JP2009052087A - Method of pretreating raw material for sintering - Google Patents

Method of pretreating raw material for sintering Download PDF

Info

Publication number
JP2009052087A
JP2009052087A JP2007219859A JP2007219859A JP2009052087A JP 2009052087 A JP2009052087 A JP 2009052087A JP 2007219859 A JP2007219859 A JP 2007219859A JP 2007219859 A JP2007219859 A JP 2007219859A JP 2009052087 A JP2009052087 A JP 2009052087A
Authority
JP
Japan
Prior art keywords
granulated product
raw material
mass
sintering
fine powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007219859A
Other languages
Japanese (ja)
Other versions
JP5058715B2 (en
Inventor
Kenichi Yatsugayo
健一 八ケ代
Junji Osada
淳治 長田
Tsuneo Ikeda
恒男 池田
Shunji Kasama
俊次 笠間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2007219859A priority Critical patent/JP5058715B2/en
Publication of JP2009052087A publication Critical patent/JP2009052087A/en
Application granted granted Critical
Publication of JP5058715B2 publication Critical patent/JP5058715B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of pretreating a raw material for sintering, by which an iron ore raw material containing fine powder in an amount larger than before can be dealt with and pellets having excellent air permeability and oxidative heat generation characteristics can be manufactured and sinterng productivity can be improved. <P>SOLUTION: The method of pretreating a raw material for sintering comprises: a first pelletizer 10 where two or more iron ores each containing coarse grains and fine powders are used as a raw material and the fine powders are allowed to adhere to the coarse grains to be core grains to prepare pellets S; and a second pelletizer 11 where pelletization is performed using fine powders alone or using mainly fine powders in the presence of water and binder to prepare pellets P. These pellets S and pellets P are used in the pretreatment method. After a moisture value when pelletizing the pellets S is regulated to 7 to 10 mass%, the pellets S and the pellets P after drying treatment are supplied into a sintering machine 14. At that time, the pellets P after the drying treatment, having the following moisture value, are used: a moisture value capable of reducing the average moisture value of the pellets consisting of the pellets S and the pellets P, by >0 to 3 mass% as compared with the moisture value of the pellets S alone. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、焼結用原料の事前処理方法に関する。 The present invention relates to a pretreatment method for a raw material for sintering.

近年、鉄鉱石の劣質化に伴い、微粉を多く含む鉱石が増加している。代表的な鉱石としては、結晶水を3質量%以上含む褐鉄鉱(高結晶水鉱石ともいう)が挙げられるが、これに限らず、赤鉄鉱でも、微粉を多く含む鉱石として、例えば、ヤンピー鉱石、リオドセ鉱石、及びデンポー鉱石などがある。
微粉を多量に含むこれらの鉱石をそのまま焼結機に装入すると、通気性が悪くなって焼結鉱の生産性を阻害するため、造粒水分量を高めて造粒処理を行うことで、鉱石の造粒性を改善することが指向されている。
In recent years, with the deterioration of iron ore, ores containing much fine powder are increasing. A typical ore includes limonite containing 3% by mass or more of crystal water (also referred to as high crystal water ore), but is not limited to this, and hematite is also an ore containing a lot of fine powder. There are riodose ore and denpo ore.
When these ores containing a large amount of fine powder are charged into the sintering machine as they are, the air permeability is deteriorated and the productivity of the sintered ore is hindered. It is directed to improve the granulation of ores.

具体的な方法として、例えば、図6に示すように、ドラムミキサー90によって原料を転動させ、核となる粒子の周囲に微粉を付着させ、造粒物の微粉の付着厚みを、水添加装置91から添加される水分量によって調整する方法がある。しかし、この造粒物は、ベルトコンベア92で搬送され、供給装置93を介して焼結機94に直送されるため、造粒物を造粒する際の水分値を増加させると、焼結機94に多量の水分が持ち込まれることとなり、焼結機94での焼結鉱の生産性を著しく阻害することとなる。
特に、高結晶水鉱石は、表層部に微細な気孔が多数あいているため、通常の造粒処理で使用する水分量では造粒しづらく、水分量を高めに設定する必要がある。
As a specific method, for example, as shown in FIG. 6, the raw material is rolled by a drum mixer 90, fine powder is adhered around the core particles, and the adhesion thickness of the granulated fine powder is determined by a water addition device. There is a method of adjusting the amount of water added from 91. However, since this granulated material is conveyed by the belt conveyor 92 and directly sent to the sintering machine 94 via the supply device 93, if the moisture value at the time of granulating the granulated material is increased, the sintering machine As a result, a large amount of moisture is brought into 94, which significantly impairs the productivity of sintered ore in the sintering machine 94.
In particular, since the high crystal water ore has many fine pores in the surface layer portion, it is difficult to granulate with the amount of water used in normal granulation treatment, and the amount of water needs to be set higher.

しかし、過剰な水分を有する造粒物を焼結機へ装入した場合には、焼結過程において造粒物が焼成する前に、造粒物の温度が上昇して水分が蒸発し造粒物が壊れ易く、また造粒物の未焼成部へ移動してくる蒸気が凝縮するため、焼結機内の通気性が阻害される問題がある。更に、凝縮した多量の水分は、焼結過程で発生する例えばSOxガスの吸引ダクトへ流れ込むが、このSOxガスが水分に溶け込み、排ガス処理系の設備腐食などの問題を引き起こす。
そこで、鉱石の造粒強化と水分抑制の両立を図る技術が必要となってきた。
例えば、特許文献1には、一旦造粒した原料を焼結機に装入するまでの間に、ガス乾燥する技術が開示されている。また、特許文献2には、微粉原料を主体とする原料の一部を選別し造粒して乾燥し、他の造粒物と共に焼結機に装入する技術が開示されている。
However, when a granulated product having excessive moisture is charged into the sintering machine, the granulated product is heated and the moisture is evaporated before the granulated product is fired in the sintering process. Since the product is easily broken and the vapor moving to the unfired part of the granulated product is condensed, there is a problem that the air permeability in the sintering machine is hindered. Furthermore, a large amount of condensed water flows into, for example, a SOx gas suction duct generated during the sintering process, but this SOx gas dissolves in the water and causes problems such as equipment corrosion of the exhaust gas treatment system.
Therefore, a technique for achieving both the strengthening of the ore granulation and the moisture suppression has been required.
For example, Patent Document 1 discloses a technique of gas drying until a raw material once granulated is charged into a sintering machine. Patent Document 2 discloses a technique in which a part of a raw material mainly composed of a fine powder raw material is selected, granulated, dried, and charged into a sintering machine together with other granulated products.

特開2006−336064号公報JP 2006-336064 A 特開2007−77512号公報JP 2007-77512 A

しかしながら、前記従来の焼結用原料の事前処理方法には、未だ解決すべき以下のような問題があった。
特許文献1に開示された方法は、原料全体を7.5〜9.0質量%の水分で造粒した後、焼結機へ装入するまでの間に乾燥して、水分を0.2〜2質量%減少させる方法である。
しかし、この方法は、水分のみによって核粒子の周囲に微粉を付着させる造粒物(いわゆるS型造粒物)の擬似粒子を対象とし、これを熱風等により直接乾燥する方法であることから、造粒物の崩壊が生じ易く、また乾燥による水分の低減代が0.2〜2質量%に留まるなど、その効果が不十分である。
However, the conventional pretreatment method for sintering raw materials still has the following problems to be solved.
In the method disclosed in Patent Document 1, after the whole raw material is granulated with moisture of 7.5 to 9.0% by mass, the raw material is dried before being charged into the sintering machine, and the moisture is reduced to 0.2. This is a method of decreasing by ˜2% by mass.
However, since this method is intended for pseudo particles of a granulated product (so-called S-type granulated product) that attaches fine powder around the core particles only with moisture, and this is a method of directly drying with hot air or the like, The effect of the granulated material is insufficient, such as the amount of moisture reduction due to drying remains at 0.2 to 2% by mass.

また、特許文献2に開示された方法は、核粒子に微粉を付着させて造粒物S(即ち、S型造粒物)を製造する第1の造粒装置と、微粉主体の原料を抽出分離し、破砕、混練、造粒、及び乾燥の各種処理を施して、強固な造粒物P(即ち、P型造粒物)とする第2の造粒装置を備え、これら造粒物Sと造粒物Pを合わせて焼結機に装入することで、通気を阻害する微粉量の低減、及びカーボンの酸化発熱性を阻害する付着微粉厚みの低減により生産性向上を図る方法である。
しかし、第1の造粒装置における造粒用水分の適正化、及び乾燥した造粒物を活用した最終の装入原料の水分適正化については記載がなく、更なる生産性向上の余地が残っている。
In addition, the method disclosed in Patent Document 2 extracts a first granulator for producing a granulated product S (ie, an S-type granulated product) by attaching fine powder to core particles, and a raw material mainly composed of fine powder. It is provided with a second granulating apparatus that separates, crushes, kneads, granulates, and performs various treatments such as granulation and drying to form a strong granulated product P (that is, P-type granulated product). And agglomerated powder P are charged together in a sintering machine to reduce the amount of fine powder that inhibits aeration and to reduce the thickness of adhering fine powder that inhibits oxidation heat generation of carbon. .
However, there is no description about the optimization of moisture for granulation in the first granulator and the moisture optimization of the final charging raw material using the dried granulated material, and there is room for further improvement in productivity. ing.

本発明はかかる事情に鑑みてなされたもので、従来よりも多量の微粉を含む鉄鉱石の原料に対応可能で、通気性と酸化発熱性に優れた造粒物を製造し、焼結生産性を向上可能な焼結用原料の事前処理方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and can be used for iron ore raw materials containing a larger amount of fine powder than before, and can produce a granulated product excellent in air permeability and oxidation heat generation, and can be sintered. It is an object of the present invention to provide a pretreatment method of a raw material for sintering that can improve the process.

前記目的に沿う本発明に係る焼結用原料の事前処理方法は、それぞれ粗粒及び微粉を含む2種以上の鉄鉱石を原料とし、核粒子となる粗粒に微粉を付着させて造粒物Sを製造する第1の造粒装置と、微粉のみで又は微粉を主体として水とバインダーの存在下で造粒して造粒物Pを製造する第2の造粒装置を備え、前記造粒物S及び前記造粒物Pを用いる焼結用原料の事前処理方法であって、
前記造粒物Sを造粒する際の水分値を7質量%以上10質量%以下とした後、該造粒物Sと乾燥処理後の前記造粒物Pを焼結機に供給するに際し、該造粒物Sと該造粒物Pを合わせた造粒物の平均水分値を、前記造粒物Sのみの水分値よりも0を超え3質量%以下低減させる水分値を有する乾燥処理後の前記造粒物Pを用いる。
The sintering raw material pretreatment method according to the present invention that meets the above-described object is a granulated product obtained by using two or more types of iron ore containing coarse particles and fine powder as raw materials, and attaching fine powder to coarse particles that become core particles. A first granulator for producing S, and a second granulator for producing a granulated product P by granulating in the presence of water and a binder consisting mainly of fine powder or mainly in the form of fine powder; It is a pretreatment method of a raw material for sintering using the product S and the granulated product P,
After the moisture value when granulating the granulated product S is 7% by mass or more and 10% by mass or less, when supplying the granulated product S and the granulated product P after the drying treatment to a sintering machine, After the drying process having a moisture value that reduces the average moisture value of the granulated product obtained by combining the granulated product S and the granulated product P by more than 0 and 3% by mass or less than the moisture value of the granulated product S alone. The granulated product P is used.

