JPH0796688B2 - Pretreatment method for sintering raw material - Google Patents

Pretreatment method for sintering raw material

Info

Publication number
JPH0796688B2
JPH0796688B2 JP19427090A JP19427090A JPH0796688B2 JP H0796688 B2 JPH0796688 B2 JP H0796688B2 JP 19427090 A JP19427090 A JP 19427090A JP 19427090 A JP19427090 A JP 19427090A JP H0796688 B2 JPH0796688 B2 JP H0796688B2
Authority
JP
Japan
Prior art keywords
limestone
raw material
iron ore
particle size
crushing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19427090A
Other languages
Japanese (ja)
Other versions
JPH0480327A (en
Inventor
勝 松村
尊三 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP19427090A priority Critical patent/JPH0796688B2/en
Publication of JPH0480327A publication Critical patent/JPH0480327A/en
Publication of JPH0796688B2 publication Critical patent/JPH0796688B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 この発明は焼結原料の事前処理方法に係り、焼結原料の
うち特に鉄鉱石と石灰石の混合状態を改善することによ
って高品質の自溶性焼結鉱の製造を可能ならしめる事前
処理方法に関する。
Description: TECHNICAL FIELD The present invention relates to a pretreatment method for a sintering raw material, and particularly by improving the mixed state of iron ore and limestone among the sintering raw materials, high quality self-fluxing sintering is performed. The present invention relates to a pretreatment method that enables the production of ore.

従来の技術 自溶性焼結鉱は周知の通り、鉄鉱石、コークス等の原料
に石灰石を添加して配合した原料を焼成することによっ
て、石灰石の分解とスラグ化を行って焼結せしめて製造
されるが、耐還元粉化性および冷間強度の双方の品質を
備えた成品を得ることは容易でない。すなわち、耐還元
粉化性を改善すれば冷間強度が悪化するため、この双方
の品質を同時に改善することが困難であることによる。
Conventional technology As is well known, self-fluxing sinter is manufactured by sintering limestone by decomposing and slagging it by firing limestone by adding limestone to raw materials such as iron ore and coke. However, it is not easy to obtain a product having both reduction powder resistance and cold strength. That is, if the reduction pulverization resistance is improved, the cold strength is deteriorated, and it is difficult to improve both of these qualities at the same time.

この焼結鉱の品質のうち、耐還元粉化性を改善するた
め、原料を予め分割する方法が知られている(鉄と鋼 v
ol.73 1987)。これは、高CaO濃度環境下においてカル
シウムフェライト系融液を積極的に生成させる原理に基
づいている。
Among the qualities of this sinter, in order to improve resistance to reduction pulverization, a method of dividing the raw material in advance is known (iron and steel v
ol.73 1987). This is based on the principle that a calcium ferrite-based melt is positively generated in a high CaO concentration environment.

この融液生成領域は、石灰石を多配合することによって
低融点組成とする他、鉄鉱石銘柄として、鉄鉱石と石灰
石との接触面積を増加するために微粉の多いペレットフ
ィードや造粒性に富む鉱石を選択したりする手法によっ
て融液生成を促進している。これは、反応開始時の鉄鉱
石と石灰石の接触面積が増大することによって融液生成
が促進されるという原理に基づいている。
This melt generation region has a low melting point composition by adding a large amount of limestone, and as an iron ore brand, it is rich in pellet feed and granulation rich in fine powder to increase the contact area between iron ore and limestone. Melt generation is promoted by the method of selecting the ore. This is based on the principle that melt generation is promoted by increasing the contact area between iron ore and limestone at the start of the reaction.

他方、石灰石を偏在させることによって冷間強度が悪化
することが認められている。
On the other hand, it is recognized that uneven distribution of limestone deteriorates the cold strength.

したがって、耐還元粉化性と冷間強度を共に改善するに
は、石灰石の反応性を向上させ、カルシウムフェライト
系融液量を増加させる必要がある。
Therefore, in order to improve both reduction pulverization resistance and cold strength, it is necessary to improve the reactivity of limestone and increase the amount of calcium ferrite-based melt.

