JPS62297421A - Multi-stage ignition type sintering method - Google Patents

Multi-stage ignition type sintering method

Info

Publication number
JPS62297421A
JPS62297421A JP14021586A JP14021586A JPS62297421A JP S62297421 A JPS62297421 A JP S62297421A JP 14021586 A JP14021586 A JP 14021586A JP 14021586 A JP14021586 A JP 14021586A JP S62297421 A JPS62297421 A JP S62297421A
Authority
JP
Japan
Prior art keywords
raw material
coke
added
reactivity
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14021586A
Other languages
Japanese (ja)
Inventor
Kiyoshi Kojima
清 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP14021586A priority Critical patent/JPS62297421A/en
Publication of JPS62297421A publication Critical patent/JPS62297421A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To prevent the quality degradation of sintered ore of 2nd and subsequent layers by using fuel having a fine grain size and/or high reactivity for the 2nd and subsequent layers with respect to the uppermost layer for the fuel to be added to and mixed with the granular iron ore raw materials which are divided to plural layers and are supplied to a sintering machine. CONSTITUTION:The grain size of coke as the fuel to be added to the lower layer raw material B in a multi-stage ignition type sintering method is selected at the size smaller than the grain size of the coke to be added to the upper layer raw material A so that the product yield and strength of the upper and lower layers are made approximately equal to each other. The reactivity of the coke to be added to the lower layer raw material B is selected at the reactivity larger than the reactivity of the coke to be added to the upper layer raw material A so that the product yield and strength of the upper and lower layers are made approximately equal to each other. As a result, the advantages including the increased productivity of the multi- stage ignition type sintering method, decreased air flow rate for calcination per ton of the sintering raw materials, the reduced electric power consumption of the main exhaust an and the decreased generation of NO2 are best utilized without degrading the quality and yield of the lower layer sintered ore. The respective records of the above-mentioned embodiment and comparative example are shown in Table 2.

Description

【発明の詳細な説明】 3、発明の詳細な説明 (産業上の利用分野) 本発明は、製鉄業におけるP:f8桔鉱の製造方法に関
するものであり、さらに詳しくは、粉状鉄鉱石原料を複
数段ンて分割して焼結機に装入した後、各段の原料表層
部に点火して複数の燃焼帯を形成させて焼結を行わせる
、いわゆる、多段点火焼結法に関するものである。
Detailed Description of the Invention 3. Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for producing P:f8 botanical ore in the steel industry. This relates to the so-called multi-stage ignition sintering method, in which the raw material is divided into multiple stages and charged into a sintering machine, and then the surface layer of the raw material in each stage is ignited to form multiple combustion zones and sinter. It is.

(従来の技術) 多段点火焼結法は、例えば特開昭47−26304号に
あるように、原料層内に複数の燃焼帯を形成させて焼結
を行わせる方法であり、設備を大型化することなく生産
量を増大させることができ、また、燃焼に関与する酸素
の割合が増加するため、焼結原料トン尚りの焼成風量が
低下し、主排、lの電力原単位を低下させることができ
るという特徴を持つ。さらに、特開昭53−48904
号にちるように、(上から数えて)第2段目以下の原1
1−+に添加した粉コークスの燃焼胴ガスは、第1段目
の排ガスであるため酸素儂5度が低く、iN Oxの発
生量全低位に抑制出来るという特徴をも持つ。
(Prior art) The multi-stage ignition sintering method is a method in which sintering is performed by forming multiple combustion zones within the raw material layer, as described in, for example, Japanese Patent Application Laid-Open No. 47-26304. In addition, since the proportion of oxygen involved in combustion increases, the amount of sintering air per ton of sintered raw material decreases, reducing the power consumption per ton of sintered raw material. It has the characteristic of being able to Furthermore, JP-A-53-48904
As per the title, the second row and below (counting from the top) are 1.
The combustion shell gas of the coke breeze added to the 1-+ is the exhaust gas of the first stage, so it has a low oxygen content and has the characteristic that the amount of iN Ox generated can be suppressed to a low level.

(発明が解決しようとする問題点) しかるに、上記多段点火焼結I去においては、第2段目
以下の・−焼用ガスの組成として、1.120およびC
O□儂7が高く、酸素の1度が低いガスが米るため、粉
コークスの燃焼が充分に行われず、第2段目以下の1暁
結ヱの品質を低下させるという欠、占を有していた。
(Problems to be Solved by the Invention) However, in the above multi-stage ignition sintering process, the composition of the sintering gas in the second and subsequent stages is 1.120 and C.
Since the gas with high O□儑 and low oxygen content is used, the combustion of coke breeze is not carried out sufficiently, which has the disadvantage of deteriorating the quality of the first stage coke in the second stage and below. Was.