本発明に係る焼結用原料の事前処理方法において、前記第1の造粒装置に供給する前記鉄鉱石は、500μmアンダーの微粉の質量割合が5質量%以上40質量%以下であることが好ましい。
本発明に係る焼結用原料の事前処理方法において、前記第1の造粒装置に供給する予定の前記鉄鉱石から500μmアンダーの微粉を含む鉄鉱石を篩分けで分離し、得られた篩下を前記第2の造粒装置に供給することが好ましい。
本発明に係る焼結用原料の事前処理方法において、前記第2の造粒装置に供給する予定の前記鉄鉱石から500μmオーバーの粗粒を含む鉄鉱石を篩分けで分離し、得られた篩上を前記第1の造粒装置に供給することが好ましい。
In the pretreatment method of the raw material for sintering according to the present invention, the iron ore supplied to the first granulator preferably has a mass ratio of fine powder of 500 μm under 5 to 40 mass%. .
In the pretreatment method of the raw material for sintering according to the present invention, the iron ore containing fine powder of 500 μm or less is separated from the iron ore to be supplied to the first granulator by sieving, and the obtained sieving Is preferably supplied to the second granulator.
In the pretreatment method of the raw material for sintering according to the present invention, the iron ore containing coarse particles over 500 μm is separated from the iron ore to be supplied to the second granulator by sieving, and the obtained sieve The top is preferably supplied to the first granulator.

本発明に係る焼結用原料の事前処理方法において、乾燥処理後の前記造粒物Pの水分値は、0又は0を超え5質量%以下であることが好ましい。
本発明に係る焼結用原料の事前処理方法において、前記原料の一部又は全部に、結晶水含有率が3質量%以上の高結晶水鉱石を用いることが好ましい。
In the pretreatment method of the raw material for sintering according to the present invention, the moisture value of the granulated product P after the drying treatment is preferably 0 or more than 0 and 5% by mass or less.
In the pretreatment method for a raw material for sintering according to the present invention, it is preferable to use a high crystal water ore having a crystal water content of 3% by mass or more for a part or all of the raw material.

請求項1〜6記載の焼結用原料の事前処理方法は、造粒物Sを造粒する際の水分値を、従来よりも高めの7質量%以上10質量%以下に設定するので、擬似粒子に取り込まれにくい500μmアンダーの粒子(微粉)を、擬似粒子中に極力取り込むことができる。これにより、造粒物Sの焼成時に通気を阻害する微粉が一層低減され、焼結鉱の生産性が向上する。
また、微粉のみ又は微粉を主体とする造粒物Pは、水とバインダーにより強固に造粒されるため、その後の乾燥処理により、水分値を自在に調整することが可能である。これにより、造粒物Sと乾燥処理後の造粒物Pを合わせた際に、その平均水分値を造粒物Sのみの水分値より低減することが可能となり、特に0を超え3質量%以下低減させる水分値を有する乾燥処理後の造粒物Pを用いることで、より一層焼結生産性を改善できる。
このように、造粒物Sの水分値の低減は、造粒物Sの水分を造粒物Pが吸収することにより行われるため、造粒物Sに熱風を直接吹き付ける乾燥方法に比べ、造粒物Sの崩壊を極めて抑制することが可能であり、しかも造粒物Sの水分値の低減を迅速に行え、焼結生産性の向上に効果的である。
更に、造粒物Sに対して造粒物Pを直接接触させ、造粒物Sの水分を造粒物Pに吸収させる本発明は、造粒物Sを高温雰囲気下で熱風を直接吹き付けない乾燥方法と比べても、造粒物Sの水分値を短時間で低減できる。
Since the pretreatment method of the raw material for sintering according to claims 1 to 6 sets the moisture value when granulating the granulated product S to 7% by mass or more and 10% by mass or less, which is higher than before, it is simulated. Particles (fine powder) under 500 μm that are difficult to be taken into the particles can be taken into the pseudo particles as much as possible. Thereby, the fine powder which inhibits ventilation | gas_flowing at the time of baking of the granulated material S is further reduced, and the productivity of a sintered ore improves.
Moreover, since the granulated material P which has only a fine powder or mainly a fine powder is strongly granulated with water and a binder, it is possible to adjust a moisture value freely by subsequent drying treatment. As a result, when the granulated product S and the granulated product P after the drying treatment are combined, it becomes possible to reduce the average moisture value from the moisture value of the granulated product S alone, particularly exceeding 0 and 3% by mass. Sintering productivity can be further improved by using the granulated product P after the drying process having a moisture value to be reduced.
As described above, the moisture value of the granulated product S is reduced by the granulated product P absorbing the moisture of the granulated product S. Therefore, compared with the drying method in which hot air is directly blown to the granulated product S, The disintegration of the granule S can be extremely suppressed, and the moisture value of the granule S can be quickly reduced, which is effective for improving the sintering productivity.
Furthermore, the present invention in which the granulated product P is directly brought into contact with the granulated product S, and the moisture of the granulated product S is absorbed by the granulated product P is not directly blown with hot air in a high-temperature atmosphere. Compared with the drying method, the moisture value of the granulated product S can be reduced in a short time.

特に、請求項2記載の焼結用原料の事前処理方法は、第1の造粒装置に供給する鉄鉱石の500μmアンダーの微粉の質量割合を5質量%以上40質量%以下にするので、造粒されない微粉量を低減しながら、核粒子表面への微粉の付着厚みが過剰に厚くなることを防止できる。これにより、焼結生産性を更に向上できる。
請求項3記載の焼結用原料の事前処理方法は、第1の造粒装置に供給する予定の鉄鉱石から微粉を含む鉄鉱石を篩分けて分離するので、造粒物Sの微粉付着厚さを最適化でき、焼結生産性を向上できる。また、分離された篩下を第2の造粒装置に供給するので、これを造粒物Pを製造するための原料として有効利用できる。
請求項4記載の焼結用原料の事前処理方法は、第2の造粒装置に供給する予定の鉄鉱石から粗粒を含む鉄鉱石を篩分けて分離するので、造粒物Pの粒度調整を最適化でき、焼結生産性を向上できる。また、分離された篩上を第1の造粒装置に供給するので、これを造粒物Sを製造するための原料として有効利用できる。
In particular, the pretreatment method of the raw material for sintering according to claim 2 makes the mass ratio of the fine powder of 500 μm or less of iron ore supplied to the first granulator 5 to 40% by mass. While reducing the amount of fine powder that is not granulated, it is possible to prevent the fine powder from adhering to the surface of the core particle from becoming excessively thick. Thereby, sintering productivity can further be improved.
The sintering raw material pretreatment method according to claim 3 separates the iron ore containing fine powder from the iron ore to be supplied to the first granulation apparatus by sieving, so the fine powder adhesion thickness of the granulated product S Can be optimized, and sintering productivity can be improved. Moreover, since the separated sieve is supplied to the second granulating apparatus, it can be effectively used as a raw material for producing the granulated product P.
The pretreatment method of the raw material for sintering according to claim 4 sieving and separating the iron ore containing coarse particles from the iron ore to be supplied to the second granulating apparatus, so that the particle size adjustment of the granulated product P Can be optimized, and sintering productivity can be improved. Moreover, since the separated sieve top is supplied to the first granulator, it can be effectively used as a raw material for producing the granulated product S.

請求項5記載の焼結用原料の事前処理方法は、乾燥処理後の造粒物Pの水分値を、0又は0を超え5質量%以下とするので、造粒物Sの水分値を、通常よりも高めに設定した場合でも、過剰となる造粒物Sの水分を造粒物Pが効率よく吸収できる。
請求項6記載の焼結用原料の事前処理方法は、原料の一部又は全部に、結晶水含有率が3質量%以上の高結晶水鉱石を用いるので、表層部に微細な気孔があり、通常使用する水分値では造粒しづらく、使用する水分値を高めに設定する必要がある高結晶水鉱石を使用する場合においても、造粒物Sの過剰な水分を造粒物Pが吸収できる。このため、本発明の効果が、より顕著に現れる。
The pretreatment method of the raw material for sintering according to claim 5 is such that the moisture value of the granulated product P after the drying treatment is 0 or more than 0 and 5% by mass or less. Even when it is set higher than usual, the granulated product P can efficiently absorb excess moisture of the granulated product S.
The pretreatment method of the raw material for sintering according to claim 6 uses a high crystal water ore having a crystal water content of 3% by mass or more for a part or all of the raw material, so that there are fine pores in the surface layer portion, Granulation P can absorb excessive moisture in granulated product S even when using high crystal water ore, which is difficult to granulate with the moisture value normally used, and the moisture value to be used needs to be set higher. . For this reason, the effect of this invention appears more notably.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
ここで、図1は本発明の一実施の形態に係る焼結用原料の事前処理方法の説明図、図2は第1の造粒装置で製造した造粒物Sの造粒用水分量と造粒後に残存する500μmアンダーの微粉割合との関係を示すグラフ、図3は同造粒物Sの造粒用水分量と核粒子周囲の微粉付着厚みとの関係を示すグラフ、図4は同造粒物Sの造粒用水分量と生産性指数との関係を示すグラフ、図5は水分値と500μmアンダーの微粉割合との関係を示すグラフである。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
Here, FIG. 1 is an explanatory view of a pretreatment method of a sintering raw material according to an embodiment of the present invention, and FIG. 2 is a granulation moisture content and granulation of the granulated product S manufactured by the first granulation apparatus. FIG. 3 is a graph showing the relationship between the proportion of fine powder of 500 μm under remaining after the granulation, FIG. 3 is a graph showing the relationship between the amount of water for granulation of the granulated product S and the fine powder adhesion thickness around the core particles, and FIG. FIG. 5 is a graph showing the relationship between the moisture content for granulation of the product S and the productivity index, and FIG. 5 is a graph showing the relationship between the moisture value and the proportion of fine powder under 500 μm.

図1に示すように、本発明の一実施の形態に係る焼結用原料の事前処理方法は、それぞれ粗粒及び微粉を含む2種以上の鉄鉱石を原料とし、核粒子となる粗粒に微粉を付着させて造粒物S(以下、S型造粒物ともいう)を製造するS型ドラムミキサー(第1の造粒装置の一例)10と、微粉のみで又は微粉を主体として水とバインダーの存在下で造粒して造粒物P(以下、P型造粒物ともいう)を製造するP型ドラムミキサー(第2の造粒装置の一例)11を備え、造粒物S及び造粒物Pを用いて焼結する場合の事前処理の方法である。なお、微粉粒子の質量%の測定に際しては、レーザー回折散乱法の測定機器(日機装株式会社製 MICROTRAC FRA型、測定範囲:0.1〜700μm)を用いている。以下、詳しく説明する。 As shown in FIG. 1, the pre-processing method of the raw material for sintering which concerns on one embodiment of this invention uses the 2 or more types of iron ore each containing a coarse grain and a fine powder as a raw material, and becomes the coarse grain used as a core particle. An S-type drum mixer (an example of a first granulating device) 10 for producing a granulated product S (hereinafter also referred to as S-type granulated product) by attaching fine powder, and water alone with fine powder or mainly fine powder. A P-type drum mixer (an example of a second granulating apparatus) 11 for producing a granulated product P (hereinafter also referred to as a P-type granulated product) by granulation in the presence of a binder is provided. This is a pretreatment method in the case of sintering using the granulated material P. In measuring the mass% of the fine powder particles, a laser diffraction scattering measuring instrument (MICROTRAC FRA type manufactured by Nikkiso Co., Ltd., measuring range: 0.1 to 700 μm) is used. This will be described in detail below.