しかしながら、前記の銘柄選択の手法のみの対処では限
界がある。すなわち、微粉鉄鉱石や微粉石灰石が粗鉄鉱
石間を埋めることによって溶融反応が抑制されたり、粗
粒中に未反応部が残存することによる反応性の低下が予
想されるからである。
However, there is a limit in dealing with only the above-mentioned stock selection method. That is, it is expected that the fine iron ore or the fine limestone fills the space between the coarse iron ores to suppress the melting reaction, or the unreacted portion remains in the coarse grains, thereby lowering the reactivity.

かかる対策として、例えば微粉鉱石どうしを混合する手
法(特公昭62−7253)が提案されているが、焼結原料は
水分を数%含むことに起因する同一粒子どうしの疑似粒
子化等の現象を生じるために、特別に混合機を設置した
としても粒径が低下するにしたがって原料均一混合が困
難となり、石灰石の鉄鉱石との反応性の悪化を引き起す
という問題がある。
As a countermeasure for this, for example, a method of mixing fine ores (Japanese Patent Publication No. 62-7253) has been proposed, but the phenomenon that the sintering raw material contains a few percent of water causes a phenomenon such as pseudo-particle formation between the same particles. Therefore, even if a mixer is specially installed, it becomes difficult to uniformly mix the raw materials as the particle size decreases, which causes a problem that the reactivity of limestone with iron ore deteriorates.

発明が解決しようとする課題 焼結原料の場合、粒径がある程度以上に大きくなると、
溶融反応に寄与しない未反応部が残存したり、また粒径
の小さな粒子が粒径の大きな粒子間に詰まり反応性を低
下させる。特に石灰石の反応性低下は焼結鉱の冷間強度
の悪化につながる。したがって、焼結鉱の品質を向上さ
せるためには、石灰石の反応性を高めることが必要であ
る。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention In the case of a sintering raw material, when the particle size becomes larger than a certain level,
An unreacted part that does not contribute to the melting reaction remains, and particles having a small particle size are clogged between particles having a large particle size, thereby lowering the reactivity. In particular, the decrease in reactivity of limestone leads to deterioration of cold strength of sinter. Therefore, in order to improve the quality of sinter, it is necessary to increase the reactivity of limestone.

さらに、鉄鉱石と石灰石との反応によって生成したカル
シウムフェライト系融液は、未反応細粒子が懸濁した状
態となっている。このため、この未反応細粒子の粒径が
大きいと、融液の流動性が低下し、上記と同様焼結鉱の
冷間強度悪化つながる。
Furthermore, the calcium ferrite-based melt produced by the reaction between iron ore and limestone is in a state where unreacted fine particles are suspended. For this reason, if the unreacted fine particles have a large particle size, the fluidity of the melt decreases, and the cold strength of the sintered ore deteriorates as in the above case.

石灰石の反応性を高め、融液の流動性を上昇させるため
には、石灰石の粒度分布を狭くすること、粒度をある程
度以下に小さくすること、鉄鉱石との接触面積を多くす
ること等の条件を満足させることが必要である。
In order to increase the reactivity of limestone and increase the fluidity of the melt, conditions such as narrowing the particle size distribution of limestone, reducing the particle size to below a certain level, increasing the contact area with iron ore, etc. It is necessary to satisfy.

そこで、事前に焼結原料の全量または一部を破砕もしく
は分級することがその対策として考えられるが、この方
法では破砕もしくは分級するための設備が銘柄毎に必要
となるため設備面でコスト高を招くばかりでなく、破砕
後の微粉原料を直接混合すると同一原料どうしの疑似粒
子化等が生じて、焼成時に石灰石の反応性の悪化を余儀
なくされるという問題があり、有効な対策とは言い得な
い。
Therefore, crushing or classifying all or part of the sintering raw material in advance can be considered as a countermeasure, but this method requires equipment for crushing or classifying for each brand, which increases the cost in terms of equipment. Not only inviting it, but when directly mixing the pulverized raw materials, there is a problem that the same raw materials become pseudo-particles and the reactivity of limestone deteriorates during firing, which is an effective measure. Absent.

