JP7067372B2 - Granulation method for compounded raw materials - Google Patents

Granulation method for compounded raw materials Download PDF

Info

Publication number
JP7067372B2
JP7067372B2 JP2018159228A JP2018159228A JP7067372B2 JP 7067372 B2 JP7067372 B2 JP 7067372B2 JP 2018159228 A JP2018159228 A JP 2018159228A JP 2018159228 A JP2018159228 A JP 2018159228A JP 7067372 B2 JP7067372 B2 JP 7067372B2
Authority
JP
Japan
Prior art keywords
mass
ore
drum mixer
added
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018159228A
Other languages
Japanese (ja)
Other versions
JP2020033582A (en
Inventor
翼 原田
望 松田
健一 八ケ代
勝 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2018159228A priority Critical patent/JP7067372B2/en
Publication of JP2020033582A publication Critical patent/JP2020033582A/en
Application granted granted Critical
Publication of JP7067372B2 publication Critical patent/JP7067372B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、核粒子が少なく微粉が多い配合原料の造粒方法に関する。 The present invention relates to a method for granulating a compounded raw material having a small amount of nuclear particles and a large amount of fine powder.

焼結原料は粉状の鉄鉱石(粉鉱石)を主原料とし、必要に応じて成分調整した副原料を配合する。そして、焼結原料に水とバインダーを混合して造粒処理することにより、焼結機へ装入する微粉量を低減している。 The sintering raw material is mainly powdered iron ore (powdered ore), and an auxiliary raw material whose composition is adjusted as necessary is blended. Then, by mixing water and a binder with the sintering raw material and performing a granulation treatment, the amount of fine powder charged into the sintering machine is reduced.

造粒処理では、核粒子(粗粒)の周囲に微粉を付着させた造粒物(擬似粒子)を製造することが一般に行われる。造粒処理は、焼結生産性の維持改善に重要な操作であり、従来から種々検討がなされてきた。
特許文献1には、粒状物(核粒子)に対する粉状物(微粉)の量が多すぎると、造粒物の強度が低下するため、粒状物に対する粉状物の質量比を規定することが記載されている。また、特許文献1には、微粒子の炭酸カルシウムを添加することにより造粒物の強度が向上することが記載されている。
In the granulation process, it is generally performed to produce granulated products (pseudo-particles) in which fine powder is adhered around nuclear particles (coarse particles). Granulation treatment is an important operation for maintaining and improving sintering productivity, and various studies have been made so far.
Patent Document 1 defines the mass ratio of the powdery substance to the granular material because the strength of the granulated product decreases when the amount of the powdery substance (fine powder) is too large with respect to the granular material (nuclear particles). Have been described. Further, Patent Document 1 describes that the strength of the granulated product is improved by adding fine particles of calcium carbonate.

特許文献2には、返鉱を有効利用することにより焼結生産性が向上することが記載されている。特許文献2記載の発明は、ピソライト鉱石を最も多く配合した粉鉱石原料を対象としている(特許文献2の表1参照)。特許文献2には、1mm以上を80質量%以上含む返鉱を、造粒後の造粒物に添加(スコップによる手混ぜ)する発明例1や、1mm以下の返鉱を添加した焼結原料を造粒して造粒物とし、当該造粒物に1mm以上の返鉱を添加(スコップによる手混ぜ)する比較例2等が示されている。 Patent Document 2 describes that the sinter productivity is improved by effectively utilizing the return ore. The invention described in Patent Document 2 is intended for a powder ore raw material containing the largest amount of pisolite ore (see Table 1 of Patent Document 2). Patent Document 2 describes Invention Example 1 in which a return ore containing 80% by mass or more of 1 mm or more is added to the granulated product after granulation (manual mixing with a shovel), and a sintered raw material to which a return ore of 1 mm or less is added. 2 is shown in Comparative Example 2 in which a granulated product is obtained by granulating the granulated product, and a return ore of 1 mm or more is added to the granulated product (manual mixing with a shovel).

特許文献3にも、返鉱を有効利用することにより焼結生産性が向上することが記載されている。特許文献3記載の発明は、ローブリバー鉱石とハマスレー鉱石を約7割配合した粉鉱石原料を対象としている(特許文献3の表1参照)。特許文献3には、未造粒の焼結原料をドラムミキサーで造粒する例(試験番号T1~T3)が示され、1mm以下の粒子を約30質量%含む返鉱を、他の焼結原料と共にドラムミキサーで造粒する例やドラムミキサーで造粒処理した造粒物に添加(スコップによる手混ぜ)する例が示されている。また、試験番号T5、T6では、高速撹拌ミキサーとパンペレタイザーを用いて造粒した後に、600℃の高温返鉱をドラムミキサーで混合処理する例が示されている。 Patent Document 3 also describes that the sinter productivity is improved by effectively utilizing the returned ore. The invention described in Patent Document 3 is intended for a powder ore raw material containing about 70% of Robe River ore and Hamasley ore (see Table 1 of Patent Document 3). Patent Document 3 shows an example (test numbers T1 to T3) of granulating an ungranulated raw material with a drum mixer, and another sintering of a return ore containing about 30% by mass of particles of 1 mm or less. An example of granulating with a drum mixer together with the raw material and an example of adding (manually mixing with a scoop) to the granulated product granulated by the drum mixer are shown. Further, in test numbers T5 and T6, an example is shown in which granulation is performed using a high-speed stirring mixer and a pan pelletizer, and then high-temperature return ore at 600 ° C. is mixed with a drum mixer.

特開2008-101263号公報Japanese Unexamined Patent Publication No. 2008-101263 特開2015-193930号公報JP-A-2015-193930 特開2007-284744号公報Japanese Unexamined Patent Publication No. 2007-284744

近年、核粒子となる粒状物を含む鉱石種が枯渇してきており、微粉の多い鉱石種が主となっている。複数の鉱石種を配合して一定の核粒子量を確保した配合原料としても、粉鉱石における250μmアンダー(ふるい目250μmのふるい下の粉鉱石)の微粉の割合が20質量%以上、1mmオーバー(ふるい目1mmのふるい上の粗粒鉱石)の核粒子の割合が65質量%以下にならざるを得ず、核粒子に対する微粉の割合が定常的に非常に多い状態となってきている。そのため、核粒子が少なく微粉が多い焼結原料(以下、「レス核粒子の微粉原料」と呼ぶ場合がある。)を造粒する必要性が増大している。しかし、レス核粒子の微粉原料を用いて擬似粒子を製造すると、従来に比べて、核粒子に付着する微粉が厚くなり、未造粒微粉が多く発生する。 In recent years, ore species containing granules that become nuclear particles have been depleted, and ore species with a large amount of fine powder are the main. Even as a compounding raw material that secures a certain amount of nuclear particles by blending multiple ore types, the proportion of fine powder of 250 μm under (powder ore under a sieve with a sieve mesh of 250 μm) is 20% by mass or more and 1 mm over (1 mm over). The ratio of the core particles of the coarse-grained ore on the sieve having a sieve mesh of 1 mm) has to be 65% by mass or less, and the ratio of the fine powder to the core particles is constantly becoming very high. Therefore, there is an increasing need to granulate a sintered raw material having a small amount of nuclear particles and a large amount of fine particles (hereinafter, may be referred to as "fine powder raw material of less nuclear particles"). However, when pseudo-particles are produced using the raw material for fine particles of less nuclear particles, the fine particles adhering to the nuclear particles become thicker than in the past, and a large amount of ungranulated fine particles are generated.