このような欠点を解決するための従来の技術として、各
原料装入層間に吸熱および水分凝集材料として、例えば
、乾燥した返し鉱、砂、粉鉱石、生石灰粉を装入する方
法が提案されている。(特開昭57−137413号)
しかし、この方法では、ある程度H20を除去すること
は出来るが、CO2濃変耐高い悪影響については、解決
されない。また、装入装置および成品処理系統での水分
凝集材料を成品焼結鉱から分離する装置が複雑になった
シ、成品焼結鉱の成分ばらつきがおおきくなるという欠
点を有していた。
As a conventional technique to solve these drawbacks, a method has been proposed in which, for example, dry return ore, sand, fine ore, or quicklime powder is charged as a heat-absorbing and water-agglomerating material between each raw material charging layer. There is. (Unexamined Japanese Patent Publication No. 57-137413)
However, although this method can remove H20 to some extent, it does not solve the adverse effect of high CO2 concentration resistance. In addition, the charging device and the device for separating the water agglomerated material from the finished sintered ore in the product processing system are complicated, and the composition of the finished sintered ore has a large variation.

本発明は、かかる問題点を解決し、多段点火焼結法にお
ける第2段目以下の焼結鉱の品質の低下を防止し、なお
かつ、これを簡易な設備で実現する焼結鉱の製造方法を
提供するものである。
The present invention solves these problems, prevents deterioration of the quality of sintered ore in the second stage and below in the multi-stage ignition sintering method, and achieves this with simple equipment. It provides:

(問題点を解決するための手段) 本発明は、粉状鉄鉱石原料を複数段に分割して焼結機に
装入した後、各段の原料表層部に点火して複数の燃焼帯
を形成させて焼結を行わせるに際し、第2段目以下の原
料に添加混合する燃料の粒径を、最上段の原料シて添加
混合する燃料よシも細粒のもの、および/または、第2
段目以下の原料に添加混合する燃料の反応性が最上段の
原料に添加混合する燃料よシも高いものを用いることを
特徴とするものである。
(Means for Solving the Problems) The present invention divides powdered iron ore raw material into multiple stages and charges the raw material into a sintering machine, and then ignites the surface layer of the raw material in each stage to create multiple combustion zones. When forming and sintering, the particle size of the fuel to be added and mixed with the raw materials in the second stage and below is such that the fuel to be added and mixed with the raw materials in the uppermost stage is also fine-grained and/or 2
This method is characterized in that the reactivity of the fuel added to and mixed with the raw materials in the lower stages is higher than that of the fuel added and mixed with the raw materials in the uppermost stage.

第2段目以下の原料に添加混合する粉コークスとしては
、通常の粉コークスの破砕を強化してもよいし、また、
CDQ設備等で発生する微粉の集塵粉コークスを使用す
ることもできる。
The coke powder added to and mixed with the raw materials for the second stage and below may be obtained by strengthening the crushing of ordinary coke powder, or by
It is also possible to use fine dust-collected coke generated in CDQ equipment or the like.

反応性の高いコークスとしては、低温乾留によシ製造し
てもよいし、無煙炭を用いてもよい。また、粉コークス
あるいは微粉の集塵粉コークスを、セメント・生石灰で
造粒あるいは擬似粒化し、CaOの燃焼促進作用により
反応性を高めてもよい。
The highly reactive coke may be produced by low-temperature carbonization, or anthracite may be used. Alternatively, coke powder or coke dust collected in fine powder may be granulated or pseudo-granulated with cement/quicklime, and the reactivity may be increased by the combustion promoting action of CaO.

(作用) 通常の1段点火焼結法におけるパレット台車直下の排ガ
ス組成は、02=10乃至15%、C0=1乃至2%、
CO2= 5乃至10条、ト■20=10係前後である
0 このような組成のガスによシ第2段目以下の原料を焼結
するわけであるが、該ガスは、次の2っの特徴を持つ。
(Function) In the normal one-stage ignition sintering method, the exhaust gas composition directly under the pallet truck is 02 = 10 to 15%, C0 = 1 to 2%,
CO2 = 5 to 10, and 20 = around 10. The raw materials for the second stage and below are sintered using a gas with such a composition. It has the characteristics of

(1)0□濃度が低い。従って、コークスの燃焼速度が
遅くなる。
(1) 0□ concentration is low. Therefore, the combustion rate of coke becomes slower.