この発明はこのような実状よりみて、焼結原料のうち特
に鉄鉱石と石灰石の混合状態を改善することによって、
還元性状(被還元性および耐還元粉化性)と冷間強度の
優れた自溶性焼結鉱を得ることを目的とし、安価な設備
費で効果的に鉄鉱石と石灰石の混合状態を改善し、石灰
石の反応性を高めることが可能な焼結原料の事前処理方
法を提案しようとするものである。
In view of such an actual situation, the present invention improves the mixed state of iron ore and limestone among the sintering raw materials,
With the aim of obtaining a self-fluxing sinter with excellent reducing properties (reducibility and resistance to reduction pulverization) and cold strength, it is possible to effectively improve the mixed state of iron ore and limestone with inexpensive equipment cost. The present invention is intended to propose a pretreatment method for a sintering raw material which can increase the reactivity of limestone.

課題を解決するための手段 この発明は、事前に鉄鉱石と石灰石を混合調湿して造粒
し、しかる後、残る他の焼結原料を混合して焼結する方
法において、鉄鉱石と石灰石とを鉄鉱石と石灰石の重量
比率が30%以上60%以下の範囲で配合した後、該配合物
を粒径250μm以下が80重量%の粒度まで破砕するとと
もに、水分を添加して造粒処理を行った原料を焼結原料
の一部として用いることを要旨とするものである。
Means for Solving the Problems This invention is a method of mixing iron ore and limestone in advance for granulation and then granulating the mixture, and then mixing the remaining other sintering raw materials for sintering. And are mixed in a weight ratio of iron ore and limestone in the range of 30% or more and 60% or less, and the mixture is crushed to a particle size of 250 μm or less and 80% by weight, and water is added for granulation treatment. The gist is to use the raw material obtained by performing as a part of the sintering raw material.

作用 事前処理原料として、鉄鉱石と石灰石を選択したのは、
焼結溶融反応を促進することによって冷間強度および還
元性状を共に向上させるためである。
Action Iron ore and limestone were selected as pretreatment raw materials.
This is because both the cold strength and the reducing property are improved by promoting the sintering-melting reaction.

鉄鉱石と石灰石との配合原料における石灰石重量比率を
30〜60%としたのは、30%未満では原料の融液化が不十
分であり、他方60%を超えると残原料中のCaO成分が極
端に低下して焼結鉱の冷間強度を低下させるからであ
る。
The weight ratio of limestone in the blended raw material of iron ore and limestone
If it is less than 30%, the melting of the raw material is insufficient. On the other hand, if it exceeds 60%, the CaO component in the remaining raw material is extremely reduced and the cold strength of the sintered ore is reduced. This is because I will let you.

鉄鉱石と石灰石を配合した後、その配合原料を破砕する
こととしたのは、次に記載する理由による。
After the iron ore and the limestone are blended, the blended raw material is crushed for the reason described below.

石灰石の溶融反応を促進するためには、前記した通り鉄
鉱石と石灰石との接触面積を増加させることが重要であ
る。また、生成した融液の流動性を良好に保つためには
融液に懸濁している細粒子の粒径を低下させておくこと
が重要である。これらの対策として原料の粒度調整を適
正に行うことが必要である。しかるに、従来のように原
料銘柄別に分級または破砕処理する方法では、銘柄毎に
分級、破砕設備を必要とし、設備コストが高くつく。
In order to accelerate the melting reaction of limestone, it is important to increase the contact area between iron ore and limestone as described above. Further, in order to maintain good fluidity of the generated melt, it is important to reduce the particle size of fine particles suspended in the melt. As a measure against these, it is necessary to properly adjust the particle size of the raw material. However, the conventional method of classifying or crushing each material brand requires classification and crushing equipment for each brand, resulting in high equipment cost.