造粒処理にはドラムミキサーや高速撹拌機(混練機)が造粒機として一般に用いられている。ドラムミキサーは主として擬似粒子の製造に適しており、また多量の原料処理に向いているが、上述した未造粒微粉の問題が発生する。一方、ドラムミキサーに比べ、高速撹拌機は、擬似粒子のみならず、主として微粉のみから構成されるペレット粒子も造粒できるが、ドラムミキサーと同様、未造粒微粉が発生する。 A drum mixer or a high-speed stirrer (kneader) is generally used as a granulator for the granulation process. The drum mixer is mainly suitable for producing pseudo-particles and is also suitable for processing a large amount of raw materials, but the above-mentioned problem of uncranulated fine particles occurs. On the other hand, compared to the drum mixer, the high-speed stirrer can granulate not only pseudo-particles but also pellet particles mainly composed of fine particles, but like the drum mixer, ungranulated fine particles are generated.

造粒処理後の未造粒微粉には、造粒されなかった微粉、造粒後の造粒物崩壊によって発生する微粉等があり、未造粒微粉が存在したままで焼結機に供給すると、焼結時の焼成速度が低下し焼結鉱の生産性が低下する。 The ungranulated fine powder after the granulation treatment includes the fine powder that was not granulated and the fine powder generated by the collapse of the granulated product after the granulation. , The firing speed at the time of sintering decreases, and the productivity of the sinter decreases.

特許文献1記載の発明を用いてレス核粒子の微粉原料を造粒処理した場合、微粉付着厚さの増大(粉鉱石中の微粉割合の増加)に対して、微粒子の炭酸カルシウムの添加では造粒性の向上に限界があり、未造粒微粉の増加が顕著となる。
また、特許文献2及び3記載の発明によれば一定の焼結生産性の向上が望めるが、核粒子が少なく微粉の多い鉱石種の配合を前提としていない発明であり、レス核粒子の微粉原料に対して焼結生産性の向上が期待できない。
When the fine powder raw material of the less nuclear particles is granulated using the invention described in Patent Document 1, the increase in the fine powder adhesion thickness (increase in the fine powder ratio in the powder ore) is produced by the addition of fine particles of calcium carbonate. There is a limit to the improvement of graininess, and the increase of ungrained fine powder becomes remarkable.
Further, according to the inventions described in Patent Documents 2 and 3, a certain improvement in sintering productivity can be expected, but the invention is not premised on the blending of ore species having a small amount of nuclear particles and a large amount of fine powder, and is a raw material for fine powder of less nuclear particles. On the other hand, improvement in sintering productivity cannot be expected.

本発明はかかる事情に鑑みてなされたもので、核粒子が少なく微粉が多い配合原料の造粒処理において、未造粒微粉を減少させて焼結鉱の生産性を向上させることが可能な方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and is a method capable of reducing ungranulated fine particles and improving the productivity of sinter in the granulation treatment of a compounded raw material having a small amount of nuclear particles and a large amount of fine powder. The purpose is to provide.

上記目的を達成するため、本発明は、複数銘柄の鉄鉱石を配合して、250μmアンダーが20質量%以上、1mmオーバーが25質量%以上65質量%以下としたものと副原料とを含む配合原料をドラムミキサーを用いて造粒処理する際に200℃以下の返鉱を添加する方法であって、
前記返鉱は、前記ドラムミキサーの入側と出側の双方で添加することとし、
250μmアンダーの前記鉄鉱石の質量をWpo、前記ドラムミキサーの入側で添加する250μmアンダーの返鉱の質量をWpr、前記ドラムミキサーの入側で添加する1mmオーバーの返鉱の質量をWrrs、前記ドラムミキサーの出側で添加する1mmオーバーの返鉱の質量をWrre、前記ドラムミキサーの全長をLとすると、
前記ドラムミキサーの入側で添加する返鉱は、0.148≧Wpr/Wpo≧0.006、且つWrrs/Wpo≧0.039とし、
前記ドラムミキサーの出側で添加する返鉱は、250μmアンダーが10質量%以下、且つWrre/Wpo≧0.062とし、0.5L~0.98Lの範囲で添加することを特徴としている。
In order to achieve the above object, the present invention is a blending of iron ore of a plurality of brands, in which 250 μm under is 20% by mass or more and 1 mm over is 25% by mass or more and 65% by mass or less, and an auxiliary material. It is a method of adding return ore at 200 ° C or lower when the raw material is granulated using a drum mixer.
The return ore shall be added on both the entry side and the exit side of the drum mixer.
The mass of the iron ore under 250 μm is Wpo, the mass of the return ore of 250 μm under added on the inlet side of the drum mixer is Wpr, and the mass of the return ore of 1 mm over added on the inlet side of the drum mixer is Wrrs. Assuming that the mass of the return ore of 1 mm over added on the outlet side of the drum mixer is Wrre and the total length of the drum mixer is L,
The return ore added on the inlet side of the drum mixer is 0.148 ≧ Wpr / Wpo ≧ 0.006 and Wrs / Wpo ≧ 0.039.
The return ore added on the outlet side of the drum mixer is characterized in that 250 μm under is 10% by mass or less, Wrre / Wpo ≧ 0.062, and is added in the range of 0.5 L to 0.98 L.

なお、「アンダー」は、併記される寸法のふるい目のふるいを用いた際のふるい下を、「オーバー」はふるい上をそれぞれ指す。 In addition, "under" refers to the bottom of the sieve when using a sieve with the dimensions described together, and "over" refers to the top of the sieve.

ドラムミキサーによる造粒処理では、核粒子の周囲に微粉を付着させた擬似粒子を製造する。核粒子は、主として1mmオーバーの粗粒で構成される。核粒子に付着する微粉(付着微粉)は、250μmアンダーの粒子が多く、付着せず未造粒微粉になる場合もある。 In the granulation process using a drum mixer, pseudo-particles in which fine particles are adhered around the nuclear particles are produced. The nuclear particles are mainly composed of coarse particles over 1 mm. Most of the fine particles adhering to the nuclear particles (adhered fine powders) are particles under 250 μm, and may not adhere to the fine particles and become ungranulated fine particles.

本発明が対象とする、250μmアンダーの微粉の割合が20質量%以上、1mmオーバーの粗粒の割合が25質量%以上65質量%以下の、核粒子が少なく微粉が多い鉄鉱石を造粒処理した場合、従来の擬似粒子に比べて微粉の付着厚さが厚くなる。本発明者らの知見によれば、250μmアンダーの微粉の割合が20質量%以上の鉄鉱石を造粒処理した場合、付着微粉の厚さは300μm以上となる。核粒子の多い従来の焼結原料を造粒処理した場合、微粉付着厚さが概ね150μmであることから、核粒子が少なく微粉が多い焼結原料を造粒処理した場合の微粉付着厚さは非常に厚いといえる。 Granulation treatment of iron ore with a small amount of nuclear particles and a large amount of fine particles, which is the target of the present invention, in which the ratio of fine particles under 250 μm is 20% by mass or more and the ratio of coarse particles over 1 mm is 25% by mass or more and 65% by mass or less. If this is the case, the adhesion thickness of the fine particles will be thicker than that of the conventional pseudo-particles. According to the findings of the present inventors, when iron ore having a proportion of fine powder under 250 μm of 20% by mass or more is granulated, the thickness of the adhered fine powder is 300 μm or more. When the conventional sintered raw material with a large amount of nuclear particles is granulated, the fine powder adhesion thickness is approximately 150 μm. It can be said that it is very thick.

