオーバーの量を測定することにより算出した。上記落下工程において粉化した6mmアンダーは焼結工程での歩留落ちとなる。
The sintering test was carried out by charging a granulated material subjected to a granulation treatment with a drum mixer into a sintering pot and performing a pot test (sintering pot test). The firing time was defined as the time from the start of ignition of the upper portion of the raw material to the time when the temperature of the exhaust gas measured immediately below the pan reaches the highest point (generally referred to as BTP).
Then, the sintering productivity was calculated from the results of the pot test by the following formula, and the relative value to Comparative Example 1 was described as the productivity improvement rate.
Sintering productivity (ton / day / m 2 ) = sinter production volume (ton / pot) ÷ pot cross-sectional area (m 2 ) ÷ firing time (day / pot)
Here, the sinter production amount was calculated by dropping the fired product obtained in the pot test four times from a height of 2 m and measuring the amount of over 6 mm. The 6 mm under which is powdered in the dropping step results in a yield drop in the sintering step.
評価に当たっては、生産性改善率が7.5%以上の場合◎(優)、7.5%未満5%以上の場合○(良)、5%未満0%超の場合△(可)、0%以下の場合×(不可)とした。 In the evaluation, when the productivity improvement rate is 7.5% or more, ◎ (excellent), when less than 7.5%, 5% or more, ((good), when less than 5%, more than 0%, 可 (acceptable), 0 % Or less x (impossible).
検証試験より判明したことを以下に列記する。
・全ての実施例は生産性改善率が5%以上であった。特に、実施例4では、生産性改善率を8.5%とすることができた。
なお、鉄鉱石をその粒径によって3グループ以上に分けた場合も生産性改善率の値は異なるものの、実施例4と同様の傾向が認められた。
The findings from the verification tests are listed below.
-In all the examples, the productivity improvement rate was 5% or more. In particular, in Example 4, the productivity improvement rate could be 8.5%.
When the iron ore was divided into three or more groups according to its particle size, the same tendency as in Example 4 was recognized, though the productivity improvement rate was different.
・複数銘柄を配合した鉄鉱石において1mmオーバーの粗粒を25質量%以上とすることにより生産性改善率を改善することができた(比較例3に対して実施例1)。 -The productivity improvement rate was able to be improved by setting the coarse particles over 1 mm in the iron ore containing a plurality of brands to 25% by mass or more (Comparative Example 3 with Example 1).
・Wpr/Wpoを0.006以上且つ0.148以下とすることにより生産性改善率を改善することができた(比較例4に対して実施例1、2、比較例10に対して実施例3)。しかし、Wpr/Wpoが0.006相当となる微粒炭酸カルシウム粉末を添加した場合は、生産性改善率を改善することができなかった(比較例2、11)。
・Wrrs/Wpoを0.039以上とすることにより生産性改善率を改善することができた(比較例5に対して実施例1)。
The productivity improvement rate could be improved by setting Wpr / Wpo to be 0.006 or more and 0.148 or less (Examples 1 and 2 for Comparative Example 4 and Examples for Comparative Example 10). 3). However, when a fine calcium carbonate powder having a Wpr / Wpo equivalent to 0.006 was added, the productivity improvement rate could not be improved (Comparative Examples 2, 11).
-The productivity improvement rate could be improved by setting Wrrs / Wpo to 0.039 or more (Example 1 with respect to Comparative Example 5).
・ドラムミキサー出側で添加する返鉱の添加位置を、ドラムミキサー全長をLとして0.5L〜0.98Lとすることにより生産性改善率を改善することができた(比較例7、8に対して実施例1、3)。
・Wrre/Wpoを0.062以上とすることにより生産性改善率を改善することができた(比較例9に対して実施例1)。
・ドラムミキサー出側で添加する250μmアンダーの返鉱の割合を10質量%以下とすることにより生産性改善率を改善することができた(比較例6に対して実施例1)。
The productivity improvement rate could be improved by setting the position of the returned ore added at the outlet side of the drum mixer to 0.5 L to 0.98 L, where L is the total length of the drum mixer (Comparative Examples 7 and 8). Examples 1 and 3).