これに対し、対象原料を配合後に破砕する方法の場合
は、銘柄毎に分級や破砕のための設備を必要とせず、さ
らに破砕処理は混合効果も兼ねるので特に混合のための
設備も不要となり、経済的に有効な手段である。また、
破砕を手段とした事前処理は、分級を手段とした事前処
理と比較して原料の初期粒度の影響を受けにくいこと、
さらに焼結原料の初期粒度構成は当然銘柄毎に異なるの
で、破砕効率の面からも銘柄別の破砕手段よりも、事前
処理原料を配合後に一度に破砕する方法が優れている。
On the other hand, in the case of the method of crushing the target raw material after blending, there is no need for equipment for classification and crushing for each brand, and since crushing processing also serves as a mixing effect, no equipment for mixing is particularly necessary. It is an economically effective means. Also,
The pretreatment using crushing as a means is less affected by the initial particle size of the raw material as compared with the pretreatment using classification as a means,
Furthermore, since the initial particle size composition of the sintering raw material naturally differs for each brand, the method of crushing the pre-treated raw materials at once after compounding is superior to the crushing means for each brand in terms of crushing efficiency.

このような理由により、この発明では鉄鉱石と石灰石を
配合した状態で破砕する方法を採用したのである。
For this reason, the present invention employs a method of crushing iron ore and limestone in a mixed state.

破砕後の粒径を250μm以下が80%以上と限定したの
は、破砕処理後の造粒性の悪化を回避するためである。
The reason why the particle size after crushing is limited to 80% or more when the particle size is 250 μm or less is to avoid deterioration of granulation property after crushing treatment.

実施例 第1図はこの発明の事前処理方法を示す工程図である。Embodiment FIG. 1 is a process diagram showing a pretreatment method of the present invention.

すなわち、鉄鉱石と石灰石を石灰石が全体の30〜60%と
なるように配合したものを破砕処理工程で粒径250μm
以下が80%以上となるように破砕し、次の造粒工程で破
砕処理後の原料に水分を加えながら造粒する。この造粒
物は、別の工程で混合造粒した他の焼結原料と混合され
て焼結工程へ供給される。
That is, a mixture of iron ore and limestone such that limestone accounts for 30 to 60% of the total particle size of 250 μm in the crushing process.
It is crushed so that the following is 80% or more, and granulated while adding water to the raw material after the crushing treatment in the next granulation step. This granulated product is mixed with another sintering raw material mixed and granulated in another process and supplied to the sintering process.

実施例1 第1表に示す粒度構成のハマスレーと石灰石を配合し、
粒径250μm以下が80%まで破砕した後、造粒したもの
と他の原料とを第2表に示す条件で配合した焼結原料を
用いて焼結鉱を製造し、その時の生産性、焼結歩留およ
び品質を、第1表に示す全配合原料をドラムミキサーに
て混合造粒したものを用いた場合(比較例1)と、第1
表に示す粒度構成のハマスレーおよび石灰石を単に分割
造粒したものを用いた場合(比較例2)と、同上ハマス
レーと石灰石をそれぞれ破砕した後、別に混合造粒した
他の焼結原料と混合したものを用いた場合(比較例3)
と比較して第2図に示す。
Example 1 Hamasley of the particle size composition shown in Table 1 and limestone were blended,
After crushing up to 80% with a particle size of 250 μm or less, sinter ore is produced using a sintering raw material in which the granulated material and other raw materials are blended under the conditions shown in Table 2, and the productivity and firing at that time are performed. With respect to the yield and quality, the case where all the compounded raw materials shown in Table 1 were mixed and granulated with a drum mixer (Comparative Example 1),
In the case of using the Hamasley and the limestone having the particle size constitution shown in the table, which was simply granulated separately (Comparative Example 2), the same as the above, the Hamasley and the limestone were each crushed and then mixed with another sintering raw material which was separately granulated When using one (Comparative Example 3)
It is shown in FIG.

第2図より明らかなごとく、この発明の事前処理原料を
用いることにより、品質、生産性および歩留がすべて改
善された。これに対し、比較例3は本発明より複雑な事
前処理を施したにもかかわらず大きな改善効果は得られ
ていない。
As is clear from FIG. 2, by using the pretreated raw material of the present invention, quality, productivity and yield were all improved. On the other hand, in Comparative Example 3, a large improvement effect is not obtained even though the complicated pretreatment is performed as compared with the present invention.