従って、ドラムミキサーによる転動造粒では、未造粒微粉の問題に加えて、造粒した擬似粒子が造粒処理中に崩壊することが問題となる。核粒子が少なく微粉が多い鉄鉱石を高速撹拌機で造粒する場合も未造粒微粉や擬似粒子の崩壊が問題となる。
上記傾向は、添加する副原料等にも影響されるが、核粒子の減少と微粉の増加による未造粒微粉や擬似粒子の崩壊が問題となる点は変わらない。
Therefore, in the rolling granulation by the drum mixer, in addition to the problem of ungranulated fine particles, the problem is that the granulated pseudo-particles disintegrate during the granulation process. Even when iron ore with a small amount of nuclear particles and a large amount of fine particles is granulated with a high-speed stirrer, the disintegration of ungranulated fine particles and pseudo-particles becomes a problem.
The above tendency is affected by the auxiliary raw materials to be added, but the point that the disintegration of uncranulated fine particles and pseudo-particles due to the decrease of nuclear particles and the increase of fine particles remains a problem.

そこで、本発明者らは、核粒子が少なく微粉が多い配合原料の造粒処理において未造粒微粉を減少させる方法の開発に取り組んだ。
本発明者らは種々の実験を実施することにより以下の知見を得た。
ドラムミキサーで造粒した後の擬似粒子を観察したところ、核粒子に付着している微粉に250μmアンダーの返鉱(微粉返鉱)が混入している擬似粒子の多くが付着厚さが増大していた。このことから、造粒前の焼結原料に微粉返鉱を添加すると未造粒微粉が減少することが判明した。返鉱は焼結鉱が破砕した際に発生する粉であるため、鉄鉱石粒子に比べて角ばった形状をしており、核粒子に付着した後は周囲の付着微粉の剥落(擬似粒子の崩壊)を抑制する効果があると考えられる。
Therefore, the present inventors have worked on the development of a method for reducing ungranulated fine particles in the granulation treatment of a compounded raw material having a small amount of nuclear particles and a large amount of fine powder.
The present inventors obtained the following findings by carrying out various experiments.
When observing the pseudo-particles after granulation with a drum mixer, the adhesion thickness of most of the pseudo-particles in which the fine particles adhering to the nuclear particles are mixed with the return ore of 250 μm under (fine powder return ore) increases. Was there. From this, it was found that the amount of ungranulated fine powder was reduced by adding fine powder return ore to the sinter raw material before granulation. Since the return ore is a powder generated when the sinter is crushed, it has a more angular shape than the iron ore particles, and after it adheres to the core particles, the surrounding fine powder is exfoliated (collapse of pseudo particles). ) Is considered to be effective.

しかし、微粉返鉱の添加によっても未造粒微粉が残存する。
当該未造粒微粉は、200℃以下且つ1mmオーバーの返鉱(粗粒返鉱)を添加してドラムミキサーで転動造粒することにより減少する。この効果は、ドラムミキサー造粒前と、ドラムミキサーでの一定時間造粒後の2回に分けて粗粒返鉱を添加した際に最も大きくなる。これは、核粒子の少ない焼結原料を造粒するに当たって、核粒子となる粗粒返鉱が初期造粒時点においても一定量必要であり、さらに造粒中盤から後半において、新たな核粒子として添加した粗粒返鉱に、造粒時に残存した未造粒微粉が付着するためであると考えられる。
However, ungranulated fine powder remains even with the addition of fine powder return ore.
The ungranulated fine powder is reduced by adding a return ore (coarse grain return ore) at 200 ° C. or lower and over 1 mm and rolling and granulating with a drum mixer. This effect is maximized when coarse-grained return ore is added in two steps, one before granulation with a drum mixer and one after granulation with a drum mixer for a certain period of time. This is because when granulating a sintered raw material with few nuclear particles, a certain amount of coarse-grained return ore, which becomes nuclear particles, is required even at the time of initial granulation, and further, as new nuclear particles from the middle to the latter half of granulation. It is considered that this is because the ungranulated fine particles remaining at the time of granulation adhere to the added coarse-grained return ore.

また、本発明に係る配合原料の造粒方法では、前記鉄鉱石をその粒径によって2以上のグループに分割し、平均粒径が最も小さい前記グループの鉄鉱石に、生石灰及び/又は消石灰からなるバインダーを、生石灰換算で該グループの鉄鉱石全量の外掛けで0.5質量%以上6質量%以下の量加え、高速撹拌機に装入した後に前記ドラムミキサーの入側に装入してもよい。 Further, in the method for granulating a compounding raw material according to the present invention, the iron ore is divided into two or more groups according to its particle size, and the iron ore of the group having the smallest average particle size is composed of quicklime and / or slaked lime. Even if the binder is added in an amount of 0.5% by mass or more and 6% by mass or less in terms of quicklime in terms of the total amount of iron ore of the group, and then charged in a high-speed stirrer, it is charged in the inlet side of the drum mixer. good.

本発明が対象とするレス核粒子の微粉原料を2以上のグループに分割した後の、平均粒径が最も小さいグループの鉄鉱石(以下、「超レス核粒子微粉原料」とも呼ぶ。)は、さらに核粒子が少なく微粉が多い粒度構成となる。超レス核粒子微粉原料に対し、生石灰及び/又は消石灰を加えて高速撹拌機による造粒を実施すると、微粉のみで構成される擬似粒子(以下、「P型粒子」とも呼ぶ。)が形成され、ドラムミキサー内で微粉を付着させる核粒子として作用する。 The iron ore of the group having the smallest average particle size (hereinafter, also referred to as "ultra-less nuclear particle fine powder raw material") after the fine powder raw material of the less nuclear particles targeted by the present invention is divided into two or more groups. Furthermore, the particle size has a small number of nuclear particles and a large amount of fine powder. When quick lime and / or slaked lime is added to the ultra-less nuclear particle fine powder raw material and granulation is carried out with a high-speed stirrer, pseudo-particles (hereinafter, also referred to as “P-type particles”) composed of only fine particles are formed. , Acts as nuclei particles to which fine powder adheres in the drum mixer.

本発明に係る配合原料の造粒方法では、核粒子が少なく微粉が多い配合原料に微粉返鉱及び粗粒返鉱を添加してドラムミキサー造粒を施した後、再度、粗粒返鉱添加によるドラムミキサー造粒を施す。これにより、焼結生産性を有意に向上できる程度に未造粒微粉を減少させることができる。 In the method for granulating a compounded raw material according to the present invention, fine powder return ore and coarse grain return ore are added to a compounded raw material having a small amount of nuclear particles and a large amount of fine powder to perform drum mixer granulation, and then coarse grain return ore is added again. Drum mixer granulation is performed by. As a result, the amount of ungranulated fine powder can be reduced to the extent that the sintering productivity can be significantly improved.

本発明の第1の実施の形態に係る配合原料の造粒方法のフロー図である。It is a flow chart of the granulation method of the compounding raw material which concerns on 1st Embodiment of this invention. 本発明の第2の実施の形態に係る配合原料の造粒方法のフロー図である。It is a flow chart of the granulation method of the compounding raw material which concerns on 2nd Embodiment of this invention.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態について説明し、本発明の理解に供する。 Subsequently, an embodiment embodying the present invention will be described with reference to the attached drawings, and the present invention will be understood.

[第1の実施の形態に係る配合原料の造粒方法]
図1に、本発明の第1の実施の形態に係る配合原料の造粒方法のフローを示す。
本実施の形態では、核粒子が少なく微粉が多い配合原料をドラムミキサー10を用いて造粒処理する際に返鉱を添加する。
一般に返鉱は、焼成後の焼結鉱を高炉へ投入するのに適した大きさに粉砕する際に発生する微粉であって、高炉へ投入するのに適さない程度の小さな粒径の焼結鉱粉を指し、1mmアンダーの微粉が多く含まれている。
[Granulation method of compounded raw materials according to the first embodiment]
FIG. 1 shows a flow of a granulation method for a compounded raw material according to the first embodiment of the present invention.
In the present embodiment, a return ore is added when the compounding raw material having a small amount of nuclear particles and a large amount of fine powder is granulated by using the drum mixer 10.
In general, return ore is fine powder generated when sinter after firing is crushed to a size suitable for being put into a blast furnace, and is sintered with a small particle size that is not suitable for being put into a blast furnace. It refers to ore powder and contains a large amount of fine powder of 1 mm under.