原料に使用する鉄鉱石は、例えば、結晶水を3質量%以上含む褐鉄鉱(Fe・nHO)、及び微粉を多く含む赤鉄鉱(Fe)等がある。なお、鉄鉱石は、その一部に褐鉄鉱を使用するが、全てを褐鉄鉱としてもよい。
ここで、褐鉄鉱としては、例えば、マラマンバ鉱石(産地銘柄:ウエストアンジェラス)、豪州ピソライト鉱石(産地銘柄:ヤンディ、ローブリバー)、及び高燐ブロックマン鉱石等の高結晶水鉱石がある。また、赤鉄鉱としては、例えば、ヤンピー鉱石、リオドセ鉱石、及びデンポー鉱石等がある。
また、鉄鉱石はこれに限定されるものではなく、粗粒と微粉を含む鉄鉱石であれば、他の鉄鉱石として磁鉄鉱(Fe)を使用することも可能である。また、これらの鉄鉱石に、他の鉄源、例えば、製鉄所内で発生する鉄源等を加えることで、原料を構成することも、勿論可能である。
この原料は、例えば、10mm程度の粗粒から250μm以下の微粉までを有している。
Examples of the iron ore used as a raw material include limonite (Fe 2 O 3 .nH 2 O) containing 3% by mass or more of crystal water, hematite (Fe 2 O 3 ) containing a lot of fine powders, and the like. In addition, although iron ore uses limonite for a part, it is good also as all limonite.
Here, examples of limonite include high crystal water ores such as maramamba ore (local brand: West Angelus), Australian pisolite ore (local brand: Yandi, Loeb River), and high phosphorus block man ore. In addition, examples of hematite include Yanpy ore, riodose ore, and denpo ore.
In addition, the iron ore is not limited to this, and magnetite (Fe 3 O 4 ) can be used as another iron ore as long as the iron ore contains coarse particles and fine powder. Moreover, it is of course possible to construct the raw material by adding other iron sources, for example, iron sources generated in the steelworks, to these iron ores.
This raw material has, for example, coarse particles of about 10 mm to fine powder of 250 μm or less.

まず、上記した原料を、篩選別機12により篩分ける。
この篩分けは、S型ドラムミキサー10に供給する鉄鉱石の500μmアンダーの微粉の質量割合が5質量%以上40質量%以下(好ましくは、30質量%以下)となるように行うことが好ましい。この方法としては、以下に示す方法がある。
(1)S型ドラムミキサー10に供給する予定の鉄鉱石から、500μmアンダーの微粉を含む鉄鉱石を篩分けで分離し、得られた篩下をP型ドラムミキサー11に供給する。このとき、篩分けを実施しないで微粉を含む鉄鉱石を、P型ドラムミキサー11へ供給する原料の一部に使用してもよい。なお、この篩分けは、例えば、0.5mm以上3mm以下の範囲のしきい値で篩分けることが好ましい。
(2)P型ドラムミキサー11に供給する予定の鉄鉱石から、500μmオーバーの粗粒を含む鉄鉱石を篩分けで分離し、得られた篩上をS型ドラムミキサー10に供給する。このとき、篩分けを実施しないで粗粒を含む鉄鉱石を、S型ドラムミキサー10へ供給する原料の一部に使用してもよい。なお、この篩分けは、1mm以上10mm以下の範囲のしきい値で篩分けることが好ましい。
First, the above-described raw materials are sieved by the sieve sorter 12.
The sieving is preferably performed so that the mass ratio of the fine iron ore powder of 500 μm or less supplied to the S-type drum mixer 10 is 5% by mass or more and 40% by mass or less (preferably 30% by mass or less). As this method, there are the following methods.
(1) From the iron ore to be supplied to the S-type drum mixer 10, iron ore containing fine powder of 500 μm or less is separated by sieving, and the obtained sieve is supplied to the P-type drum mixer 11. At this time, iron ore containing fine powder without sieving may be used as a part of the raw material supplied to the P-type drum mixer 11. The sieving is preferably performed with a threshold value in the range of 0.5 mm to 3 mm, for example.
(2) From the iron ore to be supplied to the P-type drum mixer 11, iron ore containing coarse particles over 500 μm is separated by sieving, and the obtained sieve top is supplied to the S-type drum mixer 10. At this time, iron ore containing coarse particles may be used as a part of the raw material supplied to the S-type drum mixer 10 without performing sieving. The sieving is preferably performed with a threshold value in the range of 1 mm to 10 mm.

上記した(1)、(2)の方法は、いずれも篩選別機12を使用しているが、篩選別機12を使用することなく、鉄鉱石をS型及びP型ドラムミキサー10、11にそれぞれ供給することもできる。
この場合、500μmアンダーの微粉の割合が40質量%以下の鉄鉱石を、S型ドラムミキサーに供給し、微粉の割合が高い鉄鉱石を、P型ドラムミキサーに供給する。
なお、上記したS型ドラムミキサーとP型ドラムミキサーの代わりに、例えば、アイリッヒミキサー、ディスクペレタイザー、又はプロシャミキサー等を使用してもよい。
以上に示した方法を使用し、S型造粒工程で、S型ドラムミキサー10に供給された原料Sを用いて造粒物Sを製造し、P型造粒工程で、P型ドラムミキサー11に供給された原料Pを用いて造粒物Pを製造し、この造粒物Sと造粒物Pを、供給装置13を介して焼結機14に供給する。
In the methods (1) and (2) described above, the sieve sorter 12 is used, but without using the sieve sorter 12, iron ore is transferred to the S-type and P-type drum mixers 10 and 11. Each can also be supplied.
In this case, iron ore having a fine powder ratio of less than 500 μm is supplied to the S-type drum mixer, and iron ore having a high fine powder ratio is supplied to the P-type drum mixer.
In place of the above-described S-type drum mixer and P-type drum mixer, for example, an Eirich mixer, a disk pelletizer, or a professional mixer may be used.
Using the method shown above, the granulated product S is manufactured using the raw material S supplied to the S-type drum mixer 10 in the S-type granulation step, and the P-type drum mixer 11 in the P-type granulation step. The granulated product P is manufactured using the raw material P supplied to the slag, and the granulated product S and the granulated product P are supplied to the sintering machine 14 via the supply device 13.

上記した造粒物Sは、S型ドラムミキサー10に、鉄鉱石、凝結材であるカーボン、及び石灰石(バインダー)を有する原料Sを供給し、更に水分添加装置15から水分を供給して、核粒子となる粗粒の鉄鉱石の周囲に、微粉の鉄鉱石、カーボン、及び石灰石を付着させて製造する。
この造粒物Sは、造粒が終了した後、ベルトコンベア(搬送手段の一例)16で搬送されて焼結機14に直送されるため、造粒用水分値を増加させると、焼結機14に多量の水分が持ち込まれることとなり、焼結機14での焼結鉱の生産性を著しく阻害することとなる。
そこで、造粒物Sを造粒する際の水分値(以下、造粒用水分ともいう)を、7質量%以上10質量%とする。
The granulated material S described above supplies the raw material S having iron ore, carbon as a coagulant, and limestone (binder) to the S-type drum mixer 10, and further supplies moisture from the moisture adding device 15, It is produced by attaching fine iron ore, carbon, and limestone around the coarse iron ore as particles.
Since this granulated product S is conveyed by a belt conveyor (an example of a conveying means) 16 and directly sent to the sintering machine 14 after the granulation is completed, if the granulation moisture value is increased, the sintering machine A large amount of moisture is brought into 14, and the productivity of sintered ore in the sintering machine 14 is significantly hindered.
Therefore, the moisture value when the granulated product S is granulated (hereinafter also referred to as moisture for granulation) is 7 mass% or more and 10 mass%.

なお、造粒物Sを造粒する際の水分値(図1中の点P1での水分値)は、S型ドラムミキサー10に供給された全質量を100質量%とし、このうちの原料S(即ち、鉄鉱石、カーボン、及び石灰石)に初期から含まれる水分と、造粒のために水分添加装置15から添加した水分との合計質量が占める割合で示される。
ここで、S型ドラムミキサー10に供給された全質量とは、S型ドラムミキサー10に供給される原料Sと、この原料Sに初期から含まれる水分と、造粒のために水分添加装置15から添加した水分(液体バインダーを使用する場合はその液体バインダーを含める)である。また、上記した水分の合計質量からは、鉄鉱石の結晶水と、液体バインダーを使用する場合はその水分量が除かれている。
In addition, the moisture value at the time of granulating the granulated material S (the moisture value at the point P1 in FIG. 1) is 100% by mass based on the total mass supplied to the S-type drum mixer 10, and the raw material S It is indicated by the ratio of the total mass of moisture contained in (that is, iron ore, carbon, and limestone) from the beginning and moisture added from the moisture addition device 15 for granulation.
Here, the total mass supplied to the S-type drum mixer 10 is the raw material S supplied to the S-type drum mixer 10, the moisture contained in the raw material S from the beginning, and the moisture adding device 15 for granulation. The water added from (includes the liquid binder when a liquid binder is used). In addition, from the total mass of moisture described above, the water content of iron ore crystal water and the amount of moisture in the case of using a liquid binder are excluded.

また、上記した造粒物Pは、混練機17に、微粉のみ又は微粉を主体とする鉄鉱石を有する原料Pと、水分及びバインダー添加装置18から水分とバインダーを添加して混合した後、P型ドラムミキサー11で造粒して製造する。この造粒物Pの大きさは、焼結時の焼結性や通気性の観点から、例えば、3mm以上10mm以下がよい。
なお、鉄鉱石は、粉砕機19で粉砕処理して使用しているが、その粒径に応じて、粉砕処理することなく、そのまま使用してもよい。ここで、粉砕処理を行う場合は、粒径22μmアンダーのものが5質量%以上となるように行うことが好ましい。この粉砕後の微粉量の増加は、造粒物Pの更なる強度向上に繋がり、造粒後に行う乾燥処理時の造粒物Pの崩壊の抑制に効果があるためである。
また、原料Pには、例えば、混練ダスト及びペレットフィード等を混ぜてもよい。
そして、造粒物Pを造粒する際の水分値は、例えば、8質量%以上11質量%以下とする。
In addition, the above-described granulated product P is mixed with the raw material P having only iron powder or iron ore mainly composed of fine powder in the kneading machine 17, and after adding water and a binder from the water and binder adding device 18, the P It is manufactured by granulating with a mold drum mixer 11. The size of the granulated product P is preferably 3 mm or more and 10 mm or less, for example, from the viewpoints of sinterability and air permeability during sintering.
The iron ore is used after being pulverized by the pulverizer 19, but may be used as it is without being pulverized according to the particle size. Here, when the pulverization process is performed, it is preferable to perform the pulverization process so that the particle size under 22 μm is 5 mass% or more. This increase in the amount of fine powder after pulverization leads to further improvement in the strength of the granulated product P, and is effective in suppressing the collapse of the granulated product P during the drying process performed after granulation.
The raw material P may be mixed with, for example, kneaded dust and pellet feed.
And the moisture value at the time of granulating the granulated material P shall be 8 mass% or more and 11 mass% or less, for example.

なお、造粒物Pを造粒する際の水分値は、P型ドラムミキサー11に供給された全質量を100質量%とし、このうちの原料P(鉄鉱石を主体)に初期から含まれる水分と、造粒のために水分及びバインダー添加装置18から添加した水分(液体バインダーを使用する場合はその液体バインダーを含める)との合計質量が占める割合である。
ここで、P型ドラムミキサー11に供給された全質量とは、P型ドラムミキサー11に供給される原料Pと、この原料Pに初期から含まれる水分と、造粒のために水分及び添加装置18から添加した水分である。なお、上記した水分の合計質量からは、鉄鉱石の結晶水と、液体バインダーを使用する場合はその水分量が除かれている。
The moisture value when granulating the granulated product P is 100% by mass based on the total mass supplied to the P-type drum mixer 11, and the moisture contained in the raw material P (mainly iron ore) from the beginning. And the total mass of moisture and moisture added from the binder addition device 18 for granulation (including the liquid binder when a liquid binder is used).
Here, the total mass supplied to the P-type drum mixer 11 refers to the raw material P supplied to the P-type drum mixer 11, the moisture contained in the raw material P from the beginning, and moisture and an addition device for granulation. Water added from No. 18. In addition, from the above-mentioned total mass of moisture, the amount of moisture is excluded when crystal water of iron ore and a liquid binder are used.