(2)CO2,H2Oを含む。CO2,H2Oは、第3
図に示すようにs 02+ N2に比べ、比熱が大きい
0本発明者は、第2段目以下の焼結鉱の品質低下原因を
明らかにする為に、焼結層のような充填層における伝熱
およびヒートパターンの決定要因について、鋭意、研究
を行った結果、高温帯の前面の移動速度Suと高温帯の
後面の移動速度Su’が、次の式によって表わされるこ
とを見出した。即ち、V:ガス流速 (m/hr) ゛Cg:ガス比熱 (kcol /Nm3℃)Cp:原
料比熱 (kcol/kg ℃)ρ、:原料密度(kg
/m3) に :総括熱伝導率(kcaI/m−h「・℃)γ :
単位体積当シのコークス燃焼速度(kxoI /m3)
ρU:コークス密度 これらの式から、 SuおよびSu’はガスの比熱に依
存し、この観点から多段点火焼結法における第2段目以
下の高温帯の形成を考察してみると、高温帯の後面にお
いては、CO□、T(20の比熱の大きさのために、高
温帯の後面移動速度Su’は、犬さくなる。一方、高温
帯の前面においては、同じく、ガスの比熱は大きいもの
の、ガス中02濃度が低いため、コークスの燃焼速度γ
が小さくなシ、高温帯の前面の移動速度Suとしては、
かえって小さくなってしまう。
(2) Contains CO2 and H2O. CO2, H2O are the third
As shown in the figure, s 02+ has a large specific heat compared to N2. In order to clarify the cause of the quality deterioration of sintered ore from the second stage onwards, the inventor investigated the As a result of extensive research into the determinants of heat and heat patterns, it was discovered that the moving speed Su of the front surface of the high temperature zone and the moving speed Su' of the rear surface of the high temperature zone are expressed by the following equation. That is, V: Gas flow rate (m/hr) ゛Cg: Gas specific heat (kcol/Nm3℃) Cp: Raw material specific heat (kcol/kg ℃) ρ,: Raw material density (kg
/m3) to: Overall thermal conductivity (kcaI/m-h "・℃) γ:
Coke burning rate per unit volume (kxoI/m3)
ρU: Coke density From these equations, Su and Su' depend on the specific heat of the gas. Considering the formation of the high-temperature zone in the second stage and below in the multi-stage ignition sintering method from this point of view, it is found that At the rear surface, due to the magnitude of the specific heat of CO□, T (20), the rear surface movement speed Su' of the high temperature zone becomes small. , because the 02 concentration in the gas is low, the coke combustion rate γ
is small, the moving speed Su of the front of the high temperature zone is
On the contrary, it becomes smaller.

この結果、多段点火式焼結法における第2段目以下の高
温帯の形状は、第2図の(a)K示すように、高温帯の
前面が高温帯の後面に追いがけられる形となり、高温帯
幅が狭く、最高温度の高い、シャープな形状を示す。こ
のような場合、焼成される焼結鉱は、高温域滞留時間が
短く、冷却速度が犬きいために、前記従来の技術の問題
点に述べた如く、品質、特に強度・歩留の低下を来たす
わけである。
As a result, the shape of the high-temperature zone in the second stage and below in the multi-stage ignition sintering method is such that the front surface of the high-temperature zone is chased by the rear surface of the high-temperature zone, as shown in FIG. 2 (a) K. It exhibits a sharp shape with a narrow high temperature zone and a high maximum temperature. In such cases, the sintered ore to be fired has a short residence time in the high temperature region and a slow cooling rate, resulting in a decrease in quality, especially strength and yield, as mentioned above in the problems of the conventional technology. That's why I'm coming.

このような弊害を除くためには、以上の考察から明らか
なように、コークスの燃焼速度γを大きくしてやればよ
く、そのための具体的な手段として、燃料の細粒化が考
えられるのである。或は、燃料の高反応性化をしてもよ
いし、両者を組み合わせてもよい。
In order to eliminate such adverse effects, as is clear from the above discussion, it is sufficient to increase the combustion rate γ of coke, and a concrete means for achieving this is to make the fuel particles finer. Alternatively, the reactivity of the fuel may be increased, or both may be combined.

燃料の細粒化、或は、燃料の高反応性化をすると、第2
図の(b)に示すように、高温帯の形状は健全なものと
なり、強度・歩留の低下を防止できる。
If the fuel particles are made finer or the fuel becomes more reactive, the second
As shown in (b) of the figure, the shape of the high-temperature zone becomes sound, and a decrease in strength and yield can be prevented.

また、同一ガス流速に対しての高温帯の移動速度も速く
なり、生産性がさらに伸びるという特徴も出てくる。
Additionally, the moving speed of the high temperature zone becomes faster for the same gas flow rate, resulting in a further increase in productivity.