配合原料は、複数銘柄の鉄鉱石14を配合して250μmアンダーが20質量%以上、1mmオーバーの粗粒が25質量%以上65質量%以下としたものと副原料とを含んでいる。副原料は、炭材や石灰石などである。 The compounding raw material includes a mixture of iron ore 14 of a plurality of brands having a 250 μm under of 20% by mass or more and a coarse grain of 1 mm over of 25% by mass or more and 65% by mass or less, and an auxiliary raw material. Auxiliary raw materials are charcoal and limestone.

前述したように、250μmアンダーの微粉の割合が20質量%以上の鉄鉱石を造粒処理した場合、付着微粉21の厚さは300μm以上となるため、ドラムミキサー10による転動造粒では、造粒した擬似粒子が造粒処理中に崩壊することが問題となる。また、1mmオーバーの粗粒を65質量%以下としたのは近年の鉄鉱石事情による。
一方、1mmオーバーの粗粒が25質量%を下回ると、本発明によっても顕著な焼結生産性改善効果を得ることができなかった。これは、核粒子20が過少となったため、付着微粉21の厚さが極端に厚くなり、本発明によっても擬似粒子構造を維持できないためと考えられる。
なお、250μmアンダーの微粉の上限値は規定していないが、1mmオーバーの粗粒が25質量%以上65質量%以下であるため、通常の鉄鉱石(焼結原料)を使用すれば、粒度分布の実態から60質量%以下程度となる。
As described above, when iron ore having a proportion of fine particles under 250 μm of 20% by mass or more is granulated, the thickness of the adhered fine particles 21 becomes 300 μm or more. The problem is that the granulated pseudo-particles disintegrate during the granulation process. The reason why the coarse grain over 1 mm is 65% by mass or less is due to the recent iron ore situation.
On the other hand, when the amount of coarse particles over 1 mm is less than 25% by mass, a remarkable effect of improving sintering productivity could not be obtained even by the present invention. It is considered that this is because the number of the nuclear particles 20 is too small and the thickness of the adhered fine particles 21 becomes extremely thick, and the pseudo particle structure cannot be maintained even by the present invention.
Although the upper limit of fine powder under 250 μm is not specified, since the coarse particles over 1 mm are 25% by mass or more and 65% by mass or less, if ordinary iron ore (sintered raw material) is used, the particle size distribution is distributed. From the actual situation, it will be about 60% by mass or less.

返鉱には200℃以下の低温返鉱を使用する。これは、200℃超、例えば返鉱の温度が400℃程度の場合、造粒水の不規則な蒸発を招き、造粒性が安定しないからである。 A low temperature return ore of 200 ° C. or lower is used for the return ore. This is because when the temperature exceeds 200 ° C., for example, the temperature of the return ore is about 400 ° C., irregular evaporation of the granulated water is caused and the granulation property is not stable.

返鉱はドラムミキサー10の入側と出側の双方で添加する。
以下の説明では、250μmアンダーの鉄鉱石14の質量をWpo、ドラムミキサー10の入側で添加する250μmアンダーの返鉱(微粉返鉱)16の質量をWpr、ドラムミキサー10の入側で添加する1mmオーバーの返鉱(粗粒返鉱)17の質量をWrrs、ドラムミキサー10の出側で添加する1mmオーバーの返鉱(粗粒返鉱)18の質量をWrreとする。
また、ドラムミキサー10の中盤から後半にかけて、粗粒返鉱18を新たに核粒子として添加する位置までに造粒されていない微粉や、一旦造粒されたものの擬似粒子の崩壊によって発生した微粉を中間未造粒微粉22と呼び、ドラムミキサー10出側(造粒処理後)の造粒されていない微粉を最終未造粒微粉23と呼ぶ場合がある。
The return ore is added on both the entry side and the exit side of the drum mixer 10.
In the following description, the mass of iron ore 14 under 250 μm is added to Wpo and the mass of the return ore (fine powder return) 16 under 250 μm is added on the inlet side of the drum mixer 10. Let the mass of the 1 mm over return (coarse grain return) 17 be Wrrs, and the mass of the 1 mm over return (coarse grain return) 18 added on the outlet side of the drum mixer 10 be Wrre.
Further, from the middle to the latter half of the drum mixer 10, fine powder that has not been granulated to the position where the coarse granulated return 18 is newly added as nuclear particles, or fine powder that has been granulated once but is generated by the decay of pseudo-particles is produced. The intermediate ungranulated fine powder 22 may be referred to, and the ungranulated fine powder on the exit side of the drum mixer 10 (after the granulation process) may be referred to as the final ungranulated fine powder 23.

ドラムミキサー10の入側で添加する返鉱は、0.148≧Wpr/Wpo≧0.006、且つWrrs/Wpo≧0.039とする。
微粉返鉱16は核粒子20への付着微粉21となるが、鉄鉱石14と比較して角ばった形状をしているため、鉄鉱石粒子からなる付着微粉21の剥落を防止する効果がある(中間未造粒微粉22の低減)。
上記効果を維持するためには、250μmアンダーの鉄鉱石14が増加するにつれて、その剥落を防止するために必要となる微粉返鉱16も増加させなければならないと考えられる。そのため、250μmアンダーの鉄鉱石14との質量比(Wpr/Wpo)をもって微粉返鉱16の下限値(0.006)を決定した。
一方、鉄鉱石粒子からなる付着微粉21に対して過度に微粉返鉱16を添加すると、鉄鉱石粒子からなる付着微粉21の剥落防止効果が飽和する。本発明者らの知見では、Wpr/Wpoの値が0.148であれば効果が飽和する。
なお、微粉返鉱16に代えて微粒炭酸カルシウム粉末を使用した場合には同様の効果を得ることができなかった。これは、返鉱との形状差異によるものと考えられる。
The return ore added on the inlet side of the drum mixer 10 is 0.148 ≧ Wpr / Wpo ≧ 0.006 and Wrs / Wpo ≧ 0.039.
The fine powder return ore 16 becomes the fine powder 21 attached to the nuclear particles 20, but since it has a more angular shape than the iron ore 14, it has an effect of preventing the attached fine powder 21 made of iron ore particles from peeling off (). Reduction of intermediate ungranulated fine particles 22).
In order to maintain the above effect, it is considered that as the amount of iron ore 14 under 250 μm increases, so does the fine powder return ore 16 required to prevent its exfoliation. Therefore, the lower limit (0.006) of the fine powder return ore 16 was determined by the mass ratio (Wpr / Wpo) with the iron ore 14 under 250 μm .
On the other hand, if the fine powder return ore 16 is excessively added to the adhered fine powder 21 made of iron ore particles, the effect of preventing the attached fine powder 21 made of iron ore particles from peeling off is saturated. According to the findings of the present inventors, if the value of Wpr / Wpo is 0.148, the effect is saturated.
When fine calcium carbonate powder was used instead of the fine powder return ore 16, the same effect could not be obtained. This is considered to be due to the shape difference from the return ore.