-The productivity improvement rate could be improved by setting Wrre / Wpo to 0.062 or more (Example 1 with respect to Comparative Example 9).
-The productivity improvement rate was able to be improved by setting the ratio of the returned ore under 250 μm added at the drum mixer outlet side to 10% by mass or less (Comparative Example 6 with Example 1).
実施例1〜4では、ドラムミキサーで処理した造粒物を100質量%(水を除く)として、返鉱を5質量%添加した例を示したが、30質量%程度まで増加させても本発明の効果が認められた。 In Examples 1 to 4, the granulated material treated by the drum mixer was set to 100% by mass (excluding water), and 5% by mass of the returned mineral was added. However, even if it was increased to about 30% by mass, The effect of the invention was recognized.
10:ドラムミキサー、11:高速撹拌機、14、14a、15:鉄鉱石、16:微粉返鉱(250μmアンダーの返鉱)、17、18:粗粒返鉱(1mmオーバーの返鉱)、20:核粒子、21:付着微粉、22:中間未造粒微粉、23:最終未造粒微粉、24、24a:P型粒子 10: Drum mixer, 11: High-speed stirrer, 14, 14a, 15: Iron ore, 16: Fine return (return 250 μm under), 17, 18: Coarse return (return over 1 mm), 20 : Core particles, 21: attached fine powder, 22: intermediate non-granulated fine powder, 23: final non-granulated fine powder, 24, 24a: P-type particles
Claims (2)
前記返鉱は、前記ドラムミキサーの入側と出側の双方で添加することとし、
250mmアンダーの前記鉄鉱石の質量をWpo、前記ドラムミキサーの入側で添加する250μmアンダーの返鉱の質量をWpr、前記ドラムミキサーの入側で添加する1mmオーバーの返鉱の質量をWrrs、前記ドラムミキサーの出側で添加する1mmオーバーの返鉱の質量をWrre、前記ドラムミキサーの全長をLとすると、
前記ドラムミキサーの入側で添加する返鉱は、0.148≧Wpr/Wpo≧0.006、且つWrrs/Wpo≧0.039とし、
前記ドラムミキサーの出側で添加する返鉱は、250μmアンダーが10質量%以下、且つWrre/Wpo≧0.062とし、0.5L〜0.98Lの範囲で添加することを特徴とする配合原料の造粒方法。 A plurality of brands of iron ore are blended, and a blended raw material containing 250 mass% or less of 250 μm or less and 25 mass% or more and 65 mass% or less of 1 mm over and an auxiliary material is granulated using a drum mixer. A method of adding return minerals at a temperature of 200 ° C. or less,
The return ore is to be added on both the inlet side and the outlet side of the drum mixer,
The mass of the iron ore under 250 mm is Wpo, the mass of the returned ore under 250 μm added at the inlet of the drum mixer is Wpr, and the mass of the returned ore over 1 mm added at the inlet of the drum mixer is Wrrs. Assuming that the mass of the returned ore returned over 1 mm added at the outlet side of the drum mixer is Wrre, and the total length of the drum mixer is L,
The returned ore added at the entrance of the drum mixer is 0.148 ≧ Wpr / Wpo ≧ 0.006 and Wrrs / Wpo ≧ 0.039,
The blended raw material is characterized in that the returned ore added at the outlet side of the drum mixer is added in a range of 0.5 L to 0.98 L, with Wrre / Wpo ≧ 0.062, under 250 μm under 10% by mass. Granulation method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018159228A JP7067372B2 (en) | 2018-08-28 | 2018-08-28 | Granulation method for compounded raw materials |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018159228A JP7067372B2 (en) | 2018-08-28 | 2018-08-28 | Granulation method for compounded raw materials |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020033582A true JP2020033582A (en) | 2020-03-05 |
JP7067372B2 JP7067372B2 (en) | 2022-05-16 |
Family
ID=69669117
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018159228A Active JP7067372B2 (en) | 2018-08-28 | 2018-08-28 | Granulation method for compounded raw materials |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7067372B2 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH059602A (en) * | 1991-06-26 | 1993-01-19 | Sumitomo Metal Ind Ltd | Production of sintered ore |
JPH0762456A (en) * | 1993-08-26 | 1995-03-07 | Nkk Corp | Production of sintered ore |
JP2007284744A (en) * | 2006-04-17 | 2007-11-01 | Sumitomo Metal Ind Ltd | Method for manufacturing sintered ore |
JP2008261016A (en) * | 2007-04-12 | 2008-10-30 | Nippon Steel Corp | Method for manufacturing sintered ore |