この造粒物Pを造粒するために使用するバインダーとしては、例えば、分散剤、粘着性バインダー、又は生石灰を使用できる。以下、各バインダーの添加量について説明する。
バインダーとして分散剤を用いる場合、分散剤の固形分(有効成分)量を、原料Pの量に対して0.001質量%以上1質量%以下(好ましくは、下限を0.005質量%、上限を0.5質量%)の範囲内とすることが好ましい。
また、バインダーとして粘着性バインダーを用いる場合、原料Pの量に対して0.1質量%以上5質量%以下(好ましくは、下限を0.05質量%、上限を3質量%)の範囲内とすることが好ましい。この粘着性バインダーは、粘着性バインダー自体の粘着性により、粒子同士を結合させるものであり、例えば、ベントナイト、リグニン亜硫酸塩(パルプ廃液)、澱粉、砂糖、糖蜜、水ガラス、セメント、ゼラチン、コーンスターチ等がある。
そして、バインダーとして生石灰を用いる場合、原料Pの量に対して0.1質量%以上2質量%以下(好ましくは、下限を0.5質量%、上限を1.5質量%)の範囲内とすることが好ましい。
As a binder used in order to granulate this granulated material P, a dispersing agent, an adhesive binder, or quicklime can be used, for example. Hereinafter, the amount of each binder added will be described.
When a dispersant is used as the binder, the solid content (active ingredient) amount of the dispersant is 0.001% by mass or more and 1% by mass or less (preferably, the lower limit is 0.005% by mass, the upper limit is the amount of the raw material P) Is preferably in the range of 0.5% by mass.
Moreover, when using an adhesive binder as a binder, it is in the range of 0.1 mass% or more and 5 mass% or less with respect to the quantity of the raw material P (preferably, a minimum is 0.05 mass% and an upper limit is 3 mass%). It is preferable to do. This adhesive binder bonds particles by the adhesiveness of the adhesive binder itself. For example, bentonite, lignin sulfite (pulp waste liquor), starch, sugar, molasses, water glass, cement, gelatin, corn starch Etc.
And when using quicklime as a binder, with respect to the quantity of the raw material P, 0.1 mass% or more and 2 mass% or less (preferably, a minimum is 0.5 mass%, an upper limit is 1.5 mass%) and It is preferable to do.

この造粒物Pを、更に乾燥機20で乾燥処理した後、焼結機14に供給する。
ここで、乾燥処理後の造粒物Pの水分値(図1中の点P2での水分値)は、例えば、乾燥時間、乾燥時のガス温度、又は造粒物Pの大きさ等により調整できるが、0又は0を超え5質量%以下程度であることが好ましい。なお、乾燥機20による乾燥処理は、40℃以上250℃以下に設定された雰囲気中で、例えば、20〜60分間程度行う。
乾燥処理後の造粒物Pの水分値は、P型ドラムミキサー11に供給される原料Pと、乾燥処理後も造粒物P中に残存する水分の質量の合計値を100質量%とし、このうちの原料P中に残存する水分の質量が占める割合である。なお、この残存する水分の質量からは、鉄鉱石の結晶水が除かれている。
このように、造粒物Pは、微粉を水分とバインダーを用いて造粒していることから、強固な造粒物となり、前記した造粒物Sとは異なり、熱風による乾燥を行った場合でも崩壊することがない。このため、乾燥処理後の造粒物Pの水分値は、自在に調整できる。
The granulated product P is further dried by the dryer 20 and then supplied to the sintering machine 14.
Here, the moisture value of the granulated product P after the drying treatment (the moisture value at the point P2 in FIG. 1) is adjusted by, for example, the drying time, the gas temperature during drying, or the size of the granulated product P However, it is preferably 0 or more than 0 and about 5% by mass or less. In addition, the drying process by the dryer 20 is performed about 20 to 60 minutes, for example in the atmosphere set to 40 to 250 degreeC.
The moisture value of the granulated product P after the drying treatment is 100% by mass, with the raw material P supplied to the P-type drum mixer 11 and the total mass of moisture remaining in the granulated product P even after the drying treatment, It is the ratio which the mass of the water | moisture content which remains in the raw material P of these accounts. In addition, the crystal water of iron ore is removed from the mass of the remaining water.
Thus, since the granulated product P is granulated with fine powder using moisture and a binder, it becomes a strong granulated product, and unlike the granulated product S described above, when dried with hot air But it won't collapse. For this reason, the moisture value of the granulated material P after a drying process can be adjusted freely.

以上の方法により製造した造粒物Sと造粒物Pを、焼結機14に供給する。なお、造粒物Sと造粒物Sは、別々に焼結機14に供給してもよく、また造粒物Sと造粒物Pを合わせた後に、焼結機14に供給してもよい。
このように、造粒物Sと造粒物Pは焼結機14に供給されるが、焼結時、焼結ベッド内下部への水分凝縮に伴う通気性悪化による生産性阻害や、排ガス中の水分上昇に伴う排ガス量増加、排ガス系統の腐食などの懸念がある。このため、焼結機14に供給される水分は、できるだけ低減することが望まれる。
この方法として、乾燥処理した造粒物Pを造粒物Sと合わせる際、造粒物Pの低減した水分値によって、混合後の造粒物の平均水分値を低減する操作が考えられるが、造粒物Sの崩壊を抑制できる範囲に止める必要がある。
The granulated product S and the granulated product P produced by the above method are supplied to the sintering machine 14. The granulated product S and the granulated product S may be supplied separately to the sintering machine 14, or may be supplied to the sintering machine 14 after combining the granulated product S and the granulated product P. Good.
As described above, the granulated product S and the granulated product P are supplied to the sintering machine 14, but at the time of sintering, the productivity is hindered due to the deterioration of the air permeability due to moisture condensation to the lower part in the sintering bed, and in the exhaust gas. There are concerns such as an increase in the amount of exhaust gas accompanying the increase in water content and corrosion of the exhaust gas system. For this reason, it is desirable to reduce the moisture supplied to the sintering machine 14 as much as possible.
As this method, when the dried granulated product P is combined with the granulated product S, an operation of reducing the average moisture value of the granulated product after mixing can be considered by the reduced moisture value of the granulated product P. It is necessary to stop within a range in which the collapse of the granulated material S can be suppressed.

そこで、前記したように、造粒物Sを造粒する際の水分値を7質量%以上10質量%以下とした後、造粒物Sと造粒物Pを焼結機14に供給するに際し、造粒物Sと造粒物Pを合わせた造粒物の平均水分値を、造粒物Sのみの水分値よりも、0を超え3質量%以下低減させる水分値を有する乾燥処理後の造粒物P(水分値:0又は0を超え5質量%以下が好ましい)を用いる必要がある。
上記した造粒物の平均水分値(図1中の点P3での水分値)は、S型ドラムミキサー10に供給された全質量と、P型ドラムミキサー11に供給される原料Pの質量と、乾燥処理後も造粒物P中に残存する水分の質量の合計質量を100質量%とし、この造粒物中に含まれる水分の占める割合を示している。この造粒物中に含まれる水分とは、原料S(即ち、鉄鉱石、カーボン、及び石灰石)に初期から含まれる水分と、造粒のために水分添加装置15から添加した水分と、原料P中に残存する水分の合計水分である。なお、上記した合計水分からは、鉄鉱石の結晶水と、液体バインダーを使用する場合はその水分量が除かれている。
Therefore, as described above, after the granulated product S is granulated with a moisture value of 7 mass% or more and 10 mass% or less, the granulated product S and the granulated product P are supplied to the sintering machine 14. The average moisture value of the granulated product obtained by combining the granulated product S and the granulated product P is less than the moisture value of the granulated product S only by 0% and 3% by mass or less after the drying treatment. It is necessary to use the granulated product P (moisture value: 0 or more than 0 and preferably 5% by mass or less).
The average moisture value (the moisture value at the point P3 in FIG. 1) of the granulated product described above is the total mass supplied to the S-type drum mixer 10 and the mass of the raw material P supplied to the P-type drum mixer 11. The total mass of moisture remaining in the granulated product P even after the drying treatment is 100% by mass, and the ratio of moisture contained in the granulated product is shown. The moisture contained in the granulated product is the moisture contained in the raw material S (that is, iron ore, carbon, and limestone) from the beginning, the moisture added from the moisture adding device 15 for granulation, and the raw material P. It is the total moisture remaining in the water. In addition, from the above-mentioned total water | moisture content, when using a crystal water of an iron ore and a liquid binder, the water content is remove | excluded.

ここで、造粒物Sを造粒する際の水分値、乾燥処理後の造粒物Pの水分値、及び造粒物Sと造粒物Pを合わせた造粒物の平均水分値を、前記した数値範囲に規定した理由について説明する。
まず、第1の造粒装置における造粒物Sの造粒挙動について、造粒する際の水分値(造粒用水分量)と、造粒後に残存する500μmアンダーの微粉割合との関係を示す図2を参照しながら説明する。なお、図2には、500μmアンダーの微粉の割合を20質量%、30質量%、及び40質量%に、それぞれ調整した結果を示している。また、第1の造粒装置にはS型ドラムミキサーを使用した。
Here, the moisture value at the time of granulating the granulated product S, the moisture value of the granulated product P after the drying treatment, and the average moisture value of the granulated product combining the granulated product S and the granulated product P, The reason specified in the above numerical range will be described.
First, regarding the granulation behavior of the granulated product S in the first granulator, the relationship between the moisture value during granulation (the amount of moisture for granulation) and the proportion of fine powder under 500 μm remaining after granulation is shown. This will be described with reference to FIG. In addition, in FIG. 2, the result of having adjusted the ratio of the fine powder under 500 micrometers to 20 mass%, 30 mass%, and 40 mass%, respectively is shown. An S-type drum mixer was used for the first granulator.

図2に示すように、造粒用水分量を次第に増加させながら造粒することで、造粒後に残存する500μmアンダーの微粉割合が低減した。これは、造粒用水分量を高めることで、500μmアンダーの微粉が核粒子の周囲に付着し、造粒処理に使用されなかった500μmアンダーの微粉量が減少するためである。
また、S型ドラムミキサーに供給する原料S中の500μmアンダーの微粉割合を低下させることで、造粒用水分量が同一の場合には、造粒後に残存する微粉割合が一層低減した。これは、使用する微粉量が少なくなれば、残存する微粉割合も当然に減少するためである。
As shown in FIG. 2, by granulating while gradually increasing the amount of moisture for granulation, the proportion of fine powder of 500 μm under remaining after granulation was reduced. This is because by increasing the moisture content for granulation, 500 μm-under fine powder adheres to the periphery of the core particles, and the amount of 500 μm-under fine powder not used in the granulation treatment decreases.
Moreover, when the moisture content for granulation was the same, the proportion of fine powder remaining after granulation was further reduced by reducing the proportion of fine powder under 500 μm in the raw material S supplied to the S-type drum mixer. This is because if the amount of fine powder to be used decreases, the remaining fine powder ratio naturally decreases.