また、核粒子が少なく微粉が多い配合原料に対して、角ばった形状の粗粒返鉱17をドラムミキサー10入側から補填することにより、核粒子20一個当たりの付着微粉厚み増大を抑制しつつ、鉄鉱石粒子からなる付着微粉21の剥落も抑制できる。粗粒返鉱17が核粒子となることによりドラムミキサー10前段での中間未造粒微粉22が減少する。
上記効果を維持するためには、250μmアンダーの鉄鉱石14が増加するにつれて、その剥落を防止するために必要となる粗粒返鉱17も増加させなければならないと考えられる。そのため、250μmアンダーの鉄鉱石14との質量比(Wrrs/Wpo)をもって粗粒返鉱17の下限値(0.039)を決定した。
Further, by supplementing the compounded raw material having a small amount of nuclear particles and a large amount of fine powder with the coarse-grained iron ore 17 having an angular shape from the side of the drum mixer 10, the increase in the thickness of the adhered fine powder per 20 nuclear particles is suppressed. It is also possible to suppress the exfoliation of the adhered fine powder 21 composed of iron ore particles. Since the coarse-grained return ore 17 becomes nuclear particles, the amount of intermediate unground fine powder 22 in the front stage of the drum mixer 10 is reduced.
In order to maintain the above effect, it is considered that as the amount of iron ore 14 under 250 μm increases, the amount of coarse-grained ore 17 required to prevent its exfoliation must also increase. Therefore, the lower limit (0.039) of the coarse grain return ore 17 was determined by the mass ratio (Wrrs / Wpo) with the iron ore 14 under 250 μm .

ドラムミキサー10の出側で添加する返鉱は、微粉返鉱16が10質量%以下、且つWrre/Wpo≧0.062とする。
ドラムミキサー10内で擬似粒子は付着厚みを増大させていくが、付着しきれなかった微粉は中間未造粒微粉22となる。そこで、ドラムミキサー10出側から、まだ微粉が付着しておらず角ばった表面を有している粗粒返鉱18を新たに添加することにより、その凹凸面で中間未造粒微粉22を捕捉して最終未造粒微粉23を低減させる。
250μmアンダーの鉄鉱石14が増加するほど、中間未造粒微粉22は増加し、粗粒返鉱18の必要量は増加すると考えられる。そのため、250μmアンダーの鉄鉱石14との質量比(Wrre/Wpo)をもって粗粒返鉱18の下限値(0.062)を決定した。
微粉を減少させる必要があるため、ドラムミキサー10の出側で添加する微粉返鉱16は10質量%以下と規定した(0質量%でも良い)。
The return ore added on the outlet side of the drum mixer 10 is such that the fine powder return ore 16 is 10% by mass or less and Wrre / Wpo ≧ 0.062.
In the drum mixer 10, the pseudo-particles increase the adhered thickness, but the fine particles that cannot be completely adhered become the intermediate uncranulated fine particles 22. Therefore, by newly adding coarse-grained return ore 18 having an angular surface to which fine powder has not yet adhered from the exit side of the drum mixer 10, intermediate ungranulated fine powder 22 is captured on the uneven surface thereof. The final unground fine powder 23 is reduced.
It is considered that as the amount of iron ore 14 under 250 μm increases, the amount of intermediate ungranulated fine powder 22 increases and the required amount of coarse-grained return ore 18 increases. Therefore, the lower limit (0.062) of the coarse grain return ore 18 was determined by the mass ratio (Wrre / Wpo) with the iron ore 14 under 250 μm .
Since it is necessary to reduce the amount of fine powder, the amount of fine powder return 16 added on the outlet side of the drum mixer 10 is specified to be 10% by mass or less (0% by mass may be used).

Wrrs/WpoとWrre/Wpoに関して、未造粒微粉の低減を阻害する影響はなく、上限はとくに定めない。しかし、WrreとWrrsの合計が焼結工程で発生する1mmオーバーの返鉱の量を上回らない範囲で実施することが望ましく、操業状況に基づけば概ね上限値は双方とも1.5程度である。 With respect to Wrs / Wpo and Wrre / Wpo, there is no effect of inhibiting the reduction of ungranulated fine powder, and no upper limit is set. However, it is desirable that the total of Wrre and Wrrs does not exceed the amount of returned ore of 1 mm over generated in the sintering step, and the upper limit of both is about 1.5 based on the operating conditions.

なお、Wpr/Wpo、Wrrs/Wpo、Wrre/Wpoは質量比であるが、比率を取るため、単位時間当たりにドラムミキサー10へ供給する質量、例えばトン/時間を単位として用いても良い。 Wpr / Wpo, Wrs / Wpo, and Wrre / Wpo are mass ratios, but in order to take the ratio, the mass supplied to the drum mixer 10 per unit time, for example, tons / hour may be used as a unit.

ドラムミキサー10の出側で返鉱を添加する位置は、ドラムミキサー10の全長をLとして0.5L~0.98Lとする。
0.98L超の場合、添加した粗粒返鉱18に中間未造粒微粉22を付着させる期間が短く、最終未造粒微粉23の低減効果が限定される。
一方、0.5L未満の場合も最終未造粒微粉23の低減効果が限定される。これは、本発明が、粗粒返鉱17、18をドラムミキサー10の入側とドラムミキサー10の中盤~後半の2か所で添加することにより最終未造粒微粉23を顕著に減少させる効果を得るものであるが、0.5L未満の場合は中間未造粒微粉22の低減が十分ではなく、実質的に2か所の添加ではなく入側1か所添加の効果となるためである。
The position where the return ore is added on the outlet side of the drum mixer 10 is 0.5 L to 0.98 L, where L is the total length of the drum mixer 10.
When it exceeds 0.98 L, the period for adhering the intermediate ungranulated fine powder 22 to the added coarse granulated fine powder 18 is short, and the effect of reducing the final ungranulated fine powder 23 is limited.
On the other hand, even if it is less than 0.5 L, the effect of reducing the final ungranulated fine powder 23 is limited. This is because the present invention has the effect of significantly reducing the final ungranulated fine powder 23 by adding the coarse-grained ores 17 and 18 at two locations, the inlet side of the drum mixer 10 and the middle to the latter half of the drum mixer 10. However, if the amount is less than 0.5 L, the reduction of the intermediate ungranulated fine powder 22 is not sufficient, and the effect is that the addition is substantially made at one place on the entry side instead of the addition at two places. ..

[第2の実施の形態に係る配合原料の造粒方法]
図2に、本発明の第2の実施の形態に係る配合原料の造粒方法のフローを示す。
本実施の形態における配合原料の構成、並びに返鉱の添加量及び添加位置は第1の実施の形態と同様である。
[Granulation method of compounded raw materials according to the second embodiment]
FIG. 2 shows the flow of the granulation method of the compounded raw material according to the second embodiment of the present invention.
The composition of the compounded raw material in the present embodiment, and the addition amount and addition position of the return ore are the same as those in the first embodiment.

本実施の形態では、鉄鉱石14をその粒径によって2以上のグループ(ここでは、鉄鉱石14a、15のグループ)に分割し、平均粒径が最も小さいグループの鉄鉱石15に、生石灰及び/又は消石灰からなるバインダーを、生石灰換算で該グループの鉄鉱石全量の外掛けで0.5質量%以上6質量%以下の量加え、高速撹拌機11に装入してP型粒子24を製造する。そして、他の配合原料及び返鉱16、17と共にP型粒子24をドラムミキサー10の入側に装入する。P型粒子24はドラムミキサー10内で微粉が付着してP型粒子24aとなる。 In the present embodiment, the iron ore 14 is divided into two or more groups (here, groups of iron ore 14a and 15) according to the particle size, and quicklime and / or quicklime and / are divided into the iron ore 15 of the group having the smallest average particle size. Alternatively, a binder made of quicklime is added in an amount of 0.5% by mass or more and 6% by mass or less in terms of the total amount of iron ore of the group in terms of quicklime, and charged into the high-speed stirrer 11 to produce P-type particles 24. .. Then, the P-type particles 24 are charged into the inlet side of the drum mixer 10 together with the other compounding raw materials and the returned ore 16 and 17. Fine particles adhere to the P-type particles 24 in the drum mixer 10 to become P-type particles 24a.