(実施例) 本発明のうち、2段点火式焼結法を例にとって図面と表
(てよシ説明する。
(Example) Of the present invention, the two-stage ignition sintering method will be explained using drawings and tables as an example.

使用した原料は、第1表に示す如くである。The raw materials used are as shown in Table 1.

第1表゛原料配合割合 本発明の1実施例は、第1図に示す如く、原料ラミキサ
−2により混合し、粉コークスヲ含まない配合原料を作
シ、次に該配合原料と分割ダンパー3で配合原料A及び
配合原料Bに2分割した後、これに粉コークスホッパー
4Aおよび4Bがら粉コークスを秤量添加し、2次ミキ
サー5Aおよび5Bによシ水を添加しながら混合・造粒
し、さらにこれをサージホッパー6Aおよび6B、  
ドラムフィーダ7Aおよび7Bを経て床敷鉱9を敷いた
パレット台車10に供給し1点火炉8A′s−よび8B
によシ点火し、2段の燃焼帯11A+、およびIIBを
形成させて焼結するちのである。
Table 1: Raw Material Blending Ratio In one embodiment of the present invention, as shown in FIG. After dividing into two parts, mixed raw material A and mixed raw material B, powdered coke from coke powder hoppers 4A and 4B is added by weight, mixed and granulated while adding water to secondary mixers 5A and 5B, and further Surge hoppers 6A and 6B,
It is fed through drum feeders 7A and 7B to a pallet truck 10 on which bedding ore 9 is laid, and then 1 ignition furnace 8A's and 8B.
This is followed by ignition, forming two stages of combustion zones 11A+ and IIB, and sintering.

本発明の実施例および比較例を第2表に示す。Examples and comparative examples of the present invention are shown in Table 2.

比較例として、下層原料Bに添力目するコークスの粒径
と反応性を、上層原料Aに添加するコークスと同一のも
のとした場合、下層の成品歩留および強度が、上層に比
べ、ともに低下した。
As a comparative example, when the particle size and reactivity of the coke added to the lower layer raw material B are the same as those of the coke added to the upper layer raw material A, the product yield and strength of the lower layer are both lower than those of the upper layer. decreased.

これに対して、下層原料Bに添加するコークスの粒径を
、上層原料Aに添加するコークスの粒径より小さくした
実施例1では、上層と下層の成品歩留および強度が、は
ぼ同等となった。
On the other hand, in Example 1, in which the particle size of the coke added to the lower layer raw material B was smaller than the particle size of the coke added to the upper layer raw material A, the product yield and strength of the upper and lower layers were almost the same. became.

また、下層原料Bに添加するコークスの反応性を、上層
原料Aに添加するコークスの反応性より太きくした実施
例2でも、上層と下層の成品歩留および強度が、はぼ同
等となった。
Furthermore, in Example 2, in which the reactivity of the coke added to the lower layer raw material B was made greater than the reactivity of the coke added to the upper layer raw material A, the product yield and strength of the upper and lower layers were almost the same. .

さらに、下層原料BK添加するコークスの粒径を、上層
原料Aに添加するコークスの粒径より小さくし、かつ反
応性も太キくシた場合、下層の成品歩留および強度が、
上層のそれとほぼ同等となったO ここでは、2段点火焼結/f:、をψ′1:てとって、
説明したわけであるが、3段以上に点火する艷結方1去
においても考え方は同じであり、同機の効果が得られる
のは勿論のことである。
Furthermore, if the particle size of the coke added to the lower layer raw material BK is made smaller than the particle size of the coke added to the upper layer raw material A, and the reactivity is also increased, the product yield and strength of the lower layer will be
O is almost the same as that of the upper layer. Here, we take the two-stage ignition sintering /f:, as ψ'1:
As explained above, the concept is the same in the case of ignition in three or more stages, and it goes without saying that the effects of the same aircraft can be obtained.