実施例2 実施例1と同一の事前処理原料を使用した配合原料を用
い、焼結鉱の冷間強度および還元粉化性状に及ぼす破砕
後粒度250μm以下の重量比率の影響を調べた結果を第
3図に示す。
Example 2 The results of investigating the influence of the weight ratio of the particle size after crushing of 250 μm or less on the cold strength and the reduction pulverization property of the sinter using the compounded raw material using the same pretreatment raw material as in Example 1 It is shown in FIG.

第3図より、粒径250μm以下が80%以上で焼結鉱品質
が良好となることがわかる。
From FIG. 3, it can be seen that the quality of the sinter becomes good when the particle size of 250 μm or less is 80% or more.

実施例3 実施例1と同一の配合原料を使用し、この発明方法によ
り事前処理を施すに際し、第2表に示す粒度構成のハマ
スレーと石灰石との配合比率を第3表に示すように変化
させて焼成した時の、冷間強度および還元粉化性状に及
ぼす事前処理原料中の石灰石の重量比率の影響を第4図
に示す。
Example 3 When the same raw materials as in Example 1 were used and the pretreatment was carried out by the method of the present invention, the mixing ratio of humusley and limestone having the grain size composition shown in Table 2 was changed as shown in Table 3. Fig. 4 shows the influence of the weight ratio of limestone in the pretreatment raw material on the cold strength and the reduction powdering property when fired by firing.

第4図より、石灰石の重量比率が30%以上60%以下の範
囲で良好な品質が得られ、特に石灰石重量比率40%が最
も効果的であることがわかる。
It can be seen from FIG. 4 that good quality is obtained in the range where the weight ratio of limestone is 30% or more and 60% or less, and that the limestone weight ratio of 40% is most effective.

発明の効果 以上説明したごとく、この発明方法によれば、鉄鉱石と
石灰石の混合状態が改善されることによって、還元性状
と冷間強度が共に優れた焼結鉱の製造が可能となる。ま
た、銘柄毎に破砕設備を設置する必要がなく、さらに破
砕処理は混合効果も兼ねるので混合のための設備も不要
となり、設備費が安価につく。したがって、高品質の焼
結鉱を低コストで製造することが可能となる。
EFFECTS OF THE INVENTION As described above, according to the method of the present invention, the mixed state of iron ore and limestone is improved, so that it is possible to manufacture a sintered ore having excellent reducing properties and cold strength. In addition, it is not necessary to install a crushing facility for each brand, and since the crushing process also serves as a mixing effect, no equipment for mixing is required, and the equipment cost is low. Therefore, it becomes possible to manufacture a high-quality sintered ore at low cost.