発明者らの実験では、超レス核粒子微粉原料(本発明が対象とするレス核粒子の微粉原料を2以上のグループに分割した後の、平均粒径が最も小さいグループの鉄鉱石)に対して生石灰を0.5質量%以上加えた後に、第1の実施の形態に係る配合原料の造粒方法を実施することで、さらに最終未造粒微粉23を低減できたことから、生石灰及び/又は消石灰からなるバインダーの添加量を、生石灰換算で超レス核粒子微粉原料全量の外掛けで0.5質量%以上としている。生石灰添加量が0.5質量%未満の場合、P型粒子24が脆弱となり、ドラムミキサー10で造粒中にP型粒子24、24aが崩壊する。
一方、超レス核粒子微粉原料に対して過度に生石灰を添加すると、P型粒子24aの強度上昇効果が飽和する。本発明者らの知見では、生石灰の添加量が6質量%で効果が飽和する傾向が確認された。
In the experiments of the inventors, the ultra-less nuclear particle fine powder raw material (iron ore of the group having the smallest average particle size after the fine powder raw material of the less nuclear particle targeted by the present invention was divided into two or more groups) was used. After adding 0.5% by mass or more of fresh lime, the final ungranulated fine particles 23 could be further reduced by carrying out the granulation method of the compounding raw material according to the first embodiment. Alternatively, the amount of the binder made of slaked lime is set to 0.5% by mass or more in terms of fresh lime in terms of the total amount of the raw material of the ultra-less nuclear particle fine powder. When the amount of quicklime added is less than 0.5% by mass, the P-type particles 24 become fragile, and the P-type particles 24 and 24a are disintegrated during granulation by the drum mixer 10.
On the other hand, if quicklime is excessively added to the raw material of ultra-less nuclear particle fine particles, the effect of increasing the strength of the P-type particles 24a is saturated. In the findings of the present inventors, it was confirmed that the effect tends to be saturated when the amount of quicklime added is 6% by mass.

以上、本発明の実施の形態について説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。 Although the embodiments of the present invention have been described above, the present invention is not limited to the configuration described in the above-described embodiments, and is considered within the scope of the matters described in the claims. It also includes other embodiments and variations thereof.

本発明の効果について検証するために実施した検証試験について説明する。
表1に試験結果の一覧を示す。なお、表中の「+」は「オーバー」、「-」は「アンダー」を意味する。
The verification test carried out for verifying the effect of the present invention will be described.
Table 1 shows a list of test results. In the table, "+" means "over" and "-" means "under".

Figure 0007067372000001
Figure 0007067372000001

造粒機には、内径(直径)が1mのバッチ式ドラムミキサー試験機を使用した。造粒処理速度は25rpm、造粒時間は4分間とした。造粒中に返鉱を添加する条件では、焼結原料の造粒を一旦停止して返鉱を添加した後に造粒を再開した。返鉱添加前後の合計造粒時間は4分間である。 As the granulator, a batch type drum mixer tester having an inner diameter (diameter) of 1 m was used. The granulation processing speed was 25 rpm and the granulation time was 4 minutes. Under the condition that the return ore was added during the granulation, the granulation of the sinter raw material was temporarily stopped, the return ore was added, and then the granulation was restarted. The total granulation time before and after the addition of the return ore is 4 minutes.

鉄鉱石には250μmアンダーの微粉の割合が20質量%のものを使用した。
副原料として、粉コークスを4質量%、石灰石を10質量%、カンラン岩を1質量%配合した。
ドラムミキサーによる造粒後の焼成前水分は8.0質量%一定とした。
The iron ore used had a fine powder content of 20% by mass under 250 μm.
As auxiliary raw materials, 4% by mass of coke breeze, 10% by mass of limestone, and 1% by mass of peridotite were blended.
The water content before firing after granulation by the drum mixer was kept constant at 8.0% by mass.

実施例1~4及び比較例3~10では、ドラムミキサーで処理した造粒物を100質量%(水を除く)として、返鉱をドラムミキサー入側から3質量%、出側から2質量%それぞれ添加した。
比較例1は、返鉱を添加していない。比較例2は、返鉱を添加せず、炭酸カルシウムをドラムミキサー入側から3質量%添加した。比較例11は、ドラムミキサー入側で返鉱を添加せず炭酸カルシウムを3質量%添加し、出側で返鉱を2質量%添加した。
In Examples 1 to 4 and Comparative Examples 3 to 10, the granulated product treated with the drum mixer is 100% by mass (excluding water), and the return ore is 3% by mass from the entrance side of the drum mixer and 2% by mass from the exit side. Each was added.
In Comparative Example 1, no return ore was added. In Comparative Example 2, calcium carbonate was added in an amount of 3% by mass from the side of the drum mixer without adding the return ore. In Comparative Example 11, 3% by mass of calcium carbonate was added without adding return ore on the inlet side of the drum mixer, and 2% by mass of return ore was added on the exit side.

ドラムミキサー入側及び出側の所定位置において添加する返鉱は、事前にロータップシェーカーによる機械ふるい分けを実施し、各試験条件におけるWpr/Wpo、Wrrs/Wpo、Wrre/Wpoに合致するように粒度調整を行った。
鉄鉱石の粒度確認及び返鉱の粒度調整は、事前に各原料を乾燥させた後(絶乾後)、JIS Z8801-1「試験用ふるい-第1部:金属製網ふるい」に記載の公称目開き(0.25mmと1.0mm)のふるいに対し、300秒間ロータップシェーカーによる機械ふるい分けを行って(分級して)、ふるい上とふるい下を計測し、以下に示す式で算出して粒度確認、または算出した粒径分布割合となるように粒度調整を行った。
Xmmアンダー:ふるい目Xmmのふるいを用い、「(ふるい下の質量)/(ふるい上の質量+ふるい下の質量)×100(質量%)」で算出。
Xmmオーバー:ふるい目Xmmのふるいを用い、「(ふるい上の質量)/(ふるい上の質量+ふるい下の質量)×100(質量%)」で算出。
The return ore added at the predetermined positions on the input side and the exit side of the drum mixer is mechanically screened with a low tap shaker in advance, and the particle size is adjusted to match Wpr / Wpo, Wrs / Wpo, and Wrre / Wpo under each test condition. I made some adjustments.
After the raw materials are dried in advance (after absolute drying), the particle size of the iron ore and the particle size of the returned ore are adjusted as described in JIS Z8801-1 "Test Sieve-Part 1: Metal Net Sieve". For sieves with mesh openings (0.25 mm and 1.0 mm), perform mechanical sieving (classification) with a low tap shaker for 300 seconds, measure the top and bottom of the sieve, and calculate using the formula shown below. The particle size was confirmed or the particle size was adjusted so that the calculated particle size distribution ratio was obtained.
Xmm under: Calculated by "(mass under the sieve) / (mass on the sieve + mass under the sieve) x 100 (mass%)" using a sieve with a sieve mesh of X mm.
Xmm over: Calculated by "(mass on the sieve) / (mass on the sieve + mass under the sieve) x 100 (mass%)" using a sieve with a sieve mesh of X mm.