(発明の効果) 以上説明した如く、本発明方法によれば、下層焼結鉱の
品質・歩留を落とすことなく、多段点火焼結法の生産量
の増大、焼結原料トン尚シの焼成風量の低下、主排風の
電力原単位の低下、 NOxの発生量の低下という特徴
を最大限に活かすことができる。
(Effects of the Invention) As explained above, according to the method of the present invention, the production volume of the multi-stage ignition sintering method can be increased without degrading the quality and yield of the lower layer sintered ore, and the sintering raw material tons can be fired. It is possible to take full advantage of the characteristics of lower air volume, lower power consumption for main exhaust air, and lower NOx generation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、実施例における燃料および原料の供給系統図
、第2図は本発明作用の説明図であシ、層高さ方向の温
度分布図、第3図は、温度とガスの比熱の関係図である
。 l・・・原料ホンパー  2・・・ミキサー3・・・分
割ダンパー  4Aおよび4B・・・粉コークスホッパ
ー 5Aおよび5B・・・2次ミキサー 6Aおよび6B・・・サージホッパー 7Aおよび7B・・・ドラムフィーダ 8Aおよび8B・点火炉 9・・・床敷鉱     lO・・・パレット台車11
AおよびIIB・・・燃焼帯 出 願 人 新日本製鐵株式会社 @1llffl 第2図 $1 第3図 立L/L(°C’
Fig. 1 is a fuel and raw material supply system diagram in an embodiment, Fig. 2 is an explanatory diagram of the operation of the present invention, and Fig. 3 is a temperature distribution diagram in the layer height direction. It is a relationship diagram. l... Raw material hopper 2... Mixer 3... Division damper 4A and 4B... Coke powder hopper 5A and 5B... Secondary mixer 6A and 6B... Surge hopper 7A and 7B... Drum Feeders 8A and 8B, ignition furnace 9... bedding ore lO... pallet truck 11
A and IIB... Combustion zone applicant Nippon Steel Corporation @1llffl Figure 2 $1 Figure 3 L/L (°C'

Claims (1)

【特許請求の範囲】[Claims] (1)粉状鉄鉱石原料を複数層に分割して焼結機に供給
し、その一層づつに点火して複数の燃焼帯を形成させて
焼結を進行せしめる多段点火式焼結法において、前記粉
状鉄鉱石原料に添加混合する燃料は、最上層に対し第2
層目以下は、粒径の細粒のものおよび/または反応性の
高いものを用いることを特徴とする多段点火式焼結法。
(1) In a multi-stage ignition sintering method in which powdered iron ore raw material is divided into multiple layers and supplied to a sintering machine, each layer is ignited to form multiple combustion zones and proceed with sintering. The fuel added to and mixed with the powdered iron ore raw material is
A multi-stage ignition sintering method characterized by using particles with fine diameter and/or particles with high reactivity in the layers below.
JP14021586A 1986-06-18 1986-06-18 Multi-stage ignition type sintering method Pending JPS62297421A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14021586A JPS62297421A (en) 1986-06-18 1986-06-18 Multi-stage ignition type sintering method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14021586A JPS62297421A (en) 1986-06-18 1986-06-18 Multi-stage ignition type sintering method

Publications (1)

Publication Number Publication Date
JPS62297421A true JPS62297421A (en) 1987-12-24

Family

ID=15263596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14021586A Pending JPS62297421A (en) 1986-06-18 1986-06-18 Multi-stage ignition type sintering method

Country Status (1)

Country Link
JP (1) JPS62297421A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009097027A (en) * 2007-10-15 2009-05-07 Sumitomo Metal Ind Ltd Method for producing sintered ore

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009097027A (en) * 2007-10-15 2009-05-07 Sumitomo Metal Ind Ltd Method for producing sintered ore

Similar Documents

Publication Publication Date Title
US2855290A (en) Method of reducing iron oxide to sponge iron
JPH0121855B2 (en)
JPH024658B2 (en)
NO129801B (en)
JPS62297421A (en) Multi-stage ignition type sintering method
JPS6052533A (en) Preliminary treatment of sintered raw material
JP2002226920A (en) Sintered ore manufacturing method, and sintered ore
JPH01147023A (en) Manufacture of sintered ore
CS273319B2 (en) Method of ferrous powders production from fine loose powdered iron trioxide
JPS63149331A (en) Production of burnt agglomerated ore
JPS58133331A (en) Preparation of sintered ore
JPS63149336A (en) Production of burnt agglomerated ore
JP3709001B2 (en) Non-fired agglomerated ore for iron making and method of using the same
JPS63128127A (en) Manufacture of sintered ore
JPH0257641A (en) Method of charging sintering raw material
JPS59232238A (en) Production of sintered ore
JPS62130227A (en) Method for sintering fine ore
JPS597770B2 (en) Chrome ore sintering method
CN113621832A (en) Preparation method of metal magnesium
JPH01152211A (en) Pre-reduction apparatus for smelting reduction
JPS6349728B2 (en)
JPH01240626A (en) Manufacture of ingot-forming ore for shaft furnace
JPS6248749B2 (en)
JPS63153226A (en) Manufacture of agglomerate
JPH01230453A (en) Production of quick lime for sintering raw material