次に、第1の造粒装置における造粒物Sの造粒挙動について、造粒する際の水分値(造粒用水分量)と、核粒子周囲の微粉付着厚みとの関係を示す図3を参照しながら説明する。なお、図3には、500μmアンダーの微粉の割合を20質量%、30質量%、及び40質量%に、それぞれ調整した結果を示している。また、第1の造粒装置にはS型ドラムミキサーを使用した。
図3に示すように、造粒用水分量を次第に増加させながら造粒することで、核粒子周囲に付着する微粉の厚みが増大した。これは、造粒用水分量を高めることで、500μmアンダーの微粉が核粒子の周囲に付着し易くなり、付着厚みが厚くなるためである。
また、S型ドラムミキサーに供給する原料S中の500μmアンダーの微粉割合を低下させることで、造粒用水分量が同一の場合には、核粒子周囲に付着する微粉の厚みが薄くなった。これは、使用する微粉量が少なくなれば、微粉の付着量も当然に減少するためである。
Next, regarding the granulation behavior of the granulated product S in the first granulator, FIG. 3 showing the relationship between the moisture value at the time of granulation (amount of moisture for granulation) and the fine powder adhesion thickness around the core particles. The description will be given with reference. In addition, in FIG. 3, the result of having adjusted the ratio of the fine powder under 500 micrometers to 20 mass%, 30 mass%, and 40 mass%, respectively is shown. An S-type drum mixer was used for the first granulator.
As shown in FIG. 3, by granulating while gradually increasing the amount of moisture for granulation, the thickness of fine powder adhering around the core particles increased. This is because by increasing the moisture content for granulation, the fine powder under 500 μm easily adheres to the periphery of the core particles, and the adhesion thickness increases.
Moreover, the thickness of the fine powder adhering to the circumference | surroundings of a core particle became thin when the moisture content for granulation was the same by reducing the fine powder ratio of 500 micrometers under in the raw material S supplied to an S type drum mixer. This is because, as the amount of fine powder to be used decreases, the amount of fine powder attached naturally decreases.

なお、上記した造粒物Sの微粉の付着厚みは、以下の手順で算出した。
(1)まず、対象原料を水洗などによって、微粉や粗粒等の各粒子に完全に分離し、5mm、2mm、1mm、0.5mm、0.25mmの篩目の篩い順で、篩下を篩分けていき、各粒度区間の質量比率を求めた(全体を100gとした場合の各粒度区間の質量g)。
(2)各粒子となる5mm以上、5mm未満2mm以上、及び2mm未満1mm以上の各区間の代表粒子径(それぞれ7.5mm、3.5mm、1.5mm)を決めて、全体を100gとした場合の各粒度区間質量比率から、代表粒径ごとの核粒子の個数を計算した。その際、核粒子密度を4g/cmとした。
In addition, the adhesion thickness of the fine powder of the above-described granulated product S was calculated by the following procedure.
(1) First, the target raw material is completely separated into fine particles, coarse particles, etc. by washing, etc., and the sieving is performed in the order of sieving of 5 mm, 2 mm, 1 mm, 0.5 mm, and 0.25 mm. The mass ratio of each particle size section was obtained by sieving (mass g of each particle size section when the whole was 100 g).
(2) The representative particle diameter (7.5 mm, 3.5 mm, 1.5 mm, respectively) of each section of 5 mm or more, less than 5 mm, 2 mm or more, and less than 2 mm, or 1 mm or more to be each particle was determined to be 100 g as a whole. The number of core particles for each representative particle size was calculated from each particle size interval mass ratio. At that time, the core particle density was set to 4 g / cm 3 .

(3)核粒子への付着粉となる0.25mm以下の微粉を、上記の各核粒子区間ごとに分配するに際し、上記の各核粒子区間の核粒子質量比率に比例させて、各核粒子区間に分配する微粉質量を決定した。
(4)前記(2)で算出した核粒子の各区間代表粒子径の粒子個数と、(3)で算出決定した分配する微粉質量から、各核粒子の付着厚さを計算した。その際、付着粉層の嵩密度を2g/cmとした。
(5)そして、各核粒子区間の付着粉厚さを、各粒度区間質量比率で加重平均し、微粉付着平均厚さとした。
(3) When distributing fine powder of 0.25 mm or less that becomes powder adhering to the core particles for each core particle section, each core particle is proportional to the core particle mass ratio of each core particle section. The mass of fines distributed to the section was determined.
(4) The adhesion thickness of each core particle was calculated from the number of core representative particle diameters of the core particle calculated in (2) above and the fine powder mass distributed and calculated in (3). At that time, the bulk density of the adhered powder layer was set to 2 g / cm 3 .
(5) Then, the thickness of the adhering powder in each core particle section was weighted and averaged with the mass ratio of each particle size section to obtain the average powder thickness.

以上に示した造粒処理の結果を使用し、焼結鉱の生産性(焼結生産性)を評価した結果について、図4を参照しながら説明する。
なお、図4の生産性指数とは、造粒物Sに第2の造粒装置で造粒した造粒物Pを混入させ、実機用の焼成試験装置を用いて、焼成速度(kg/時間)と粉砕後の焼結鉱の粒径が6mmアンダーのものを除いた製品歩留(質量%)を求め、これらを乗じて算出した値である。
ここで、乾燥処理後の造粒物Pの水分値は、造粒物Sと造粒物Pを合わせた造粒物の平均水分値が、造粒物S単体の水分値よりも1質量%低減するように、乾燥処理の調整を行った。なお、第1の造粒装置にはS型ドラムミキサーを、第2の造粒装置にはP型ドラムミキサーを、それぞれ使用した。
The result of evaluating the productivity (sintering productivity) of the sintered ore using the result of the granulation process shown above will be described with reference to FIG.
Note that the productivity index in FIG. 4 indicates that the granulated product P granulated by the second granulator is mixed into the granulated product S, and the firing rate (kg / hour) is measured using a firing test device for an actual machine. ) And the product yield (mass%) excluding the sinter after the pulverized sintered ore particle size is less than 6 mm, and the product yield is calculated by multiplying these.
Here, the moisture value of the granulated product P after the drying treatment is such that the average moisture value of the granulated product obtained by combining the granulated product S and the granulated product P is 1% by mass than the moisture value of the granulated product S alone. The drying process was adjusted so as to reduce it. An S-type drum mixer was used for the first granulator, and a P-type drum mixer was used for the second granulator.

図4に示すように、S型ドラムミキサーへ供給する原料S中の500μmアンダーの微粉割合が40質量%と多い場合、造粒物Sの造粒用水分が7質量%まで上昇する範囲においては、生産性の改善がみられる。しかし、それ以上の水分としても、改善効果は小さくなって明確ではなく、寧ろ、造粒用水分を10質量%まで増加させることで、生産性指数は実質的に変わらないものの、やや下がる傾向がある。なお、生産性の改善とは、焼結鉱の焼成中の凝縮水分量の低減による通気性の向上、造粒用水分の低減に伴う造粒物S崩壊の通気性への悪影響(通気性阻害)の抑制を意味する。
このため、500μmアンダーの微粉割合が40質量%を超える場合、造粒用水分が10質量%のとき、生産性指数が下がる傾向が強まるため、造粒用水分を7質量%以上9質量%以下の範囲で留めることが好ましい。
As shown in FIG. 4, when the proportion of fine powder of 500 μm under in the raw material S supplied to the S-type drum mixer is as large as 40% by mass, in the range where the moisture for granulation of the granulated product S rises to 7% by mass. There is an improvement in productivity. However, even with more moisture, the improvement effect is small and unclear. Rather, increasing the moisture for granulation to 10% by mass tends to decrease slightly although the productivity index does not change substantially. is there. The improvement in productivity means an improvement in air permeability by reducing the amount of condensed water during firing of the sintered ore, and an adverse effect on the air permeability of the granulated product S collapse accompanying the reduction in the moisture for granulation (inhibition of air permeability). ).
For this reason, when the proportion of fine powder under 500 μm exceeds 40% by mass, the tendency for the productivity index to decrease when the granulation moisture is 10% by mass increases, so the granulation moisture is 7% by mass to 9% by mass. It is preferable to keep within the range.

一方、S型ドラムミキサーへ供給する原料S中の500μmアンダーの微粉を30質量%以下(30質量%、20質量%)に低減した場合、生産性がステップ的に上昇する。更に、この現象に加え、造粒物Sの造粒用水分が7質量%以上の範囲内においても、造粒用水分の上昇に伴って生産性が改善し、造粒後に残存する500μmアンダーの微粉がほぼ無くなる造粒用水分が10質量%の範囲まで、その効果が現れる。
以上のこと、即ち、残存する微粉割合、微粉の付着厚み、及び生産性指数との関係から、造粒物Sを造粒する際の水分値を、7質量%以上10質量%以下(好ましくは、上限を9質量%)と規定した。
On the other hand, when the fine powder under 500 μm in the raw material S supplied to the S-type drum mixer is reduced to 30% by mass or less (30% by mass, 20% by mass), the productivity increases stepwise. Furthermore, in addition to this phenomenon, even when the granulation S has a granulation water content of 7% by mass or more, the productivity improves as the granulation water rises, and the 500 μm undersize remaining after the granulation is reduced. The effect appears up to the range of 10% by mass of granulation water in which fine powder is almost eliminated.
From the above, that is, from the relationship with the ratio of the remaining fine powder, the adhesion thickness of the fine powder, and the productivity index, the moisture value when granulating the granulated product S is 7 mass% or more and 10 mass% or less (preferably The upper limit was defined as 9% by mass).

このメカニズムには、通気に影響する未造粒の微粉量の減少と、酸化発熱性に影響する付着厚みの減少の2つのメカニズムが寄与する。
焼結の生産性には、焼結ベッド内の通気性と凝結材であるカーボンの酸化発熱性の影響が大きい。この通気は、造粒後も造粒物S中に残存する微粉、特に、500μmアンダーの微粉の影響が大きく、これを減少させることで、改善が図られる(以上、第1のメカニズム)。
一方、カーボンの酸化発熱性は、核となる粒子周囲に付着する微粉の厚みの影響が大きく、過剰な厚みではカーボンが埋没して酸化発熱性が悪化するため、焼成速度及び歩留が低下し、生産性を阻害する(以上、第2のメカニズム)。
Two mechanisms contribute to this mechanism: a decrease in the amount of ungranulated fine powder that affects aeration, and a decrease in adhesion thickness that affects oxidation heat generation.
The productivity of sintering is greatly influenced by the air permeability in the sintering bed and the oxidation heat generation of carbon as a coagulant. This aeration is greatly affected by fine powder remaining in the granulated product S even after granulation, particularly fine powder under 500 μm, and can be improved by reducing this (this is the first mechanism).
On the other hand, the oxidation exothermicity of carbon is greatly affected by the thickness of fine powder adhering to the periphery of the core particles, and if it is excessive, carbon is buried and the oxidation exothermicity deteriorates, so the firing rate and yield decrease. Inhibits productivity (second mechanism).

このメカニズムは、造粒用水分を所定範囲内で増加させていく手段(造粒強化手段)においては、生産性向上に相反する。しかし、まずは、未造粒の微粉量減少が生産性向上に大きく効果があり、更に生産性を安定して向上させるには、微粉の付着厚みを減少させることが好ましい。
ここで、微粉の付着厚みを減少させるには、前記したS型ドラムミキサー10に供給する鉄鉱石の500μmアンダーの微粉の質量割合を5質量%以上40質量%以下(好ましくは、30質量%以下)とする各種方法を適用できる。
次に、乾燥処理した造粒物Pを造粒物Sと合わせる際、乾燥処理によって水分値を低減させた造粒物Pによって、造粒物Sの水分値を低減する操作について、図5を参照しながら説明する。
This mechanism is contrary to productivity improvement in the means for increasing the moisture for granulation within a predetermined range (granulation strengthening means). However, first, a reduction in the amount of ungranulated fine powder is greatly effective in improving productivity, and in order to further improve productivity stably, it is preferable to reduce the adhesion thickness of fine powder.
Here, in order to reduce the adhesion thickness of the fine powder, the mass ratio of the fine powder under 500 μm of the iron ore supplied to the S-type drum mixer 10 is 5 mass% to 40 mass% (preferably 30 mass% or less). Various methods can be applied.
Next, when the dried granulated product P is combined with the granulated product S, the operation of reducing the moisture value of the granulated product S by the granulated product P whose moisture value has been reduced by the drying process is shown in FIG. The description will be given with reference.