ドラムミキサー出側で返鉱を添加する位置は、実製造工程における連続式ドラムミキサーへの適用を想定して、ドラムミキサーの全長Lを基準としてα×Lとした際の値を記載しているが、以下の式により算出した。
α=返鉱添加までの造粒時間(分)/4(分)
例えば、返鉱添加までの造粒時間を3分とした場合、添加後の造粒時間が1分となるため、返鉱添加位置は0.75Lとなる。
なお、連続式ドラムミキサーは、ドラムを傾斜させることによって、ドラムの一方の開口部から供給した焼結原料を造粒しながら他方の開口部へ搬送して他方の開口部から造粒物を排出する装置である。
The position where the return ore is added on the exit side of the drum mixer is the value when α × L is set based on the total length L of the drum mixer, assuming application to a continuous drum mixer in the actual manufacturing process. However, it was calculated by the following formula.
α = Granulation time (minutes) / 4 (minutes) until addition of return ore
For example, when the granulation time until the return ore addition is 3 minutes, the granulation time after the addition is 1 minute, so that the return ore addition position is 0.75 L.
In the continuous drum mixer, by tilting the drum, the sintered raw material supplied from one opening of the drum is granulated and conveyed to the other opening, and the granulated material is discharged from the other opening. It is a device to do.

実施例4では、鉄鉱石をその粒径によって2グループに分け、平均粒径の小さいグループ(250μmアンダーの微粉の割合が30質量%)を、その全量の外掛けで0.5質量%の生石灰と共にアイリッヒミキサー(高速撹拌機)に装入して事前造粒した後、他のグループの鉄鉱石と共にドラムミキサーに装入して造粒した。 In Example 4, iron ore is divided into two groups according to their particle size, and a group having a small average particle size (the ratio of fine powder under 250 μm is 30% by mass) is divided into 0.5% by mass of fresh lime by the total amount. After being charged into an Erich mixer (high-speed stirrer) and pre-granulated, it was charged into a drum mixer together with iron ore of another group and granulated.

焼結試験は、ドラムミキサーで造粒処理を行った造粒物を焼結鍋に装入し、鍋試験(焼結鍋試験)により実施した。焼成時間は、原料上部への着火開始から鍋直下で計測している排ガス温度が最高点となる時点(一般にBTPと呼ぶ。)までの時間とした。
そして、鍋試験の結果から焼結生産性を以下に示す式で算出し、比較例1に対する相対値を生産性改善率として記載した。
焼結生産性(ton/day/m)=焼結鉱製造量(ton/鍋)÷鍋断面積(m)÷焼成時間(day/鍋)
ここで、焼結鉱製造量は、鍋試験で得られた焼成物を2mの高さから4回落下させ、6mmオーバーの量を測定することにより算出した。上記落下工程において粉化した6mmアンダーは焼結工程での歩留落ちとなる。
The sintering test was carried out by charging a granulated product that had been granulated with a drum mixer into a sintering pot and performing a pot test (sintering pot test). The firing time was the time from the start of ignition of the upper part of the raw material to the time when the exhaust gas temperature measured directly under the pot reached the highest point (generally called BTP).
Then, the sintering productivity was calculated from the results of the pot test by the formula shown below, and the relative value with respect to Comparative Example 1 was described as the productivity improvement rate.
Sinter productivity (ton / day / m 2 ) = Sintered ore production amount (ton / pot) ÷ pot cross-sectional area (m 2 ) ÷ firing time (day / pot)
Here, the sinter production amount was calculated by dropping the calcined product obtained in the pot test four times from a height of 2 m and measuring the amount over 6 mm. The 6 mm under powder powdered in the dropping process causes a yield drop in the sintering process.

評価に当たっては、生産性改善率が7.5%以上の場合◎(優)、7.5%未満5%以上の場合○(良)、5%未満0%超の場合△(可)、0%以下の場合×(不可)とした。 In the evaluation, when the productivity improvement rate is 7.5% or more ◎ (excellent), less than 7.5% 5% or more ○ (good), less than 5% more than 0% △ (possible), 0 In the case of% or less, it was set as × (impossible).

検証試験より判明したことを以下に列記する。
・全ての実施例は生産性改善率が5%以上であった。特に、実施例4では、生産性改善率を8.5%とすることができた。
なお、鉄鉱石をその粒径によって3グループ以上に分けた場合も生産性改善率の値は異なるものの、実施例4と同様の傾向が認められた。
The findings from the verification test are listed below.
-In all the examples, the productivity improvement rate was 5% or more. In particular, in Example 4, the productivity improvement rate could be set to 8.5%.
Even when the iron ore was divided into 3 or more groups according to its particle size, the same tendency as in Example 4 was observed, although the value of the productivity improvement rate was different.

・複数銘柄を配合した鉄鉱石において1mmオーバーの粗粒を25質量%以上とすることにより生産性改善率を改善することができた(比較例3に対して実施例1)。 -In iron ore containing a plurality of brands, the productivity improvement rate could be improved by setting the coarse particles over 1 mm to 25% by mass or more (Example 1 with respect to Comparative Example 3).

・Wpr/Wpoを0.006以上且つ0.148以下とすることにより生産性改善率を改善することができた(比較例4に対して実施例1、2、比較例10に対して実施例3)。しかし、Wpr/Wpoが0.006相当となる微粒炭酸カルシウム粉末を添加した場合は、生産性改善率を改善することができなかった(比較例2、11)。
・Wrrs/Wpoを0.039以上とすることにより生産性改善率を改善することができた(比較例5に対して実施例1)。
-By setting Wpr / Wpo to 0.006 or more and 0.148 or less, the productivity improvement rate could be improved (Examples 1 and 2 with respect to Comparative Example 4 and Examples with respect to Comparative Example 10). 3). However, when the fine calcium carbonate powder having Wpr / Wpo equivalent to 0.006 was added, the productivity improvement rate could not be improved (Comparative Examples 2 and 11).
-The productivity improvement rate could be improved by setting Wrrs / Wpo to 0.039 or more (Example 1 with respect to Comparative Example 5).

・ドラムミキサー出側で添加する返鉱の添加位置を、ドラムミキサー全長をLとして0.5L~0.98Lとすることにより生産性改善率を改善することができた(比較例7、8に対して実施例1、3)。
・Wrre/Wpoを0.062以上とすることにより生産性改善率を改善することができた(比較例9に対して実施例1)。
・ドラムミキサー出側で添加する250μmアンダーの返鉱の割合を10質量%以下とすることにより生産性改善率を改善することができた(比較例6に対して実施例1)。
-The productivity improvement rate could be improved by setting the addition position of the return ore to be added on the exit side of the drum mixer to 0.5 L to 0.98 L with the total length of the drum mixer as L (in Comparative Examples 7 and 8). On the other hand, Examples 1 and 3).
-The productivity improvement rate could be improved by setting Wrre / Wpo to 0.062 or more (Example 1 with respect to Comparative Example 9).
-The productivity improvement rate could be improved by setting the ratio of the return ore of 250 μm under added on the outlet side of the drum mixer to 10% by mass or less (Example 1 with respect to Comparative Example 6).

実施例1~4では、ドラムミキサーで処理した造粒物を100質量%(水を除く)として、返鉱を5質量%添加した例を示したが、30質量%程度まで増加させても本発明の効果が認められた。 In Examples 1 to 4, the granulated product treated with the drum mixer was taken as 100% by mass (excluding water), and 5% by mass of the return ore was added. The effect of the invention was recognized.

10:ドラムミキサー、11:高速撹拌機、14、14a、15:鉄鉱石、16:微粉返鉱(250μmアンダーの返鉱)、17、18:粗粒返鉱(1mmオーバーの返鉱)、20:核粒子、21:付着微粉、22:中間未造粒微粉、23:最終未造粒微粉、24、24a:P型粒子 10: Drum mixer, 11: High-speed stirrer, 14, 14a, 15: Iron ore, 16: Fine particle return (250 μm under return), 17, 18: Coarse grain return (1 mm over return), 20 : Nuclear particles, 21: Adhering fine powder, 22: Intermediate ungranulated fine powder, 23: Final ungranulated fine powder, 24, 24a: P-type particles

Claims (2)

複数銘柄の鉄鉱石を配合して、250μmアンダーが20質量%以上、1mmオーバーが25質量%以上65質量%以下としたものと副原料とを含む配合原料をドラムミキサーを用いて造粒処理する際に200℃以下の返鉱を添加する方法であって、
前記返鉱は、前記ドラムミキサーの入側と出側の双方で添加することとし、
250μmアンダーの前記鉄鉱石の質量をWpo、前記ドラムミキサーの入側で添加する250μmアンダーの返鉱の質量をWpr、前記ドラムミキサーの入側で添加する1mmオーバーの返鉱の質量をWrrs、前記ドラムミキサーの出側で添加する1mmオーバーの返鉱の質量をWrre、前記ドラムミキサーの全長をLとすると、
前記ドラムミキサーの入側で添加する返鉱は、0.148≧Wpr/Wpo≧0.006、且つWrrs/Wpo≧0.039とし、
前記ドラムミキサーの出側で添加する返鉱は、250μmアンダーが10質量%以下、且つWrre/Wpo≧0.062とし、0.5L~0.98Lの範囲で添加することを特徴とする配合原料の造粒方法。
A drum mixer is used to granulate a compounded raw material containing 20% by mass or more of 250 μm under, 25% by mass or more and 65% by mass or less of 1 mm over, and an auxiliary material by blending multiple brands of iron ore. It is a method of adding return ore at 200 ° C or lower.
The return ore shall be added on both the entry side and the exit side of the drum mixer.
The mass of the iron ore under 250 μm is Wpo, the mass of the return ore of 250 μm under added on the inlet side of the drum mixer is Wpr, and the mass of the return ore of 1 mm over added on the inlet side of the drum mixer is Wrrs. Assuming that the mass of the return ore of 1 mm over added on the outlet side of the drum mixer is Wrre and the total length of the drum mixer is L,
The return ore added on the inlet side of the drum mixer is 0.148 ≧ Wpr / Wpo ≧ 0.006 and Wrs / Wpo ≧ 0.039.
The return ore added on the outlet side of the drum mixer is a compounding raw material characterized in that 250 μm under is 10% by mass or less, Wrre / Wpo ≧ 0.062, and is added in the range of 0.5 L to 0.98 L. Granulation method.
請求項1記載の配合原料の造粒方法において、前記鉄鉱石をその粒径によって2以上のグループに分割し、平均粒径が最も小さい前記グループの鉄鉱石に、生石灰及び/又は消石灰からなるバインダーを、生石灰換算で該グループの鉄鉱石全量の外掛けで0.5質量%以上6質量%以下の量加え、高速撹拌機に装入した後に前記ドラムミキサーの入側に装入することを特徴とする配合原料の造粒方法。 In the method for granulating a compounded raw material according to claim 1, the iron ore is divided into two or more groups according to its particle size, and the iron ore of the group having the smallest average particle size is combined with a binder composed of fresh lime and / or slaked lime. Is added in an amount of 0.5% by mass or more and 6% by mass or less in terms of the total amount of iron ore of the group in terms of fresh lime, and is charged into the high-speed stirrer and then charged into the inlet side of the drum mixer. Granulation method of compounded raw materials.
JP2018159228A 2018-08-28 2018-08-28 Granulation method for compounded raw materials Active JP7067372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018159228A JP7067372B2 (en) 2018-08-28 2018-08-28 Granulation method for compounded raw materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018159228A JP7067372B2 (en) 2018-08-28 2018-08-28 Granulation method for compounded raw materials

Publications (2)

Publication Number Publication Date
JP2020033582A JP2020033582A (en) 2020-03-05
JP7067372B2 true JP7067372B2 (en) 2022-05-16

Family

ID=69669117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018159228A Active JP7067372B2 (en) 2018-08-28 2018-08-28 Granulation method for compounded raw materials

Country Status (1)

Country Link
JP (1) JP7067372B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007284744A5 (en) 2006-04-17 2008-06-26
JP2008261016A (en) 2007-04-12 2008-10-30 Nippon Steel Corp Method for manufacturing sintered ore
JP2009052087A (en) 2007-08-27 2009-03-12 Nippon Steel Corp Method of pretreating raw material for sintering
JP2009097027A (en) 2007-10-15 2009-05-07 Sumitomo Metal Ind Ltd Method for producing sintered ore
JP2014051694A (en) 2012-09-05 2014-03-20 Nippon Steel & Sumitomo Metal Method of adding condensation material into sintering raw material

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2626316B2 (en) * 1991-06-26 1997-07-02 住友金属工業株式会社 Sinter production method
JPH0762456A (en) * 1993-08-26 1995-03-07 Nkk Corp Production of sintered ore
JP5194378B2 (en) 2006-04-17 2013-05-08 新日鐵住金株式会社 Method for producing sintered ore

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007284744A5 (en) 2006-04-17 2008-06-26
JP2008261016A (en) 2007-04-12 2008-10-30 Nippon Steel Corp Method for manufacturing sintered ore
JP2009052087A (en) 2007-08-27 2009-03-12 Nippon Steel Corp Method of pretreating raw material for sintering
JP2009097027A (en) 2007-10-15 2009-05-07 Sumitomo Metal Ind Ltd Method for producing sintered ore
JP2014051694A (en) 2012-09-05 2014-03-20 Nippon Steel & Sumitomo Metal Method of adding condensation material into sintering raw material

Also Published As

Publication number Publication date
JP2020033582A (en) 2020-03-05

Similar Documents

Publication Publication Date Title
CN108699623B (en) Method for producing sintered ore
JP5375742B2 (en) Granulation method of sintering raw material
JP5315659B2 (en) Method for producing sintered ore
CN106536765A (en) Method for producing pellets and method for producing iron-nickel alloy
RU2675883C2 (en) Method and device for producing granulates
JP7110830B2 (en) Granulation method of mixed raw materials
JP7067372B2 (en) Granulation method for compounded raw materials
CN110527826B (en) Sintering method for inhibiting perovskite generation in sintering process
JP6459724B2 (en) Method for producing sintered ore
JP5224917B6 (en) Manufacturing method of sintered raw material
JP6369113B2 (en) Method for producing sintered ore
JP5910831B2 (en) Method for producing granulated raw material for sintering
JP4261672B2 (en) Granulation method of sintering raw material
JP6489092B2 (en) Sinter ore manufacturing method and sintered ore manufacturing equipment line
JP5058715B2 (en) Pretreatment method for sintering raw materials
JP4786441B2 (en) Pretreatment method of sintering raw material
JP6323297B2 (en) Pretreatment method of sintering raw materials
WO2015152112A1 (en) Device for manufacturing pelletized sinter feed
JPH0778256B2 (en) Manufacturing method of mini pellet for sintering
JP3476284B2 (en) Sinter production method
JP3675105B2 (en) Sintering raw material processing method
JP7303442B2 (en) Pretreatment method for raw materials for sintering
JPH0796688B2 (en) Pretreatment method for sintering raw material
JP4630091B2 (en) Pretreatment method of sintering raw material
JP7024649B2 (en) Granulation method of raw material for sintering

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220411

R151 Written notification of patent or utility model registration

Ref document number: 7067372

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151