【図面の簡単な説明】 第1図はこの発明に係る事前処理方法を示す工程図、第
2図はこの発明の実施例における焼結鉱の生産性、歩留
および品質を示す図で、(A)は生産率、(B)は成品
歩留、(C)は還元粉化性、(D)は冷間強度をそれぞ
れ示す。第3図は同上実施例における焼結鉱の冷間強度
および還元粉化性に及ぼす鉄鉱石と石灰石の破砕後粒度
の重量比率の影響を示す図、第4図は同上実施例におけ
る焼結鉱の冷間強度および還元粉化性に及ぼす事前処理
原料中の石灰石の重量比率の影響を示す図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a process diagram showing a pretreatment method according to the present invention, and FIG. 2 is a diagram showing productivity, yield and quality of sinter according to an embodiment of the present invention. A) is the production rate, (B) is the product yield, (C) is the reduction powderability, and (D) is the cold strength. FIG. 3 is a diagram showing the influence of the weight ratio of the particle size after crushing of iron ore and limestone on the cold strength and reductive pulverization property of the sintered ore in the above-mentioned Example, and FIG. 4 is the sintered ore in the above-mentioned Example. It is a figure which shows the influence of the weight ratio of the limestone in a pretreatment raw material which affects the cold strength and reduction powderability of.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】事前に鉄鉱石と石灰石を混合調湿して造粒
し、しかる後、残る他の焼結原料を混合して焼結する方
法において、鉄鉱石と石灰石とを鉄鉱石と石灰石との配
合物に対する石灰石の重量比率が30%以上60%以下の範
囲で配合した後、該配合物を粒径250μm以下が80重量
%の粒度まで破砕するとともに、水分を添加して造粒処
理を行った原料を焼結原料の一部として用いることを特
徴とする焼結原料の事前処理方法。
1. A method of mixing iron ore and limestone in advance to granulate them, and then mixing the remaining other sintering raw materials and sintering the mixture, wherein iron ore and limestone are mixed with each other. After blending the limestone in a weight ratio of the mixture with 30% or more and 60% or less, the mixture is crushed to a particle size of 250 μm or less and 80% by weight, and water is added for granulation treatment. A pretreatment method for a sintering raw material, characterized in that the raw material subjected to the above step is used as a part of the sintering raw material.
JP19427090A 1990-07-23 1990-07-23 Pretreatment method for sintering raw material Expired - Lifetime JPH0796688B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19427090A JPH0796688B2 (en) 1990-07-23 1990-07-23 Pretreatment method for sintering raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19427090A JPH0796688B2 (en) 1990-07-23 1990-07-23 Pretreatment method for sintering raw material

Publications (2)

Publication Number Publication Date
JPH0480327A JPH0480327A (en) 1992-03-13
JPH0796688B2 true JPH0796688B2 (en) 1995-10-18

Family

ID=16321830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19427090A Expired - Lifetime JPH0796688B2 (en) 1990-07-23 1990-07-23 Pretreatment method for sintering raw material

Country Status (1)

Country Link
JP (1) JPH0796688B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4084906B2 (en) 1999-05-21 2008-04-30 株式会社神戸製鋼所 Method for producing sintered ore and sintered ore
KR100388241B1 (en) * 1999-11-29 2003-06-19 주식회사 포스코 Improvement of reduction degradation strength of iron sinter by carbonic acid gas injection
UA90903C2 (en) * 2005-05-10 2010-06-10 Ниппон Стил Корпорейшн Method for production of granuls of sintered material (variants)
AU2013296081A1 (en) * 2012-07-23 2015-02-12 Marcus Eduardo Emrich BOTELHO Process for the optimized production of iron ore pellets

Also Published As

Publication number Publication date
JPH0480327A (en) 1992-03-13

Similar Documents

Publication Publication Date Title
AU2009232786B2 (en) Producing Method of Reduced Iron
JPH0796688B2 (en) Pretreatment method for sintering raw material
CN1585826A (en) Method for producing metallic iron
JP6369113B2 (en) Method for producing sintered ore
JP2011246781A (en) Method of manufacturing sintered ore
JP3247276B2 (en) Blast furnace charging method
JP4786022B2 (en) Method for producing sintered ore
JP2003096521A (en) Sintered ore blended with high alumina iron ore, and production method therefor
JP7110830B2 (en) Granulation method of mixed raw materials
JP3675105B2 (en) Sintering raw material processing method
JP3797184B2 (en) Method for producing sintered ore
JP7067372B2 (en) Granulation method for compounded raw materials
JP2953308B2 (en) Sinter production method
JPH06220549A (en) Pretreatment of raw material to be sintered
JP4412313B2 (en) Manufacturing method of high quality low SiO2 sintered ore
JP6489093B2 (en) Method for producing sintered ore
JPH05239560A (en) Manufacture of sintered ore
JPS627253B2 (en)
JP2014201763A (en) Method for producing granulation raw material for sintering
JP5979382B2 (en) Manufacturing method and apparatus for granulating raw material for sintering
JPH0564221B2 (en)
JP2001164325A (en) Method for manufacturing sintered ore for blast furnace and operational method for manufacturing sintered ore for blast furnace
JPS63111133A (en) Sintering method of iron ore
JP2009114485A (en) Method for manufacturing sintered ore
JP2006241575A (en) Method for pretreating raw material for sintering