図5は、第1の造粒装置における造粒物Sの造粒用水分を上昇させた場合の残存微粉割合の低下挙動と、造粒用水分8.8質量%で造粒した造粒物Sを乾燥した場合の微粉の発生量の変化を示している。なお、造粒物Sの水分の低減には、造粒物Pの混入による場合(実施例)と、ガス(熱風)乾燥による場合(比較例)の2つについて、比較検討した。ここで、第1の造粒装置には、S型ドラムミキサーを使用した。また、造粒物Sの造粒に使用する原料S中の500μmアンダーの量は、40質量%とした。
図5から明らかなように、造粒用水分量を次第に増加させながら造粒することで、造粒後に残存する500μmアンダーの微粉割合が低減した(図5中の◆)。これは、前記した図2の結果と同様である。
FIG. 5 shows the decrease behavior of the residual fine powder ratio when the moisture for granulation of the granulated product S in the first granulator is increased, and the granulated product granulated with 8.8% by mass of the granulating moisture. The change of the generation amount of the fine powder when S is dried is shown. In addition, in the reduction | decrease of the water | moisture content of the granulated material S, the comparative examination was carried out about the case where it mixes with the granulated material P (Example), and the case where it is based on gas (hot air) drying (comparative example). Here, an S-type drum mixer was used for the first granulator. The amount of 500 μm under in the raw material S used for granulation of the granulated product S was 40% by mass.
As is clear from FIG. 5, by granulating while gradually increasing the amount of moisture for granulation, the proportion of fine powder of 500 μm under remaining after granulation was reduced (♦ in FIG. 5). This is the same as the result of FIG.

製造した造粒物Sをガス乾燥した場合(図5中のΔ)、造粒物Sに含まれる水分値の低下に伴い、造粒時の挙動とほぼ同じ傾向で微粉の発生量が増加した。これは、造粒物Sの水分値の減少に比例して、造粒物が崩壊していることを示している。
一方、造粒物Sに乾燥した造粒物Pを混入させ、造粒物Sと造粒物Pを合わせた造粒物の平均水分値を、8.6質量%から5質量%まで低下させた場合、平均水分値が5.8質量%に低下するまで、造粒物Sの崩壊が緩慢であり、それ以降はガス乾燥と同様の傾向で造粒物Sの崩壊が生じた(図5中の○印)。
When the produced granulated product S was gas-dried (Δ in FIG. 5), the generation amount of fine powder increased with the same tendency as the behavior during granulation as the moisture value contained in the granulated product S decreased. . This has shown that the granulated material has disintegrated in proportion to the reduction | decrease of the moisture value of the granulated material S. FIG.
On the other hand, the dried granulated product P is mixed into the granulated product S, and the average moisture value of the granulated product obtained by combining the granulated product S and the granulated product P is reduced from 8.6% by mass to 5% by mass. In this case, the granulated product S slowly decays until the average moisture value decreases to 5.8% by mass, and thereafter, the granulated product S collapses in the same tendency as gas drying (FIG. 5). Inside circle).

なお、造粒物の平均水分値が8.2質量%の場合においては、ガス乾燥と比較して増加する微粉の量に顕著な差がみられた。これは、ガス乾燥が、造粒物Sの表面から内部に至るまでの水分を蒸発させ、微粉の剥離を生じさせるため、造粒物Sが崩壊し易くなったのに対し、乾燥した造粒物Pを混入させた場合は、造粒物Pによる水分の吸収により、造粒物Sに付着した微粉の剥離、及び造粒物Sの崩壊が発生し難くなったからである。
つまり、造粒物Sの乾燥において、水の蒸発による乾燥か、液体のままの水をそのまま造粒物Pで吸収するかの差を示している。このため、造粒物Sと造粒物Pを焼結機に供給するに際しては、造粒物Sと造粒物Pの接触面積を高めることが好ましい。この方法としては、例えば、造粒物Sと造粒物Pを混合した後、この混合した造粒物を焼結機に供給したり、造粒物Pと混合した造粒物を交互に積層しながら焼結機に供給したり、また、焼結機に供給した造粒物P上に造粒物Sを積層する方法がある。
In addition, when the average moisture value of the granulated product was 8.2% by mass, a significant difference was observed in the amount of fine powder increased as compared with gas drying. This is because gas drying evaporates moisture from the surface to the inside of the granulated product S and causes the fine powder to be peeled off. This is because when the product P is mixed, the absorption of moisture by the granulated product P makes it difficult for the fine powder adhering to the granulated product S to peel off and the granulated product S to collapse.
That is, in the drying of the granulated product S, the difference between whether the water is evaporated by water evaporation or the liquid P is absorbed by the granulated product P as it is is shown. For this reason, when supplying the granulated product S and the granulated product P to a sintering machine, it is preferable to increase the contact area of the granulated product S and the granulated product P. As this method, for example, after the granulated product S and the granulated product P are mixed, the mixed granulated product is supplied to a sintering machine, or the granulated product mixed with the granulated product P is alternately laminated. There is a method in which the granulated product S is supplied to the sintering machine while the granulated product S is laminated on the granulated product P supplied to the sintering machine.

ここで、造粒物Sの水分を造粒物Pで吸収する際に、造粒物Sの水分値の低減代(低下代)が0質量%を超えれば、微粉割合が少ない範囲で造粒物Sの水分値を低下できる。
一方、造粒物Sの水分値の低減代を3質量%より多くする場合、乾燥した造粒物Pと合わせた場合でも、図5から明らかなように、造粒物Sの崩壊が生じる。
以上のことから、造粒物Sと乾燥した造粒物Pを合わせた造粒物の平均水分値が、造粒物Sの水分値より0質量%を超え3質量%以下低減するよう、乾燥処理後の造粒物Pの水分値を調整する必要がある。
この調整については、造粒物Sの水分値の低減代を3質量%に近づけたい場合、造粒物Pの乾燥後の水分値を下げ、水分値の低減代を0質量%に近づけたい場合、造粒物Pの乾燥後の水分値を上げることにより行う。
Here, when the moisture of the granulated product S is absorbed by the granulated product P, the granulated product S is granulated in a range in which the fine powder ratio is small if the reduction amount (reduction cost) of the moisture value of the granulated product S exceeds 0% by mass. The moisture value of the thing S can be reduced.
On the other hand, when the reduction amount of the moisture value of the granulated product S is more than 3% by mass, even when combined with the dried granulated product P, as shown in FIG.
From the above, drying is performed so that the average moisture value of the granulated product obtained by combining the granulated product S and the dried granulated product P is more than 0% by mass and less than 3% by mass from the moisture value of the granulated product S. It is necessary to adjust the moisture value of the granulated product P after the treatment.
About this adjustment, when it is desired to reduce the moisture value of the granulated product S to 3% by mass, to lower the moisture value after drying the granulated product P, and to reduce the moisture value to 0% by mass. , By raising the moisture value after drying the granulated product P.

また、乾燥処理後の造粒物Pの水分値を一定として、造粒物Sと造粒物Pの混合割合(質量比)を変動させることで、造粒物Sの水分値の低減代を制御することも効果的である。
しかし、一般に、造粒物Sと造粒物Pの生産量(例えば、トン/時間)は、使用する鉄鉱石原料の粒度分布に依存し易いため、混合割合を制御することは任意にできない場合があり、造粒物Pの乾燥処理後の水分値を制御することが最も効果的と考える。
以上に示したように、焼結機14に供給する造粒物Sと造粒物Pを個別に製造するため、造粒物Sと造粒物Pの造粒用水分を、それぞれの造粒に適した量に調整して造粒できる。また、製造した造粒物Pは、バインダーにより強固に造粒されているため、乾燥処理を目的に応じたレベルまで実施でき、通常よりも高い造粒用水分で造粒した造粒物Sの水分値を、造粒物Pで吸収できる。
なお、造粒物Pを乾燥する方法としては、静置状態で通気するバンド乾燥機が、造粒物Pの崩壊を抑制できてベストであるが、より効率的に乾燥する方法として、流動層も適用できる。これは、ガスクッション効果により、造粒物Pの崩壊を十分に抑制できるためである。ここで、キルン等の機械的な衝撃が加わる方法は、崩壊が著しく適用が困難である。
以上のことから、本発明を適用することで、通気性と酸化発熱性に優れた造粒物を製造し、焼結生産性を向上できる。
Moreover, the moisture value of the granulated product S is reduced by changing the mixing ratio (mass ratio) of the granulated product S and the granulated product P while keeping the moisture value of the granulated product P after the drying treatment constant. It is also effective to control.
However, in general, the production amount (for example, ton / hour) of the granulated product S and the granulated product P is likely to depend on the particle size distribution of the iron ore raw material used, and therefore the mixing ratio cannot be arbitrarily controlled. Therefore, it is considered most effective to control the moisture value after the drying treatment of the granulated product P.
As shown above, in order to produce the granulated product S and the granulated product P to be supplied to the sintering machine 14 individually, the granulating water of the granulated product S and the granulated product P is granulated. It can be granulated by adjusting the amount suitable for the size. Further, since the produced granulated product P is strongly granulated with a binder, the drying treatment can be carried out to a level according to the purpose, and the granulated product S granulated with a higher granulation moisture than usual. The moisture value can be absorbed by the granulated product P.
In addition, as a method of drying the granulated product P, a band drier that ventilates in a stationary state is the best because it can suppress the collapse of the granulated product P. Is also applicable. This is because the collapse of the granulated product P can be sufficiently suppressed by the gas cushion effect. Here, the method of applying a mechanical impact such as a kiln is remarkably collapsed and is difficult to apply.
From the above, by applying the present invention, a granulated product excellent in air permeability and oxidation exothermic property can be manufactured, and the sintering productivity can be improved.

次に、本発明の作用効果を確認するため、造粒条件を変更して各種試験を実施した結果について説明する。
まず、原料を、篩分けを行うことなく、又は篩分けを行って、S型造粒工程でS型ドラムミキサーを使用して造粒物Sを製造し、P型造粒工程でP型ドラムミキサーを使用して造粒物Pを製造した。
そして、これら事前処理を施した造粒物Sと造粒物Pを、火格子上に積層し、下方から一定負圧を付与して空気を上層から吸引し、上部より点火して下部まで焼成した。
このとき、造粒物Pを造粒物Sと合わせる際に、造粒物Sと造粒物Pの平均水分値が、造粒物Sのみの水分値より所定値(0を超え3質量%以下)低下するよう、造粒物Pを乾燥処理し、その水分調整を適宜実施した。なお、比較例1〜3は、水分値の低減代が適正範囲を外れている場合を示している。
以下、各試験条件について、詳しく説明する。
Next, in order to confirm the effect of this invention, the result of having implemented various tests by changing granulation conditions is demonstrated.
First, the raw material is subjected to sieving without sieving, and a granulated product S is produced using an S-type drum mixer in the S-type granulation step, and the P-type drum in the P-type granulation step. A granulated product P was produced using a mixer.
And these granulated material S and granulated material P which gave these pre-processing are laminated | stacked on a grate, a fixed negative pressure is given from the downward direction, air is attracted | sucked from an upper layer, it ignites from the upper part, and is baked to the lower part. did.
At this time, when the granulated product P is combined with the granulated product S, the average moisture value of the granulated product S and the granulated product P is a predetermined value (exceeding 0 and 3 mass% from the moisture value of only the granulated product S). In the following, the granulated product P was dried so as to decrease, and the water content was appropriately adjusted. In addition, Comparative Examples 1-3 show the case where the reduction margin of the moisture value is outside the appropriate range.
Hereinafter, each test condition will be described in detail.

比較例1は、原料としてマラマンバ鉱石及びピソライト鉱石を含む複数種類の鉄鉱石を用い、これを全量S型ドラムミキサーに供給し、水のみで造粒した結果である。
これに対し、比較例2、3、及び実施例1〜7は、マラマンバ鉱石及びピソライトの一部を、目開き1mmの篩を用いて篩分け(微粉の抽出)、篩上の原料を他の原料と共にS型ドラムミキサーに供給し、水のみで造粒した結果である。これにより、原料中の微粉量を低減した。
なお、微粉が濃化した篩下の原料(抽出された微粉)は、まず粉砕し、次に混練機を用いてバインダーである分散剤を添加しながら混練し、更にP型ドラムミキサーで造粒した後、乾燥処理した。
この製造した造粒物Sと造粒物Pを合わせて焼結機に供給した。
Comparative Example 1 is a result of using a plurality of types of iron ores including maramamba ore and pisolite ore as raw materials, supplying the whole amount to an S-type drum mixer and granulating only with water.
On the other hand, Comparative Examples 2 and 3 and Examples 1 to 7 sieved a portion of the maramamba ore and pisolite using a sieve having an opening of 1 mm (extraction of fine powder), and other raw materials on the sieve It is the result of granulating with only water by supplying to the S-type drum mixer together with the raw materials. Thereby, the amount of fine powder in the raw material was reduced.
The raw material (extracted fine powder) in which fine powder is concentrated is first pulverized, then kneaded while adding a dispersant as a binder using a kneader, and further granulated with a P-type drum mixer. And then dried.
The produced granulated product S and granulated product P were combined and supplied to a sintering machine.

また、実施例8〜10は、マラマンバ鉱石の一部を篩分けることなく、前記した各種装置で、粉砕処理、造粒処理、及び乾燥処理を行って製造した造粒物Pを、残りのマラマンバ鉱石(500μmアンダーの微粉量調整)と他原料(赤鉄鉱)を用いて造粒した造粒物Sと合わせて焼結機に供給した。なお、S型造粒工程とP型造粒工程にそれぞれ供給するマラマンバ鉱石は同じものであり、篩選別機による篩分け等の処理は行っていない。
なお、以上に示した比較例2、3、及び実施例1〜10において、乾燥処理後の造粒物Pの水分値は、造粒物Sと造粒物Pの平均水分値が目的とする水分値となるように、それぞれ決定している。
以上の各造粒条件を、表1に示す。
In Examples 8 to 10, the granulated product P produced by pulverizing, granulating, and drying using the above-described various apparatuses without sieving a part of the maramamba ore was used as the remaining maramamba. It was supplied to the sintering machine together with the granulated product S granulated using the ore (adjustment of fine powder under 500 μm) and other raw materials (hematite). In addition, the maramamba ore supplied to each of the S-type granulation step and the P-type granulation step is the same, and no processing such as sieving by a sieve sorter is performed.
In Comparative Examples 2 and 3 and Examples 1 to 10 shown above, the moisture value of the granulated product P after the drying treatment is the average moisture value of the granulated product S and the granulated product P. Each is determined so as to have a moisture value.
Table 1 shows the above granulation conditions.

Figure 2009052087
Figure 2009052087

なお、表1中の「−500μm」は、S型ドラムミキサーに供した原料S中に含まれる500μmアンダーの質量割合を、「水分値」は、同じくS型ドラムミキサーで造粒物Sを造粒する際の水分値を、それぞれ示している。以下に、「−500μm」と「水分値」の算出方法を示す。
「−500μm(質量%)」=「{S型造粒工程に供給した500μmアンダーの原料(水分は除く、結晶水は含める)の質量(kg)}/{S型造粒工程に供給した原料S(水分は除く、結晶水は含める)の質量(kg)}」×100
「水分値(質量%)」=「造粒物Sを造粒する際の水分値」=「{原料S(即ち、鉄鉱石、カーボン、及び石灰石)に初期から含まれる水分(鉄鉱石の結晶水、及び液体バインダーを使用する場合はその水分量を除く)(kg)}+{造粒のために添加した水分(kg)}」/{S型ドラムミキサーに供給された全質量(kg)}×100
In Table 1, “−500 μm” indicates the mass ratio of 500 μm under contained in the raw material S provided to the S-type drum mixer, and “moisture value” indicates that the granulated product S is similarly prepared using the S-type drum mixer. The moisture value at the time of granulation is shown, respectively. The calculation method of “−500 μm” and “moisture value” is shown below.
“−500 μm (mass%)” = “{mass (kg) of raw material under 500 μm (excluding moisture, including crystal water) supplied to S-type granulation process}} / {raw material supplied to S-type granulation process Mass of S (excluding water, including crystal water) (kg)} ”× 100
“Moisture value (mass%)” = “moisture value when granulating the granulated product S” = “{the moisture contained in the raw material S (ie, iron ore, carbon, and limestone) from the beginning (crystals of iron ore) (If water and liquid binder are used, exclude the water content) (kg)} + {moisture added for granulation (kg)} "/ {total mass (kg) supplied to S-type drum mixer } × 100

また、「微粉の抽出の有無」とは、P型造粒工程への原料分離の有無を示している。なお、分離された原料は、粉砕処理した後、バインダーである分散剤と水分を添加して混練し、P型ドラムミキサーで造粒してペレット状とした(比較例2、3、及び実施例1〜7)。
そして、「S+Pの平均水分値の低減代」とは、造粒物Sと造粒物Pを合わせることにより、得られた造粒物の平均水分値が、造粒物Sのみの水分値よりも低減した量を示している。
更に、「生産性指数」とは、前記した実施の形態で算出して求められる値、具体的には、焼結機での焼成速度と製品歩留から、パレット1mあたりの生産性を算出して比較した値である。なお、ここでは、比較例2の生産性を100として、各条件の生産性を比較した。
“Presence / absence of extraction of fine powder” indicates the presence / absence of raw material separation in the P-type granulation step. The separated raw material was pulverized, kneaded with a dispersant as a binder and added with water, and granulated with a P-type drum mixer (Comparative Examples 2, 3 and Examples). 1-7).
And "the reduction allowance of the average moisture value of S + P" means that the average moisture value of the granulated product obtained by combining the granulated product S and the granulated product P is greater than the moisture value of the granulated product S alone. Also shows a reduced amount.
Further, the “productivity index” is a value obtained by calculation in the above-described embodiment. Specifically, the productivity per pallet of 1 m 3 is calculated from the firing rate in the sintering machine and the product yield. It is the value compared. Here, the productivity of Comparative Example 2 was set to 100, and the productivity of each condition was compared.

表1に示す比較例2は、原料中の微粉を抽出し、S型ドラムミキサーへ供給する原料中の500μmアンダーの割合を30質量%まで低減したものであるため、これに伴って比較例1よりも生産性が改善することを知見した。
また、比較例3は、比較例2と同様の処理において、乾燥処理を強化した造粒物Pを造粒物Sと合わせることにより、平均水分値の低減代を4質量%とした結果であるが、過剰乾燥によって造粒物が崩壊したため、生産性の改善が認められなかった。
以下、実施例1〜10について、比較例1〜3の中で、生産性が最も改善された比較例2を基準(「生産性指数」を100)として説明する。
In Comparative Example 2 shown in Table 1, the fine powder in the raw material is extracted, and the proportion of 500 μm under in the raw material supplied to the S-type drum mixer is reduced to 30% by mass. It was found that productivity was improved more.
Moreover, the comparative example 3 is the result which made the reduction allowance of an average moisture value 4 mass% by match | combining the granulated material P which strengthened the drying process with the granulated material S in the process similar to the comparative example 2. However, since the granulated material collapsed due to excessive drying, no improvement in productivity was observed.
Hereinafter, Examples 1 to 10 will be described using Comparative Example 2 in which productivity is most improved among Comparative Examples 1 to 3 as a reference (“Productivity Index” is 100).

実施例1では、平均水分値の低減代を3質量%とすることで、過剰乾燥による造粒物Sの崩壊を抑制し、生産性の改善が顕著に認められた。なお、実施例1では、実施例6に対して、S型ドラムミキサーに供給する原料中の500μmアンダーの質量割合を40質量%まで低減したため、造粒物Sの水分値を10質量%としても、微粉付着厚みの増大の影響を抑えて生産性を改善できることが確認された。更に、実施例2〜5のように、500μmアンダーを30質量%まで低減することで、安定的に生産性の改善が見込めることも確認された。
加えて、実施例4、5のように、造粒物Sの水分値を10質量%まで増やすことや、実施例3、5のように、造粒物Pの乾燥処理を調整し、平均水分値の低減代を3質量%までの範囲で可能な限り低減することで、相乗的に生産性が向上することが確認された。
In Example 1, by setting the reduction allowance of the average moisture value to 3% by mass, the granulated product S was prevented from collapsing due to excessive drying, and the improvement in productivity was recognized remarkably. In addition, in Example 1, since the mass ratio of the 500 micrometer under in the raw material supplied to an S type | mold drum mixer was reduced with respect to Example 6 to 40 mass%, even if the moisture value of the granulated material S shall be 10 mass% It was confirmed that the productivity could be improved by suppressing the influence of the increase in the fine powder adhesion thickness. Furthermore, as in Examples 2 to 5, it was also confirmed that the productivity can be stably improved by reducing the 500 μm under to 30% by mass.
In addition, the moisture value of the granulated product S is increased to 10% by mass as in Examples 4 and 5, and the drying treatment of the granulated product P is adjusted as in Examples 3 and 5 to obtain an average moisture content. It was confirmed that productivity was improved synergistically by reducing the reduction allowance of the value as much as possible within the range of up to 3% by mass.

また、実施例6、7のように、原料中の500μmアンダーの微粉割合が過剰、又は微粉の分離が不十分等により、S型ドラムミキサーに500μmアンダーが40質量%を超えて残存する場合、造粒物の付着厚みが過剰となるため、比較例2よりも生産性の向上はみられるものの、比較的小さいものであった。
一方、実施例8〜10は、原料の篩分けを実施せず、S型及びP型造粒工程の各々に独立して原料を供給した結果である。このS型造粒工程においては、500μmアンダーが少ない赤鉄鉱を多用し、500μmアンダーの比率を調整するために、微粉の多いマラマンバ鉱石を適宜添加した。
この実施例8〜10のいずれについても、篩分けを行った場合と比較して、同等の生産性向上の効果が得られた。
以上の結果から、本発明を適用することで、従来よりも多量の微粉を含む鉄鉱石の原料に対応可能で、通気性と酸化発熱性に優れた造粒物を製造し、焼結生産性を向上できることを確認できた。
Further, as in Examples 6 and 7, when the proportion of fine powder of 500 μm under in the raw material is excessive, or separation of fine powder is insufficient, 500 μm under remains in the S-type drum mixer in excess of 40% by mass, Since the adhered thickness of the granulated product becomes excessive, although productivity is improved as compared with Comparative Example 2, it is relatively small.
On the other hand, Examples 8-10 are the results of supplying raw materials independently to each of the S-type and P-type granulation steps without carrying out sieving of the raw materials. In this S-type granulation process, hematite with less 500 μm underage was frequently used, and in order to adjust the ratio of 500 μm under, maramanba ore with much fine powder was appropriately added.
In all of Examples 8 to 10, the same productivity improvement effect was obtained as compared with the case of sieving.
From the above results, by applying the present invention, it is possible to deal with raw materials of iron ore containing a larger amount of fine powder than before, producing granulated products with excellent breathability and oxidation heat generation, and sintering productivity We were able to confirm that

以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、前記したそれぞれの実施の形態や変形例の一部又は全部を組合せて本発明の焼結用原料の事前処理方法を構成する場合も本発明の権利範囲に含まれる。
また、原料に使用する鉄鉱石は、その一部に褐鉄鉱を使用しているが、全部に褐鉄鉱を使用することで、本発明の効果が更に顕著に現れる。
As described above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the configuration described in the above embodiment, and the matters described in the scope of claims. Other embodiments and modifications conceivable within the scope are also included. For example, a case where the pretreatment method for a sintering raw material of the present invention is configured by combining some or all of the above-described embodiments and modifications is also included in the scope of the right of the present invention.
Moreover, although the iron ore used for a raw material uses limonite for a part, the effect of this invention appears more notably by using limonite for all.

本発明の一実施の形態に係る焼結用原料の事前処理方法の説明図である。It is explanatory drawing of the pre-processing method of the raw material for sintering which concerns on one embodiment of this invention. 第1の造粒装置で製造した造粒物Sの造粒用水分量と造粒後に残存する500μmアンダーの微粉割合との関係を示すグラフである。It is a graph which shows the relationship between the moisture content for granulation of the granulated material S manufactured with the 1st granulator, and the fine powder ratio of 500 micrometer under which remains after granulation. 同造粒物Sの造粒用水分量と核粒子周囲の微粉付着厚みとの関係を示すグラフである。It is a graph which shows the relationship between the moisture content for granulation of the granulated material S, and the fine powder adhesion thickness around a nucleus particle. 同造粒物Sの造粒用水分量と生産性指数との関係を示すグラフである。It is a graph which shows the relationship between the moisture content for granulation of the granulated material S, and a productivity index. 水分値と500μmアンダーの微粉割合との関係を示すグラフである。It is a graph which shows the relationship between a moisture value and the fine powder ratio of 500 micrometers under. 従来例に係る焼結用原料の事前処理方法の説明図である。It is explanatory drawing of the pre-processing method of the raw material for sintering which concerns on a prior art example.

符号の説明Explanation of symbols

10:S型ドラムミキサー(第1の造粒装置)、11:P型ドラムミキサー(第2の造粒装置)、12:篩選別機、13:供給装置、14:焼結機、15:水分添加装置、16:ベルトコンベア(搬送手段)、17:混練機、18:水分及びバインダー添加装置、19:粉砕機、20:乾燥機 10: S-type drum mixer (first granulator), 11: P-type drum mixer (second granulator), 12: Sieve sorter, 13: Feeder, 14: Sinter, 15: Moisture Addition device, 16: belt conveyor (conveying means), 17: kneading machine, 18: moisture and binder addition device, 19: pulverizer, 20: dryer

Claims (6)

それぞれ粗粒及び微粉を含む2種以上の鉄鉱石を原料とし、核粒子となる粗粒に微粉を付着させて造粒物Sを製造する第1の造粒装置と、微粉のみで又は微粉を主体として水とバインダーの存在下で造粒して造粒物Pを製造する第2の造粒装置を備え、前記造粒物S及び前記造粒物Pを用いる焼結用原料の事前処理方法であって、
前記造粒物Sを造粒する際の水分値を7質量%以上10質量%以下とした後、該造粒物Sと乾燥処理後の前記造粒物Pを焼結機に供給するに際し、該造粒物Sと該造粒物Pを合わせた造粒物の平均水分値を、前記造粒物Sのみの水分値よりも0を超え3質量%以下低減させる水分値を有する乾燥処理後の前記造粒物Pを用いることを特徴とする焼結用原料の事前処理方法。
A first granulator for producing a granulated product S by using two or more types of iron ore containing coarse particles and fine powder as raw materials, and attaching the fine powder to coarse particles as core particles, and only fine powder or fine powder A pre-processing method for a sintering raw material using the granulated product S and the granulated product P, comprising a second granulator for producing the granulated product P by granulating in the presence of water and a binder as a main component Because
After the moisture value when granulating the granulated product S is 7% by mass or more and 10% by mass or less, when supplying the granulated product S and the granulated product P after the drying treatment to a sintering machine, After the drying process having a moisture value that reduces the average moisture value of the granulated product obtained by combining the granulated product S and the granulated product P by more than 0 and 3% by mass or less than the moisture value of the granulated product S alone. A method for pre-processing a raw material for sintering, wherein the granulated product P is used.
請求項1記載の焼結用原料の事前処理方法において、前記第1の造粒装置に供給する前記鉄鉱石は、500μmアンダーの微粉の質量割合が5質量%以上40質量%以下であることを特徴とする焼結用原料の事前処理方法。 2. The pretreatment method of a raw material for sintering according to claim 1, wherein the iron ore supplied to the first granulator has a mass ratio of fine powder of 500 μm under 5 to 40 mass%. A pre-processing method of a raw material for sintering characterized. 請求項2記載の焼結用原料の事前処理方法において、前記第1の造粒装置に供給する予定の前記鉄鉱石から500μmアンダーの微粉を含む鉄鉱石を篩分けで分離し、得られた篩下を前記第2の造粒装置に供給することを特徴とする焼結用原料の事前処理方法。 3. A pretreatment method for a raw material for sintering according to claim 2, wherein iron ore containing fine powder of 500 μm or less is separated from the iron ore to be supplied to the first granulator by sieving, and the obtained sieve The pretreatment method of the raw material for sintering characterized by supplying the bottom to the said 2nd granulator. 請求項2記載の焼結用原料の事前処理方法において、前記第2の造粒装置に供給する予定の前記鉄鉱石から500μmオーバーの粗粒を含む鉄鉱石を篩分けで分離し、得られた篩上を前記第1の造粒装置に供給することを特徴とする焼結用原料の事前処理方法。 3. A pretreatment method for a raw material for sintering according to claim 2, wherein the iron ore containing coarse particles over 500 μm is separated from the iron ore to be supplied to the second granulator by sieving, and obtained. A pretreatment method for a raw material for sintering, characterized in that a sieve top is supplied to the first granulator. 請求項1〜4のいずれか1項に記載の焼結用原料の事前処理方法において、乾燥処理後の前記造粒物Pの水分値は、0又は0を超え5質量%以下であることを特徴とする焼結用原料の事前処理方法。 The pretreatment method of the raw material for sintering according to any one of claims 1 to 4, wherein a moisture value of the granulated product P after the drying treatment is 0 or more than 0 and 5 mass% or less. A pre-processing method of a raw material for sintering characterized. 請求項1〜5のいずれか1項に記載の焼結用原料の事前処理方法において、前記原料の一部又は全部に、結晶水含有率が3質量%以上の高結晶水鉱石を用いることを特徴とする焼結用原料の事前処理方法。 In the pre-processing method of the raw material for sintering of any one of Claims 1-5, using the high crystal water ore whose crystallization water content rate is 3 mass% or more for a part or all of the said raw material. A pre-processing method of a raw material for sintering characterized.
JP2007219859A 2007-08-27 2007-08-27 Pretreatment method for sintering raw materials Active JP5058715B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007219859A JP5058715B2 (en) 2007-08-27 2007-08-27 Pretreatment method for sintering raw materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007219859A JP5058715B2 (en) 2007-08-27 2007-08-27 Pretreatment method for sintering raw materials

Publications (2)

Publication Number Publication Date
JP2009052087A true JP2009052087A (en) 2009-03-12
JP5058715B2 JP5058715B2 (en) 2012-10-24

Family

ID=40503416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007219859A Active JP5058715B2 (en) 2007-08-27 2007-08-27 Pretreatment method for sintering raw materials

Country Status (1)

Country Link
JP (1) JP5058715B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011006722A (en) * 2009-06-23 2011-01-13 Nippon Steel Corp Method for producing sintered ore
JP2020033582A (en) * 2018-08-28 2020-03-05 日本製鉄株式会社 Granulation method of blending raw material
CN115305346A (en) * 2022-09-14 2022-11-08 中南大学 Method for reducing corrosion of grate bars in sintering process

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004137575A (en) * 2002-10-18 2004-05-13 Kobe Steel Ltd Production method for sintered ore
JP2005350770A (en) * 2004-05-13 2005-12-22 Nippon Steel Corp Method for pretreating raw material for sintering
WO2006120773A1 (en) * 2005-05-10 2006-11-16 Nippon Steel Corporation Method for pretreatment of raw materials for sintering
JP2006336064A (en) * 2005-06-01 2006-12-14 Sumitomo Metal Ind Ltd Method for granulating raw material to be sintered
JP2007077512A (en) * 2004-05-13 2007-03-29 Nippon Steel Corp Method for pretreating raw material for sintering
JP2007138246A (en) * 2005-11-17 2007-06-07 Nippon Steel Corp Preliminary treatment method and preliminary treatment device for sintering raw material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004137575A (en) * 2002-10-18 2004-05-13 Kobe Steel Ltd Production method for sintered ore
JP2005350770A (en) * 2004-05-13 2005-12-22 Nippon Steel Corp Method for pretreating raw material for sintering
JP2007077512A (en) * 2004-05-13 2007-03-29 Nippon Steel Corp Method for pretreating raw material for sintering
WO2006120773A1 (en) * 2005-05-10 2006-11-16 Nippon Steel Corporation Method for pretreatment of raw materials for sintering
JP2006336064A (en) * 2005-06-01 2006-12-14 Sumitomo Metal Ind Ltd Method for granulating raw material to be sintered
JP2007138246A (en) * 2005-11-17 2007-06-07 Nippon Steel Corp Preliminary treatment method and preliminary treatment device for sintering raw material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011006722A (en) * 2009-06-23 2011-01-13 Nippon Steel Corp Method for producing sintered ore
JP2020033582A (en) * 2018-08-28 2020-03-05 日本製鉄株式会社 Granulation method of blending raw material
JP7067372B2 (en) 2018-08-28 2022-05-16 日本製鉄株式会社 Granulation method for compounded raw materials
CN115305346A (en) * 2022-09-14 2022-11-08 中南大学 Method for reducing corrosion of grate bars in sintering process
CN115305346B (en) * 2022-09-14 2023-06-02 中南大学 Method for reducing corrosion of grate bar in sintering process

Also Published As

Publication number Publication date
JP5058715B2 (en) 2012-10-24

Similar Documents

Publication Publication Date Title
JP3902629B2 (en) Pretreatment method of sintering raw materials
JP4568243B2 (en) Method of kneading fine powder material
WO2006120773A1 (en) Method for pretreatment of raw materials for sintering
US9970085B2 (en) Method for producing pellets and method for producing iron-nickel alloy
CA2956509C (en) Method for producing pellets and method for producing iron-nickel alloy
JP4840524B2 (en) Method for manufacturing raw materials for sintering
JP5375742B2 (en) Granulation method of sintering raw material
JP5315659B2 (en) Method for producing sintered ore
JP5058715B2 (en) Pretreatment method for sintering raw materials
AU2018274856B2 (en) Method for smelting nickel oxide ore
JP5451568B2 (en) Pretreatment method for sintering raw materials
JP4786508B2 (en) Pretreatment method of sintering raw material
JP5935979B2 (en) Method for producing pseudo-particles for producing sinter and method for producing sinter
JP5224917B6 (en) Manufacturing method of sintered raw material
JP6369113B2 (en) Method for producing sintered ore
JP6051883B2 (en) Method for drying sintered raw material granulation
JP2012092384A (en) Method of manufacturing sintered ore
JP2006312786A (en) Method for pretreating raw material for sintering
JP6805672B2 (en) Manufacturing method of carbonaceous interior granulated particles and manufacturing method of carbonaceous interior agglomerate
JP7024649B2 (en) Granulation method of raw material for sintering
JP5008859B2 (en) Method for drying raw material granulated product and method for producing sintered ore
JPS62214138A (en) Manufacture of sintered ore
JP5831397B2 (en) Method for producing sintered ore
JPS62214137A (en) Method for granulating starting material to be sintered

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120710

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120801

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5058715

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350