JP2009052087A (en) * | 2007-08-27 | 2009-03-12 | Nippon Steel Corp | Method of pretreating raw material for sintering |
JP2009097027A (en) * | 2007-10-15 | 2009-05-07 | Sumitomo Metal Ind Ltd | Method for producing sintered ore |
JP2014051694A (en) * | 2012-09-05 | 2014-03-20 | Nippon Steel & Sumitomo Metal | Method of adding condensation material into sintering raw material |
-
2018
- 2018-08-28 JP JP2018159228A patent/JP7067372B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH059602A (en) * | 1991-06-26 | 1993-01-19 | Sumitomo Metal Ind Ltd | Production of sintered ore |
JPH0762456A (en) * | 1993-08-26 | 1995-03-07 | Nkk Corp | Production of sintered ore |
JP2007284744A (en) * | 2006-04-17 | 2007-11-01 | Sumitomo Metal Ind Ltd | Method for manufacturing sintered ore |
JP2008261016A (en) * | 2007-04-12 | 2008-10-30 | Nippon Steel Corp | Method for manufacturing sintered ore |
JP2009052087A (en) * | 2007-08-27 | 2009-03-12 | Nippon Steel Corp | Method of pretreating raw material for sintering |
JP2009097027A (en) * | 2007-10-15 | 2009-05-07 | Sumitomo Metal Ind Ltd | Method for producing sintered ore |
JP2014051694A (en) * | 2012-09-05 | 2014-03-20 | Nippon Steel & Sumitomo Metal | Method of adding condensation material into sintering raw material |
Also Published As
Publication number | Publication date |
---|---|
JP7067372B2 (en) | 2022-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20150071388A (en) | Method for manufacturing sintered iron ore | |
JP2007525597A (en) | Process for producing mixed raw materials for sintering | |
RU2675883C2 (en) | Method and device for producing granulates | |
JP5987958B2 (en) | Method of adding binder to sintering raw material | |
JP2016191122A (en) | Method for producing sintered ore | |
JP2020033595A (en) | Granulation method of blending raw material | |
JP6273957B2 (en) | Sinter ore manufacturing method | |
JP3820132B2 (en) | Pretreatment method of sintering raw material | |
JP6459724B2 (en) | Method for producing sintered ore | |
JP7067372B2 (en) | Granulation method for compounded raw materials | |
JP5224917B6 (en) | Manufacturing method of sintered raw material | |
JP6369113B2 (en) | Method for producing sintered ore | |
JP6323297B2 (en) | Pretreatment method of sintering raw materials | |
JP7099299B2 (en) | Manufacturing method of zinc oxide ore | |
JP3476284B2 (en) | Sinter production method | |
JP4630091B2 (en) | Pretreatment method of sintering raw material | |
JP6885164B2 (en) | Sintered ore manufacturing method | |
JP7303442B2 (en) | Pretreatment method for raw materials for sintering | |
JP7024649B2 (en) | Granulation method of raw material for sintering | |
JPH0796688B2 (en) | Pretreatment method for sintering raw material | |
JP6954236B2 (en) | Manufacturing method and manufacturing equipment for coal interior sintered ore | |
JP2017172020A (en) | Carbonaceous inner package granulation particle for manufacturing sintered ore and manufacturing method of sintered ore using the same | |
JP5983949B2 (en) | Method for producing granulated raw material for sintering | |
JP2016020521A (en) | Method for producing sintered ore using fine particle mixture | |
JP5817644B2 (en) | Method of adding binder to sintering raw material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210407 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220216 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220222 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220314 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220329 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220411 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7067372 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |