JP5224917B6 - Manufacturing method of sintered raw material - Google Patents

Manufacturing method of sintered raw material Download PDF

Info

Publication number
JP5224917B6
JP5224917B6 JP2008148419A JP2008148419A JP5224917B6 JP 5224917 B6 JP5224917 B6 JP 5224917B6 JP 2008148419 A JP2008148419 A JP 2008148419A JP 2008148419 A JP2008148419 A JP 2008148419A JP 5224917 B6 JP5224917 B6 JP 5224917B6
Authority
JP
Japan
Prior art keywords
granules
ore
fine powder
type
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008148419A
Other languages
Japanese (ja)
Other versions
JP2008240159A (en
JP5224917B2 (en
Inventor
健一 八ケ代
武 今井
昭 具島
恒男 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2008148419A priority Critical patent/JP5224917B6/en
Publication of JP2008240159A publication Critical patent/JP2008240159A/en
Publication of JP5224917B2 publication Critical patent/JP5224917B2/en
Application granted granted Critical
Publication of JP5224917B6 publication Critical patent/JP5224917B6/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、焼結原料の製造方法に関する。 The present invention relates to a method for producing a sintered raw material.

近年、焼結機において従来主流として使用されていた赤鉄鉱等の鉄鉱石の供給量が減少し、結晶水含有率が高い(3mass%以上)鉄鉱石の供給量が増加してきた。この結晶水含有率の高い鉄鉱石は、従来使用してきた鉄鉱石に比べて微粉が多いため、この鉄鉱石を事前処理することなく焼結機に装入した場合、焼結機の通気性を阻害し、品質が良好な焼結鉱を生産性良く製造できない。このため、焼結機に装入する前に鉄鉱石を造粒する必要性があるが、従来使用してきた鉄鉱石に比べて水とのぬれ性が悪く、造粒性が低いという欠点があるため、これを造粒する技術が必要となってきた。
そこで、例えば、特許文献1には、鉄鉱石と石灰石を250μm以下が80重量%以上となるように粉砕し、水の存在下で造粒物を製造する技術が開示されている。また、特許文献2には、粉鉱石の造粒物を2度の造粒を経て製造する技術が開示されている。
In recent years, the supply of iron ore such as hematite, which has been conventionally used as the main stream in sintering machines, has decreased, and the supply of iron ore with a high crystal water content (3 mass% or more) has increased. This iron ore with a high crystallization water content has more fine powder than conventionally used iron ore, so if this iron ore is charged into a sintering machine without pre-treatment, the permeability of the sintering machine will be affected. This prevents the production of high-quality sintered ore with good productivity. For this reason, it is necessary to granulate the iron ore before charging it into the sintering machine, but it has the drawbacks of poor wettability with water and low granulation properties compared to conventionally used iron ore. Therefore, a technology to granulate it has become necessary.
For example, Patent Document 1 discloses a technique of pulverizing iron ore and limestone so that 80% by weight or more is 250 μm or less and producing granules in the presence of water. Further, Patent Document 2 discloses a technique for producing a granulated product of fine ore through two granulation processes.

特開平4-80327号公報Japanese Patent Application Publication No. 4-80327 特開昭53-123303号公報Japanese Unexamined Patent Publication No. 53-123303

しかしながら、前記従来の焼結原料の事前処理方法においては、未だ解決すべき以下のような問題があった。
特許文献1に開示された方法は、バインダーの役割を果たす石灰石を全て粉砕する手間が必要であり、また粉砕による製造コストの増大を招き経済的でなく、造粒物の生産性も非常に悪い。また、粉砕粒径250μm以下が80重量%以上とするだけで、これを用いて製造した造粒物、即ちP型造粒物の強度を目的とする強度まで高めることができず、例えば、造粒物を複数のベルトコンベアーを経由して搬送する場合、その乗り継ぎ時に造粒物が粉化する恐れがあった。
また、特許文献2に開示された方法は、造粒物の強度を向上できる可能性がある。しかし、例えば、核粒子となる粗粒に微粉を付着させた造粒物、即ちS型造粒物を製造する場合、微粉の付着厚さを制御できない。このため、付着厚みが厚ければ、造粒物内部にコークスが埋没し、目的とする品質を備える焼結鉱を製造することが困難になり、焼結鉱の歩留り低下を招き、焼結鉱の生産性が損なわれる。
However, in the conventional pre-treatment method for sintering raw materials, there are still the following problems that need to be solved.
The method disclosed in Patent Document 1 requires the effort of pulverizing all the limestone that plays a role as a binder, and the pulverization increases manufacturing costs, making it uneconomical and resulting in very poor productivity of the granulated product. . In addition, if only 80% by weight or more is made up of pulverized particles with a diameter of 250 μm or less, the strength of the granules manufactured using the same, that is, the P-type granules, cannot be increased to the desired strength. When conveying granules via multiple belt conveyors, there is a risk that the granules may become powder during transfer.
Further, the method disclosed in Patent Document 2 has the possibility of improving the strength of the granulated product. However, for example, when manufacturing a granulated product in which fine powder is attached to coarse particles serving as core particles, that is, an S-type granulated product, the thickness of the deposited fine powder cannot be controlled. For this reason, if the adhesion thickness is thick, coke will be buried inside the granules, making it difficult to produce sintered ore with the desired quality, leading to a decrease in the yield of sintered ore, and productivity is lost.

本発明はかかる事情に鑑みてなされたもので、従来よりも多量の微粉を含む鉄鉱石の原料に対応可能で、造粒性及び強度を従来よりも向上させた造粒物を製造し、良好な品質を備えた焼結鉱を製造可能な焼結原料の製造方法を提供することを目的とする。 The present invention was made in view of the above circumstances, and is capable of handling iron ore raw materials containing a larger amount of fine powder than before, and produces granules with improved granulation properties and strength than before. The purpose of the present invention is to provide a method for producing a sintered raw material that can produce sintered ore with high quality.

前記目的に沿う請求項1記載の焼結原料の製造方法は、それぞれ篩目1mmオーバーの粗粒及び1mm以下の微粉を含む2種以上、且つ、その一部又は全部の結晶水含有率が3mass%以上である鉄鉱石を事前処理して焼結原料を製造する方法であって、
第1の造粒装置により、核粒子となる前記粗粒に前記微粉と粉コークスを付着させて造粒物Sからなる焼結原料を製造すると共に、第2の造粒装置により、前記微粉を用いるペレットである造粒物Pからなる焼結原料を製造する。
The method for producing a sintered raw material according to claim 1, which meets the above object, comprises two or more types of raw materials each including coarse particles with a sieve size of 1 mm or less and fine particles with a sieve size of 1 mm or less, and a crystal water content of some or all of them is 3 mass. % or more of iron ore to produce a sintering raw material, the method comprises:
The first granulator produces a sintered raw material consisting of granules S by attaching the fine powder and coke powder to the coarse particles that will become core particles, and the second granulator produces the fine powder. A sintering raw material consisting of granules P, which are pellets to be used, is manufactured.

ここで、核粒子となる粗粒に微粉を付着させた造粒物S(以下、S型造粒物ともいう)を製造する際には、核粒子(粗粒鉄鉱石又は粗粒コークス)への微粉付着厚さが増加すると、造粒物が内部まで燃えにくくなり、焼結機での焼結鉱の生産性が悪化する。また、微粉のみで又は微粉を主体として造粒させた造粒物P(以下、P型造粒物ともいう)を製造する際には、鉄鉱石をP型造粒物とするために最適な粒度まですべてを粉砕する必要があり、粉砕装置の負荷が多大なものとなり現実的ではない。 Here, when manufacturing granules S (hereinafter also referred to as S-type granules) in which fine powder is attached to coarse particles that become core particles, the core particles (coarse iron ore or coarse coke) are When the thickness of fine powder adhesion increases, it becomes difficult for the granules to burn to the inside, and the productivity of the sintered ore in the sintering machine deteriorates. In addition, when producing granules P that are granulated with only fine powder or mainly with fine powder (hereinafter also referred to as P-type granules), it is necessary to It is necessary to crush everything down to the particle size, which places a heavy load on the crushing equipment and is not practical.

請求項1記載の焼結原料の製造方法においては、それぞれ粗粒及び微粉を含む鉄鉱石(鉄鉱石種ともいう)として、例えば、マラマンバ鉱石(産地銘柄:ウエストアンジェラス)、ピソライト鉱石(産地銘柄:ヤンディー、ローブリバー)、高燐ブロックマン鉱石等を使用できる。なお一般に産地銘柄が異なると、成分構成や粒度構成が変わるため、産地銘柄が異なる場合を本願では異なる鉄鉱石種としている。
また、第1、第2の造粒装置としては、例えば、ドラムミキサー、アイリッヒミキサー、ディスクペレタイザー、プロシャミキサー等を使用できる。
In the method for producing a sintering raw material according to claim 1, iron ores (also referred to as iron ore types) each containing coarse particles and fine powders include, for example, mara mamba ore (locality brand: West Angelus), pisolite ore (locality brand). : Yandy, Loeb River), high phosphorous Brockman ore, etc. can be used. In general, if the brand of origin differs, the component composition and particle size structure will change, so in this application, cases where the brand of origin differs are treated as different iron ore types.
Further, as the first and second granulating devices, for example, a drum mixer, an Eirich mixer, a disk pelletizer, a Prussia mixer, etc. can be used.

結晶水含有率が3mass%以上の鉄鉱石としては、例えば、マラマンバ鉱石(産地銘柄:ウエストアンジェラス)、ピソライト鉱石(産地銘柄:ヤンディー、ローブリバー)、高燐ブロックマン鉱石等が使用できる。なお一般に産地銘柄が異なると成分構成や粒度構成が変わるため、産地銘柄が異なる場合は異なる鉄鉱石種と扱うと良い。
更に結晶水含有率が3mass%以上の鉄鉱石を用いる割合としては、鉄鉱石の新原料(焼結機を経た後に原料として使用される返鉱等を除いたもの)の内、40mass%以上を結晶水含有率が3mass%以上の鉄鉱石とすると良い。40mass%以上になると微粉の増加が顕著となり発明の効果が顕著となるためである。40mass%未満では発明の効果はあるが、著しいものではないためである。
As the iron ore having a crystal water content of 3 mass% or more, for example, Maramamba ore (local brand: West Angelus), pisolite ore (local brand: Yandy, Robe River), high phosphorus Brockmann ore, etc. can be used. In general, different brands of origin will have different compositions of ingredients and particle size, so if the brands of origin are different, it is best to treat them as different types of iron ore.
Furthermore, the ratio of using iron ore with crystal water content of 3 mass% or more is 40 mass% or more of the new iron ore raw material (excluding return ore used as raw material after passing through the sintering machine). It is preferable that the iron ore has a crystal water content of 3 mass% or more. This is because when the amount exceeds 40 mass%, the increase in fine powder becomes significant and the effect of the invention becomes significant. This is because when the amount is less than 40 mass%, although the invention has an effect, it is not significant.

請求項1記載の焼結原料の製造方法は、第1の造粒装置に供給しない残部の微粉を第2の造粒装置の原料として使用するので、造粒性及び強度を従来よりも向上させた造粒物を容易に製造できる。
このように、従来よりも多量の微粉を含む鉄鉱石の原料に対応可能な焼結原料の製造方法を提供できる。
The method for producing a sintered raw material according to claim 1 uses the remaining fine powder that is not supplied to the first granulation device as a raw material for the second granulation device, so that the granulation property and strength are improved compared to the conventional method. Granules can be easily produced.
In this way, it is possible to provide a method for producing a sintering raw material that can be used with iron ore raw materials containing a larger amount of fine powder than conventional methods.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
ここで、図1は本発明の一実施の形態に係る焼結原料の製造方法の説明図、図2はコークス燃焼指数に及ぼすS型造粒物の微粉付着厚さの影響を示す説明図、図3はP型造粒物の崩壊抑制に要する圧潰強度を示す説明図、図4は圧潰強度に及ぼすP型造粒物の製造条件の影響を示す説明図である。
Next, embodiments embodying the present invention will be described with reference to the attached drawings to provide an understanding of the present invention.
Here, FIG. 1 is an explanatory diagram of a method for producing a sintered raw material according to an embodiment of the present invention, and FIG. 2 is an explanatory diagram showing the influence of the fine powder adhesion thickness of S-type granules on the coke combustion index. FIG. 3 is an explanatory diagram showing the crushing strength required to suppress the collapse of the P-type granules, and FIG. 4 is an explanatory diagram showing the influence of the manufacturing conditions of the P-type granules on the crushing strength.

図1に示すように、本発明の一実施の形態に係る焼結原料の製造方法は、それぞれ粗粒及び微粉を含む3種の鉄鉱石、即ち、ピソライト鉱石、マラマンバ鉱石、及び高燐ブロックマン鉱石を原料とし、核粒子となる粗粒に微粉を付着させたS型造粒物(造粒物S)と、微粉を主体として造粒するP型造粒物(造粒物P)とを製造する方法である。なお、原料には、更に実質的に微粉のみからなる鉄鉱石、即ち、製鉄所内で発生する混練ダスト、ペレットフィード(鉱石種:MBR-PF)、及びその他の鉄鉱石が加えられている。以下、詳しく説明する。 As shown in FIG. 1, the method for producing a sintering raw material according to an embodiment of the present invention uses three types of iron ores, each containing coarse particles and fine particles, namely pisolite ore, mara mamba ore, and high phosphorus blockman ore. S-type granules (granules S), which are made from ore and have fine powder attached to coarse particles that serve as core particles, and P-type granules (granules P), which are granulated mainly from fine powders. This is a method of manufacturing. In addition, the raw materials further include iron ore consisting essentially only of fine powder, that is, kneading dust generated in the steel mill, pellet feed (ore type: MBR-PF), and other iron ores. This will be explained in detail below.

マラマンバ鉱石、ピソライト鉱石、及び高燐ブロックマン鉱石は、共に褐鉄鉱(Fe23・nH2O)とも呼ばれ、結晶水含有率が3mass%以上となった鉄鉱石であり、例えば10mm程度(本実施の形態においては8mm程度)の粗粒から250μm以下の微粉まで有したものである。
このピソライト鉱石、粉コークス、その他の鉄鉱石、及び石灰石を使用してS型造粒物を製造し、マラマンバ鉱石、高燐ブロックマン鉱石、混練ダスト、及びペレットフィードを使用してP型造粒物を製造する。
Maramamba ore, pisolite ore, and high-phosphorus Brockmann ore are all also called limonite (Fe 2 O 3 .nH 2 O), and are iron ores with crystal water content of 3 mass% or more, for example, about 10 mm ( In this embodiment, the particles range from coarse particles (about 8 mm) to fine particles of 250 μm or less.
This pisolite ore, coke breeze, other iron ores, and limestone are used to produce S-type granules, and Maramamba ore, high-phosphorus Brockmann ore, kneaded dust, and pellet feed are used to produce P-type granules. Manufacture things.

まず、S型造粒物の製造方法について説明する。
図1に示すように、粗粒及び微粉を含むピソライト鉱石を篩選別機10により篩分けする。なお、本実施の形態においては、篩選別機10の篩目として3mmのものを使用したが、これに限定されるものではない。
篩分けされた篩上の鉄鉱石は粗粒であるため、処理することなくそのままの状態で核粒子として使用される。一方、篩下の鉄鉱石は、アイリッヒミキサー11に装入され、例えば石灰石等のバインダー等と共に混練されて造粒される。
First, a method for manufacturing S-type granules will be explained.
As shown in FIG. 1, pisolite ore containing coarse particles and fine powder is sieved by a sieve sorter 10. In addition, in this embodiment, a sieve mesh of 3 mm is used as the sieve size of the sieve sorter 10, but the sieve size is not limited to this.
Since the iron ore on the sieve is coarse grained, it is used as core particles without treatment. On the other hand, the iron ore under the sieve is charged into the Eirich mixer 11, and is kneaded and granulated with a binder such as limestone.

上記した混練造粒物は、粉コークス、その他の鉄鉱石、及び石灰石と共にS型用ドラムミキサー(第1の造粒装置の一例)12に装入され、核粒子の周囲に、粉コークス、その他の鉄鉱石、及び石灰石中に含まれる微粉(例えば、250μm以下)を付着させる。これにより、核粒子の周囲に付着した微粉の平均厚さが、50~300μmとなったS型造粒物を製造する。なお、S型造粒物の製造時においては、粉コークス、その他の鉄鉱石、及び石灰石中に含まれる粒径が250μmを超える粒子の一部が、S型造粒物と共にS型用ドラムミキサー12内から排出される。 The above-mentioned kneaded granules are charged into an S-type drum mixer (an example of a first granulation device) 12 together with coke powder, other iron ore, and limestone, and the coke powder and other powder are placed around the core particles. Fine powder (for example, 250 μm or less) contained in iron ore and limestone is deposited. As a result, S-type granules are produced in which the average thickness of the fine powder adhering to the periphery of the core particles is 50 to 300 μm. In addition, during the production of S-type granules, some of the particles with particle diameters exceeding 250 μm contained in coke breeze, other iron ore, and limestone are passed through the S-type drum mixer together with the S-type granules. It is discharged from within 12.

ここで、S型造粒物の微粉付着平均厚さを、50~300μmの範囲に規定した理由について、図2を参照しながら説明する。
図2の横軸である微粉付着平均厚さは、製造したS型造粒物を使用し、以下の手順で算出した。
(1)まず、対象原料を水洗などによって微粉や粗粒等の各粒子に完全に分離し、5mm、2mm、1mm、0.5mm、0.25mmの篩目の篩い順で篩下を篩分けていき、各粒度区間の重量比率を求めた(全体を100gとした場合の各粒度区間の重量g)。
Here, the reason why the average thickness of fine powder adhesion of the S-type granules is defined in the range of 50 to 300 μm will be explained with reference to FIG. 2.
The average thickness of fine powder adhesion, which is the horizontal axis in FIG. 2, was calculated using the manufactured S-type granules according to the following procedure.
(1) First, the target raw material is completely separated into particles such as fine powder and coarse particles by washing with water, etc., and the bottom of the sieve is sieved in the order of sieving with sieve meshes of 5 mm, 2 mm, 1 mm, 0.5 mm, and 0.25 mm. Then, the weight ratio of each particle size section was determined (weight g of each particle size section when the whole particle size section is 100 g).

(2)核粒子となる5mm以上、5mm未満2mm以上、及び2mm未満1mm以上の各区間の代表粒子径(それぞれ7.5mm、3.5mm、1.5mm)を決めて、全体を100gとした場合の各粒度区間重量比率から、前記代表粒径毎の核粒子の個数を計算した。その際、核粒子密度を4g/cm3とした。
(3)核粒子への付着粉となる0.25mm以下の微粉を上記の各核粒子区間毎に分配するに際し、上記の各核粒子区間の核粒子重量比率に比例させて、各核粒子区間に分配する微粉重量を決定した。
(4)(2)で算出した核粒子の各区間代表粒子径の粒子個数と、(3)で算出決定した分配する微粉重量から、各核粒子の付着厚さを計算した。その際、付着粉層の嵩密度を2g/cm3とした。
(5)そして各核粒子区間の付着粉厚さを、各粒度区間重量比率で加重平均し、微粉付着平均厚さとした。
(2) Determine the representative particle diameters (7.5 mm, 3.5 mm, and 1.5 mm, respectively) for each section of 5 mm or more, less than 5 mm and 2 mm or more, and less than 2 mm and 1 mm or more, which will be core particles, and make the entire particle 100 g. The number of core particles for each representative particle size was calculated from the weight ratio of each particle size range in each case. At that time, the core particle density was set to 4 g/cm 3 .
(3) When distributing the fine powder of 0.25 mm or less, which is the powder adhering to the core particles, to each of the above-mentioned core particle sections, each core particle section is The weight of fine powder to be distributed was determined.
(4) The adhesion thickness of each core particle was calculated from the number of particles of each zone representative particle diameter of the core particles calculated in (2) and the weight of the fine powder to be distributed calculated and determined in (3). At that time, the bulk density of the adhered powder layer was set to 2 g/cm 3 .
(5) The adhering powder thickness of each core particle section was weighted and averaged by the weight ratio of each particle size section to obtain the fine powder adhering average thickness.

図2の縦軸であるコークス燃焼指数は、S型造粒物を焼結させて得られる焼結鉱の歩留りに対応するものであり、コークス燃焼指数が高くなるに伴って、焼結鉱の歩留りも向上することを現している。
図2は、粒度分布を種々変更させた原料を造粒した後に鍋試験にて焼結させたテストにおいて、微粉付着厚さ(μm)とコークス燃焼指数の関係を示したものである。
図2に示すように、コークス燃焼指数は、微粉付着厚さが100μmになるまで厚さの増加に伴って上昇し、その後厚さの増加に伴って低下していく傾向が得られた。
以上のことに焼結鉱の歩留り悪化に影響を及ぼさないことを考慮して、微粉付着平均厚さを、50~300μmに規定し、好ましくは上限を250μm、更に望ましくは220μmとするものである。
The coke combustion index, which is the vertical axis in Figure 2, corresponds to the yield of sintered ore obtained by sintering S-type granules, and as the coke combustion index increases, the yield of sintered ore increases. This shows that the yield is also improved.
FIG. 2 shows the relationship between the fine powder adhesion thickness (μm) and the coke combustion index in a test in which raw materials with various particle size distributions were granulated and then sintered in a pot test.
As shown in FIG. 2, the coke combustion index tended to increase as the thickness increased until the fine powder adhesion thickness reached 100 μm, and then decreased as the thickness increased.
Considering the above-mentioned factors to not affect the deterioration of the yield of sintered ore, the average thickness of fine powder adhesion is specified to be 50 to 300 μm, preferably the upper limit is 250 μm, and more preferably 220 μm. .

上記知見を元に、現状操業に使用されている微粉付着平均厚さが204μmのもの(現状)と、これより付着厚さが薄い88μmのもの、及び付着厚さが厚い327μmの3種類のS型造粒物を準備し、この各S型造粒物を、焼結機にそれぞれ装入し、焼結鉱歩留りへの影響を調査した。
なお、各S型造粒物は、鉄鉱石の原料量が一定の下で製造しているため、327μmのS型造粒物(粉砕のみ)は、不足する微粉量を鉄鉱石を粉砕して核粒子の周囲に付着させることで製造して焼結機に装入し、88μmのS型造粒物は、S型造粒物に使用されなかった残部の微粉を造粒して製造したP型造粒物(ペレット化)と共に焼結機に装入している。ここで、88μmのS型造粒物の調査結果は、S型造粒物のみの結果ではないが、P型造粒物の配合量は少なく(例えば、S型造粒物とP型造粒物の合計量の20~30mass%程度)、しかも熱源となる粉コークスがP型造粒物中に含まれていないため、得られた結果はS型造粒物の結果に略対応できるものと考えられる。
上記前提の調査の結果、図2の鍋試験結果のコークス燃焼指数に沿う焼結鉱歩留りが得られた。
Based on the above knowledge, three types of S are currently used in operation: one with an average thickness of fine powder adhesion of 204 μm (currently), one with a thinner adhesion thickness of 88 μm, and one with a thicker adhesion thickness of 327 μm. Type granules were prepared, and each of the S-type granules was charged into a sintering machine, and the influence on the yield of sintered ore was investigated.
In addition, each S-type granule is manufactured with a constant amount of iron ore as a raw material, so the 327 μm S-type granule (pulverized only) is made by crushing the iron ore to make up the insufficient amount of fine powder. The 88 μm S-type granules are produced by attaching them around the core particles and charged into the sintering machine. It is charged into a sintering machine together with mold granules (pelletized). Here, the investigation results of 88 μm S-type granules are not the results of only S-type granules, but the amount of P-type granules blended is small (for example, S-type granules and P-type granules). (approximately 20 to 30 mass% of the total amount of granules), and since coke powder, which serves as a heat source, is not included in the P-type granules, the obtained results can roughly correspond to those of the S-type granules. Conceivable.
As a result of the investigation based on the above premise, a sintered ore yield in line with the coke combustion index shown in the pan test results shown in Figure 2 was obtained.

次に、P型造粒物の製造方法について説明する。
図1に示すように、それぞれ粗粒及び微粉を含むマラマンバ鉱石及び高燐ブロックマン鉱石を篩選別機13により篩分けする。なお、篩選別機13の篩目は、0.5~10mmの範囲(本実施の形態では3mm)に設定されている。篩選別機13で篩分けされた篩下の鉄鉱石は、粉砕機15で粉砕され混練ダスト及びペレットフィード(MBR-PF)と共に混合機17に装入され混合される。なお、篩選別機13及び粉砕機15が、事前処理装置をそれぞれ構成する。
このとき、P型造粒物を製造するために使用した鉄鉱石の粉砕整粒した粒径分布に応じて、その後の処理が行われる。
Next, a method for producing P-type granules will be explained.
As shown in FIG. 1, Maramamba ore and high-phosphorus Brockman ore, each containing coarse particles and fine particles, are sieved by a sieve sorter 13. Note that the sieve size of the sieve sorter 13 is set in the range of 0.5 to 10 mm (3 mm in this embodiment). The iron ore under the sieve that has been sieved by the sieve sorter 13 is pulverized by the pulverizer 15 and charged into the mixer 17 together with kneading dust and pellet feed (MBR-PF), where they are mixed. Note that the sieve sorter 13 and the crusher 15 each constitute a pre-processing device.
At this time, subsequent processing is performed according to the particle size distribution of the crushed iron ore used to produce the P-type granules.

P型造粒物の原料となる篩下鉄鉱石を粉砕し、500μmアンダーが90mass%以上、かつ22μmアンダーが80mass%を超えるように整粒した場合、P型用ドラムミキサー(第2の造粒装置の一例)18に装入され、水(例えば、外分で5~15mass%)を使用して造粒された後、篩選別機19で篩分けされる。また、P型造粒物の原料となる篩下鉄鉱石を粉砕し、500μmアンダーが80mass%以上、かつ22μmアンダーが70mass%を超え80mass%以下となるように整粒した場合、P型用ドラムミキサー18に装入され、水(例えば、外分で5~15mass%)を使用して造粒された後、篩選別機19で篩分けされ、更に乾燥機20で乾燥処理される。
そして、P型造粒物の原料となる篩下鉄鉱石を粉砕し、500μmアンダーが40mass%以上、かつ22μmアンダーが5mass%以上70mass%以下となるように整粒した場合、P型用ドラムミキサー18に装入され、例えば、パルプ廃液、コーンスターチ等の有機質のバインダー(例えば、外分で0.01~3mass%とすることが好ましく、更には0.1~3mass%とすることが好ましい)及び水(例えば、外分で5~15mass%)を使用して造粒された後、篩選別機19で篩分けされ、更に乾燥機20で乾燥処理される。
なお、乾燥は、40℃以上250℃以下に設定された雰囲気中で、例えば20~60分間程度行う。また、500μmアンダー、22μmアンダー等の微粉粒子のmass%の測定に際しては、レーザー回折散乱法の測定機器(日機装株式会社製 MICROTRAC FRA型、測定範囲:0.1~700μm)を、用いた。
When subsieved iron ore, which is the raw material for P-type granules, is crushed and sized so that 500 μm under is 90 mass% or more and 22 μm under is over 80 mass%, P-type drum mixer (second granulation (Example of apparatus) 18, and after being granulated using water (for example, 5 to 15 mass% in terms of external content), it is sieved by a sieve sorter 19. In addition, if subsieved iron ore, which is the raw material for P-type granules, is crushed and sized so that 500 μm under is 80 mass% or more and 22 μm under is more than 70 mass% and 80 mass% or less, P-type granules After being charged into a mixer 18 and granulated using water (for example, 5 to 15 mass% in terms of external content), it is sieved by a sieve sorter 19 and further dried by a dryer 20.
When subsieved iron ore, which is a raw material for P-type granules, is crushed and sized so that 500 μm under is 40 mass% or more and 22 μm under is 5 mass% or more and 70 mass% or less, P-type drum mixer 18, for example, an organic binder such as pulp waste liquid or cornstarch (for example, it is preferably 0.01 to 3 mass% in external content, and more preferably 0.1 to 3 mass%); and After being granulated using water (for example, 5 to 15 mass% in terms of external content), it is sieved in a sieve sorter 19 and further dried in a dryer 20.
Note that the drying is performed in an atmosphere set at 40° C. or higher and 250° C. or lower, for example, for about 20 to 60 minutes. In addition, when measuring the mass% of fine powder particles such as under 500 μm and under 22 μm, a laser diffraction scattering measuring instrument (MICROTRAC FRA type manufactured by Nikkiso Co., Ltd., measurement range: 0.1 to 700 μm) was used.

ここで、鉄鉱石の粉砕整粒した粒径分布に応じて、その後の処理をそれぞれ変えた理由について説明する。
P型造粒物(以下、ペレットともいう)の原料として微粉を用いる場合、P型造粒物の強度(圧潰強度)は低いため、この強度を適正な値まで高めることが必要である。このため、この必要な強度を、ベルトコンベア(図示しない)の乗り継ぎが5回(実機乗り継ぎ相当)以上でも問題ない程度の強度を備えることを考慮して規定すると、図3に示すように、直径10mmのP型造粒物1個あたり2kgf(2kgf/10mmφ・1個)以上の強度が必要であることが分かる。
そこで、この2kgf/10mmφ・1個以上を満足する処理方法を、図4を参照しながら説明する。なお、使用した原料は、マラマンバ鉱石を3mm以下を粉砕したもの、ペレットフィード、及び混練ダストである。
Here, the reason why the subsequent processing was changed depending on the particle size distribution of the crushed and sized iron ore will be explained.
When fine powder is used as a raw material for P-type granules (hereinafter also referred to as pellets), the strength (crushing strength) of the P-type granules is low, so it is necessary to increase this strength to an appropriate value. Therefore, if we define this necessary strength by taking into account the fact that the belt conveyor (not shown) has enough strength to be transferred five times or more (corresponding to the transfer of an actual machine), the diameter will be as shown in Figure 3. It can be seen that a strength of 2 kgf (2 kgf/10 mmφ/1 piece) or more is required per 10 mm P-type granule.
Therefore, a processing method that satisfies this requirement of 2 kgf/10 mmφ/1 piece or more will be explained with reference to FIG. 4. The raw materials used were Maramamba ore crushed to a size of 3 mm or less, pellet feed, and kneading dust.

図4に示すように、(1)粉砕処理のみ、(2)粉砕処理及び乾燥処理、(3)粉砕処理、乾燥処理、及びバインダーの添加処理において、同じ平均粒度では(1)→(2)→(3)となるにつれて、ペレットの圧潰強度が上昇する傾向が得られた。なお、造粒に使用した水分量は外分で10mass%、バインダー(パルプ廃液)の添加量は外分で1mass%、そして、乾燥は、250℃で30分間行い、造粒物中に含まれる水分量を外分で5mass%まで低下させた。ここで、鉄鉱石に粉砕処理のみを施した場合、平均粒度が20μm以下(500μmアンダーが90mass%以上、かつ22μmアンダーが80mass%を超え)であれば、製造したペレットが2kgf/10mmφ・1個以上の条件を満足できる。 As shown in Figure 4, (1) only pulverization, (2) pulverization and drying, and (3) pulverization, drying, and binder addition for the same average particle size, (1) → (2) →(3), the crushing strength of the pellets tended to increase. In addition, the amount of water used for granulation was 10 mass% externally, the amount of binder (pulp waste liquid) added was 1 mass% externally, and drying was performed at 250 ° C. for 30 minutes to remove the moisture contained in the granules. The moisture content was reduced to 5 mass% externally. Here, when iron ore is subjected to only pulverization treatment, if the average particle size is 20 μm or less (90 mass% or more under 500 μm, and over 80 mass% under 22 μm), the produced pellet is 2 kgf/10 mmφ/1 piece. The above conditions can be satisfied.

また、この造粒物に更に乾燥処理を施した場合、平均粒度を大きくし、100μm以下(500μmアンダーが80mass%以上、かつ22μmアンダーが70mass%を超え80mass%以下)としても、製造したペレットが2kgf/10mmφ・1個以上の条件を満足できる。
更に、バインダーが添加された造粒物に乾燥処理を施した場合、平均粒度を更に大きくし、700μm以下(500μmアンダーが40mass%以上、かつ22μmアンダーが5mass%以上70mass%以下)としても、製造したペレットが2kgf/10mmφ・1個以上の条件を満足できる。
以上のことから、粉砕粒径に応じて、前記した処理を施した。
In addition, when this granulated product is further subjected to drying treatment, even if the average particle size is increased to 100 μm or less (500 μm under is 80 mass% or more, and 22 μm under is more than 70 mass% and 80 mass% or less), the produced pellets are 2kgf/10mmφ・1 or more conditions can be satisfied.
Furthermore, when drying the granules to which a binder has been added, the average particle size can be further increased to 700 μm or less (40 mass% or more of 500 μm or more, and 5 mass% or more and 70 mass% or less of 22 μm or less). The condition of 2kgf/10mmφ/1 or more pellets can be satisfied.
Based on the above, the above-described treatments were performed depending on the pulverized particle size.

P型用ドラムミキサー18で造粒された造粒物を篩分けする篩選別機19の篩目は、粒径が1~10mmの範囲になった造粒物を篩分けできるように調整されている。なお、粒径が1mm未満の造粒物は、処理されることなく再度混合機17に装入され、また粒径が10mmを超える造粒物は、解砕機(図示しない)で解砕され再度混合機17に装入されて、粒度調整される。
これにより、粒径が1~10mmの範囲に調整された造粒物は、前記したように、必要に応じて乾燥処理を行いP型造粒物になる。
The sieve mesh of the sieve sorter 19 that screens the granules granulated by the P-type drum mixer 18 is adjusted so that the granules with a particle size in the range of 1 to 10 mm can be sieved. There is. Note that granules with a particle size of less than 1 mm are charged into the mixer 17 again without being processed, and granules with a particle size of more than 10 mm are crushed in a crusher (not shown) and recycled again. It is charged into a mixer 17 and the particle size is adjusted.
As a result, the granules whose particle size has been adjusted to a range of 1 to 10 mm are subjected to drying treatment as necessary, as described above, to become P-type granules.

なお、P型造粒物の製造に際し、マラマンバ鉱石及び高燐ブロックマン鉱石を、篩選別機13の0.5mm~10mmの範囲に設定された篩目により篩分けて発生した篩上の鉄鉱石は、P型造粒物の原料には適さない。これは、前記したように、粉砕処理を施さなければ、製造されたP型造粒物の強度が確保しにくく、また篩下鉄鉱石と比べて相対的に大きな粉砕の負荷があり、操業に負荷がかかるためである。従って、篩上の鉄鉱石を、粉砕処理を施すことなく主としてS型造粒物の核粒子として使用する。
このように、マラマンバ鉱石及び高燐ブロックマン鉱石に含まれる微粉は、篩選別機13の篩目によって微粉配合量を調整、即ちS型用ドラムミキサー12に供給しないという状態に調整し、S型用ドラムミキサー12に極力供給しない残部、即ちほぼ全ての微粉を、P型用ドラムミキサー18の原料として使用する。
In addition, during the production of P-type granules, the iron ore on the sieve is generated by sieving Maramamba ore and high-phosphorus Brockmann ore through a sieve mesh set in the range of 0.5 mm to 10 mm of the sieve sorter 13. is not suitable as a raw material for P-type granules. This is because, as mentioned above, it is difficult to ensure the strength of the P-type granules produced without pulverization, and the crushing load is relatively large compared to subsieve iron ore, making it difficult to operate. This is because of the load involved. Therefore, the iron ore on the sieve is mainly used as the core particles of the S-type granules without being subjected to pulverization treatment.
In this way, the fine powder contained in the Maramamba ore and the high-phosphorus Brockman ore is adjusted in the amount of fine powder mixed by the sieve of the sieve sorter 13, that is, it is not supplied to the S-type drum mixer 12, and the S-type The remainder that is not supplied to the P-type drum mixer 12 as much as possible, that is, almost all of the fine powder, is used as a raw material for the P-type drum mixer 18.

ここで、篩選別機13の篩目は、S型造粒物の微粉付着平均厚さに応じて、その大きさを変え、P型用ドラムミキサー18に供給する微粉を除いた鉄鉱石中の粗粒のS型用ドラムミキサー12への配合量を調整することで、微粉付着平均厚さを目的所定範囲である50~300μmにできる。
例えば、使用する鉄鉱石の粒度分布の変化により、S型造粒物の微粉付着平均厚さが増加する場合、1mm以上の範囲で1mmに近い篩目を用い、S型用ドラムミキサー12に供給されるS型造粒物の核粒子量を増加させることで、微粉付着平均厚さの最適化を図ることができる。一方、例えば、使用する鉄鉱石の粒度分布の変化により、S型造粒物の微粉付着平均厚さが減少する場合、10mmに近い篩目を用い、S型用ドラムミキサー12に供給されるS型造粒物の核粒子量を減少させることで、微粉付着平均厚さの最適化を図ることができる。
Here, the size of the sieve mesh of the sieve sorter 13 is changed according to the average thickness of fine powder adhering to the S-type granules, and the size of the sieve mesh is changed depending on the average thickness of the fine powder adhering to the S-type granules. By adjusting the amount of coarse particles added to the S-type drum mixer 12, the average thickness of fine powder adhesion can be adjusted to a desired range of 50 to 300 μm.
For example, if the average thickness of fine powder adhesion of S-type granules increases due to a change in the particle size distribution of the iron ore used, use a sieve mesh close to 1 mm in the range of 1 mm or more and feed it to the S-type drum mixer 12. By increasing the amount of core particles in the S-type granules, it is possible to optimize the average thickness of fine powder adhesion. On the other hand, for example, if the average thickness of fine powder adhesion of the S-type granules decreases due to a change in the particle size distribution of the iron ore used, the S-type granules supplied to the S-type drum mixer 12 may be By reducing the amount of core particles in the mold granules, the average thickness of fine powder adhesion can be optimized.

また、篩選別機13の篩目は、P型用ドラムミキサー18及び事前処理装置のいずれか一方又は双方の製造能力に応じて、その大きさを変え、各装置への鉄鉱石の供給量を制御(変更)できる。
例えば、使用する鉄鉱石の粒度分布の変化により、P型造粒物を製造する各装置の製造能力に余裕がある場合は、10mmに近い篩目を用い、P型造粒物を製造する原料の供給量を増加させることができる。一方、例えば、使用する鉄鉱石の粒度分布の変化により、P型造粒物を製造する各装置の製造能力が不足する場合は、0.5mmに近い篩目を用い、P型造粒物を製造する原料の供給量を減少させることができる。このとき、篩下の鉄鉱石を一時的にストック(貯留)し、P型造粒物を製造する各装置の能力に余裕がある場合に、ストックした鉄鉱石の処理を実施する等の対策を、必要に応じて使用することも可能である。
In addition, the size of the sieve mesh of the sieve sorter 13 is changed depending on the manufacturing capacity of either or both of the P-type drum mixer 18 and the pre-processing device, and the amount of iron ore supplied to each device is adjusted. Can be controlled (changed).
For example, if there is margin in the production capacity of each device for producing P-type granules due to changes in the particle size distribution of the iron ore used, use a sieve with a sieve size close to 10 mm to obtain raw materials for producing P-type granules. supply can be increased. On the other hand, for example, if the production capacity of each device for producing P-type granules is insufficient due to changes in the particle size distribution of the iron ore used, use a sieve with a mesh size close to 0.5 mm to produce P-type granules. The amount of raw material supplied for production can be reduced. At this time, measures such as temporarily stocking (storing) the iron ore under the sieve and processing the stocked iron ore if there is sufficient capacity of each device to produce P-type granules are taken. , can also be used as needed.

また、篩選別機13の篩目の調整に際し、篩上の鉄鉱石中に含まれる核粒子になりにくい中間粒子(例えば、250μmを超え1mm以下)は、S型造粒物に付着することなくS型用ドラムミキサー12から排出される場合が多い。なお、この中間粒子は、粉砕処理を施すことで、P型造粒物の原料として使用することも、またS型造粒物の付着微粉として使用することも可能である。
以上の方法により製造したS型造粒物とP型造粒物とを、例えば、その合計量の70~80mass%がS型造粒物になるように、混合することなく重ねながら焼結機21に装入して焼結鉱を製造する。
これにより、従来よりも多量の微粉を含む鉄鉱石の原料に対応可能で、造粒性及び強度を従来よりも向上させた造粒物を製造し、良好な品質を備えた焼結鉱を製造できる。
In addition, when adjusting the sieve size of the sieve sorter 13, intermediate particles that are difficult to become core particles (for example, more than 250 μm and 1 mm or less) contained in the iron ore on the sieve are prevented from adhering to the S-type granules. It is often discharged from the S-type drum mixer 12. In addition, by subjecting the intermediate particles to a pulverization treatment, they can be used as a raw material for P-type granules or as a fine powder to which S-type granules are attached.
The S-type granules and P-type granules produced by the above method are stacked in a sintering machine without mixing, for example, so that 70 to 80 mass% of the total amount is S-type granules. 21 to produce sintered ore.
As a result, it is possible to handle iron ore raw materials containing a larger amount of fine powder than before, and produce granules with improved granulation properties and strength than before, producing sintered ore with good quality. can.

以上、本発明を、一実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、前記したそれぞれの実施の形態や変形例の一部又は全部を組合せて本発明の焼結原料の製造方法を構成する場合も本発明の権利範囲に含まれる。
また、前記実施の形態においては、それぞれ粗粒及び微粉を含む3種の鉄鉱石として、ピソライト鉱石、マラマンバ鉱石、及び高燐ブロックマン鉱石を使用した場合について説明したが、それぞれ粗粒及び微粉を含む2種以上の鉄鉱石であればよく、例えば、ピソライト鉱石及びマラマンバ鉱石を使用することも、また、他の鉄鉱石、例えば、磁鉄鉱(Fe34)、赤鉄鉱(Fe23)等を使用することも可能である。なお、これらの鉄鉱石に、他の鉄源、例えば製鉄所内で発生する鉄源等を加えることで、原料を構成することも勿論可能である。
そして、前記実施の形態においては、P型造粒物の製造に際し、微粉の粉砕整粒後の粒径を500μmアンダーが90mass%以上、かつ22μmアンダーが80mass%超えとした場合、バインダーを添加することなく造粒し、乾燥処理を施すことなく焼結機に装入したが、必要に応じてバインダーの添加及び乾燥処理のいずれか一方又は双方の処理を施すことも可能である。また、微粉の粉砕整粒後の粒径を500μmアンダーが80mass%以上、かつ22μmアンダーが70mass%を超え80mass%以下とした場合、バインダーを添加することなく造粒し、乾燥処理を施して焼結機に装入したが、必要に応じてバインダーを添加することも可能である。
Although the present invention has been described above with reference to one embodiment, the present invention is not limited to the configuration described in the above-described embodiment, and the matters described in the claims It also includes other embodiments and modifications that can be considered within the scope of the above. For example, a case where a method for manufacturing a sintered raw material of the present invention is configured by combining some or all of the embodiments and modifications described above is also included within the scope of the present invention.
In addition, in the embodiment described above, a case has been described in which pisolite ore, mara mamba ore, and high-phosphorus Brockmann ore are used as three types of iron ore containing coarse particles and fine powder, respectively. For example, pisolite ore and mara mamba ore may be used, or other iron ores, such as magnetite (Fe 3 O 4 ), hematite (Fe 2 O 3 ), may be used. It is also possible to use . Note that it is of course possible to configure the raw material by adding other iron sources, such as iron sources generated within a steelworks, to these iron ores.
In the embodiment, when producing the P-type granules, if the particle size of the fine powder after pulverization and grading is 90 mass% or more under 500 μm and over 80 mass% under 22 μm, a binder is added. Although the powder was granulated without drying and charged into the sintering machine without drying, either or both of the addition of a binder and the drying may be performed as necessary. In addition, when the particle size of the fine powder after pulverization and grading is 80 mass% or more for 500 μm under and more than 70 mass% for 22 μm under and 80 mass% or less, it is granulated without adding a binder, dried and baked. Although the material is charged into a binder, a binder can be added as necessary.

本発明の一実施の形態に係る焼結原料の製造方法の説明図である。FIG. 2 is an explanatory diagram of a method for producing a sintering raw material according to an embodiment of the present invention. コークス燃焼指数に及ぼすS型造粒物の微粉付着厚さの影響を示す説明図である。FIG. 2 is an explanatory diagram showing the influence of the thickness of fine powder adhesion of S-type granules on the coke combustion index. P型造粒物の崩壊抑制に要する圧潰強度を示す説明図である。FIG. 2 is an explanatory diagram showing the crushing strength required to suppress the collapse of P-type granules. 圧潰強度に及ぼすP型造粒物の製造条件の影響を示す説明図である。FIG. 2 is an explanatory diagram showing the influence of manufacturing conditions of P-type granules on crushing strength.

符号の説明Explanation of symbols

10:篩選別機、11:アイリッヒミキサー、12:S型用ドラムミキサー(第1の造粒装置)、13:篩選別機、15:粉砕機、17:混合機、18:P型用ドラムミキサー(第2の造粒装置)、19:篩選別機、20:乾燥機、21:焼結機 10: Sieve sorter, 11: Eirich mixer, 12: Drum mixer for S type (first granulation device), 13: Sieve sorter, 15: Pulverizer, 17: Mixer, 18: Drum for P type Mixer (second granulation device), 19: Sieve sorter, 20: Dryer, 21: Sintering machine

Claims (1)

それぞれ篩目1mmオーバーの粗粒及び1mm以下の微粉を含む2種以上、且つ、その一部又は全部の結晶水含有率が3mass%以上である鉄鉱石を事前処理して焼結原料を製造する方法であって、
第1の造粒装置により、核粒子となる前記粗粒に前記微粉と粉コークスを付着させて造粒物Sからなる焼結原料を製造すると共に、第2の造粒装置により、前記微粉を用いるペレットである造粒物Pからなる焼結原料を製造することを特徴とする焼結原料の製造方法。
A sintering raw material is produced by pre-processing two or more types of iron ore, each containing coarse particles with a sieve size of 1 mm or less and fine particles with a sieve size of 1 mm or less, and in which the crystal water content of some or all of them is 3 mass% or more. A method,
The first granulator produces a sintered raw material consisting of granules S by attaching the fine powder and coke powder to the coarse particles that will become core particles, and the second granulator produces the fine powder. A method for producing a sintering raw material, which comprises producing a sintering raw material consisting of granules P, which are used pellets.
JP2008148419A 2004-05-13 2008-06-05 Manufacturing method of sintered raw material Active JP5224917B6 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008148419A JP5224917B6 (en) 2004-05-13 2008-06-05 Manufacturing method of sintered raw material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004143821 2004-05-13
JP2004143821 2004-05-13
JP2008148419A JP5224917B6 (en) 2004-05-13 2008-06-05 Manufacturing method of sintered raw material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006314572A Division JP4786508B2 (en) 2004-05-13 2006-11-21 Pretreatment method of sintering raw material

Publications (3)

Publication Number Publication Date
JP2008240159A JP2008240159A (en) 2008-10-09
JP5224917B2 JP5224917B2 (en) 2013-07-03
JP5224917B6 true JP5224917B6 (en) 2023-11-08

Family

ID=39911829

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2008148419A Active JP5224917B6 (en) 2004-05-13 2008-06-05 Manufacturing method of sintered raw material
JP2010173748A Active JP4786760B2 (en) 2004-05-13 2010-08-02 Pretreatment method of sintering raw material

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2010173748A Active JP4786760B2 (en) 2004-05-13 2010-08-02 Pretreatment method of sintering raw material

Country Status (1)

Country Link
JP (2) JP5224917B6 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017071828A (en) * 2015-10-07 2017-04-13 株式会社神戸製鋼所 Manufacturing method of raw material for manufacturing sintered ore
JP2018172704A (en) 2017-03-31 2018-11-08 Jfeスチール株式会社 Manufacturing method of granulated sintering raw material and manufacturing method of sintered ore
JP7127395B2 (en) * 2018-07-10 2022-08-30 日本製鉄株式会社 Pretreatment method for raw material for sintering
JP7014127B2 (en) * 2018-10-23 2022-02-01 Jfeスチール株式会社 Sintered ore manufacturing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000087150A (en) * 1998-09-16 2000-03-28 Kobe Steel Ltd Production of iron ore pellet
JP3822115B2 (en) * 2001-02-22 2006-09-13 新日本製鐵株式会社 Granulation treatment agent for iron making and granulation treatment method using the same
JP4786508B2 (en) * 2004-05-13 2011-10-05 新日本製鐵株式会社 Pretreatment method of sintering raw material

Also Published As

Publication number Publication date
JP2010242226A (en) 2010-10-28
JP2008240159A (en) 2008-10-09
JP5224917B2 (en) 2013-07-03
JP4786760B2 (en) 2011-10-05

Similar Documents

Publication Publication Date Title
JP3902629B2 (en) Pretreatment method of sintering raw materials
KR100943359B1 (en) Method for pretreatment of raw materials for sintering
JP4786508B2 (en) Pretreatment method of sintering raw material
RU2676378C1 (en) Method of obtaining reduced iron
JP5224917B6 (en) Manufacturing method of sintered raw material
JP6333982B2 (en) Method and apparatus for forming granules
JP4786441B2 (en) Pretreatment method of sintering raw material
JP6369113B2 (en) Method for producing sintered ore
JP2014201763A (en) Method for producing granulation raw material for sintering
JP2000290732A (en) Method for granulating raw material for sintering, excellent in combustibility
JP5979382B2 (en) Manufacturing method and apparatus for granulating raw material for sintering
JP6954236B2 (en) Manufacturing method and manufacturing equipment for coal interior sintered ore
JP7024649B2 (en) Granulation method of raw material for sintering
JP7024648B2 (en) Granulation method of raw material for sintering
JP5983949B2 (en) Method for producing granulated raw material for sintering
JP2014167164A (en) Method for manufacturing reduced iron
US20200032369A1 (en) Method of operating a pelletizing plant
JP2000303121A (en) Pretreatment of sintering raw material
JPS62214138A (en) Manufacture of sintered ore
JP2003277840A (en) Treating method for making bulky ore into raw material for blast furnace
EP2829619A1 (en) Method for adjusting precursor powder for sintering, and precursor powder for sintering
JPS6379922A (en) Manufacture of briquetted ore

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110826

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120817

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120823

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20121012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130312

R151 Written notification of patent or utility model registration

Ref document number: 5224917

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160322

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350