JPH0257641A - Method of charging sintering raw material - Google Patents

Method of charging sintering raw material

Info

Publication number
JPH0257641A
JPH0257641A JP21037888A JP21037888A JPH0257641A JP H0257641 A JPH0257641 A JP H0257641A JP 21037888 A JP21037888 A JP 21037888A JP 21037888 A JP21037888 A JP 21037888A JP H0257641 A JPH0257641 A JP H0257641A
Authority
JP
Japan
Prior art keywords
raw materials
raw material
coarse
sintering
fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21037888A
Other languages
Japanese (ja)
Inventor
Yoshinori Umetsu
梅津 善徳
Yukihiro Hida
肥田 行博
Masami Fujimoto
藤本 政美
Tadahiro Inasumi
忠弘 稲角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP21037888A priority Critical patent/JPH0257641A/en
Publication of JPH0257641A publication Critical patent/JPH0257641A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To allow the use of a hardly sinterable iron ore and to reduce the production cost of the sintered ore by depositing raw materials for the sintered ore through a bar-shaped slant sieve so as to attain a specific grain size distribution in the thickness direction on the pallet of a sintering device at the time of producing the sintered ore for a blast furnace. CONSTITUTION:Quick lime is added to the powder of the iron ore which is not adequate as the raw material for the sintered ore such as easily metalble iron ore and hardly sinterable iron ore contg. SiO2 at a lower ratio and a carbonaceous material is added at need to form relatively rough minipellets 9 of 6-13mm grain size. The raw materials prepd. by adding and mixing auxiliary raw materials such as easily sinterable iron ore, returns of the sintered ore, carbonaceous material, and CaO to and with these pellets are put into a surge hopper 1. The powder raw material mixture is classified to fine grains 4a and coarse grains 4b by the primary sieve 3 arrayed obliquely with steel bars, etc. The grains are again classified by the bar-shaped secondary sieves 6a, 6b and are charged onto the pallet 7 of the sintering device so as to have the grain sizes gradually smaller from the lower layers to the upper layers to form a raw material packed layer 8. The front surface of the packed layer 8 is ignited by an ignition furnace 10 to sinter the raw materials. The use of the inexpensive sintering raw materials is possible and the cost of the sintered ore is reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高炉装入原料として使用される焼結鉱を製造
する際、焼結性の低い原料の使用を可能にした装入方法
に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a charging method that enables the use of raw materials with low sinterability when producing sintered ore used as a raw material for blast furnace charging. .

〔従来の技術〕[Conventional technology]

粉鉱石等の製鉄原料から焼結鉱を製造する際、たとえば
粒径10mm以下の鉄鉱石に適度な粒度のコークス及び
必要に応じて石灰石粉末等の副原料を混合し、この混合
物を焼結機のパレットに装入して、その表層にあるコー
クスに点火し、下方に空気を吸引しながらコークスを燃
焼させ、このときに発生する燃焼熱によって焼結が行わ
れる。このような焼結においては、コークスの燃焼によ
り焼結反応が進行することから、パレットにおける原料
充填層の下部はど高温になり、通気抵抗が増加する。そ
の結果、原料層の厚み方向に関して焼結反応が不均一に
なり、焼き過ぎや焼結不足などが生じ易く、焼結された
原料を運搬したり取り扱う過程で粉化する割合が多くな
る。
When producing sintered ore from ironmaking raw materials such as fine ore, for example, iron ore with a particle size of 10 mm or less is mixed with coke of an appropriate particle size and, if necessary, auxiliary materials such as limestone powder, and this mixture is passed through a sintering machine. The coke is charged into a pallet, the coke on the surface layer is ignited, and the coke is combusted while sucking air downward, and the combustion heat generated at this time causes sintering. In such sintering, since the sintering reaction progresses due to the combustion of coke, the lower part of the raw material packed bed in the pallet becomes high temperature, increasing ventilation resistance. As a result, the sintering reaction becomes non-uniform in the thickness direction of the raw material layer, which tends to cause over-baking or insufficient sintering, and increases the proportion of sintered raw materials that are pulverized during transportation and handling.

この欠点を解消するため、パレットに装入された焼結原
料の粒度が下層部で粗く、上層部で細かくなるように、
且つコークス量も上層部に多くなるように、装入する方
法が従来から種々提案されている。本発明者等も、傾斜
配列された複数の棒材で構成するフルイを使用し、焼結
原料をその粒度に応じてパレットに分級装入し、均一な
焼結反応を行わせる装入装置を開発し、特願昭60−6
4677号として出願した。
In order to eliminate this drawback, the grain size of the sintering raw material charged into the pallet is coarse in the lower layer and finer in the upper layer.
In addition, various charging methods have been proposed so that the amount of coke is increased in the upper layer. The present inventors also developed a charging device that uses a sieve consisting of a plurality of rods arranged at an angle, classifies and charges sintering raw materials into pallets according to their particle size, and performs a uniform sintering reaction. Developed and patented in 1986-6
The application was filed as No. 4677.

ところが、鉄源として使用される原料には、昌溶融原料
、低S r 02原料等の焼結性に劣るものがある。た
とえば、低Si O2原料を焼結するとき、スラグボン
ドが不足して、歩留りや強度が低下する。このような問
題への取組みは従来から試みられており、多くの提案が
されている。たとえば、特開昭59−9131号公報1
 特開昭59−83727号公報。
However, some raw materials used as iron sources have poor sinterability, such as sintered raw materials and low S r 02 raw materials. For example, when sintering a low-SiO2 raw material, there is a shortage of slag bonds, resulting in a decrease in yield and strength. Attempts have been made to address such problems, and many proposals have been made. For example, Japanese Patent Application Laid-Open No. 59-9131 1
JP-A-59-83727.

特開昭60−248827号公報等であり、何れも特殊
な原料を分離・分別して、Cab、  SiO□、Mg
O等の副原料を調合造粒したミニペレットを予め製造し
、その後に焼結配合原料を再配合して、特殊な原料を支
障なく使うというものである。しかし、分離・分別して
造粒されたミニペレットが配合原料中に均一に分布する
と、特殊調合された副原料が全体に分散し、特殊原料の
みと反応するチャンスが薄められ、その効果は半減する
JP-A No. 60-248827, etc., in which special raw materials are separated and fractionated to produce Cab, SiO□, and Mg.
Mini pellets are prepared in advance by mixing and granulating auxiliary raw materials such as O, and then the sintering compound raw materials are re-compounded, allowing special raw materials to be used without any problems. However, when the separated and granulated mini pellets are uniformly distributed in the blended raw materials, the specially formulated auxiliary raw materials are dispersed throughout, diluting the chance of reacting with only the special raw materials, and the effect is halved. .

そこで、特公昭60−47887号公報においては、易
溶触性鉱石が上層部に、難溶融性鉱石が下層部になるよ
うに、配合原料を焼結機のパレットに装入する二段装入
方法が提案されている。
Therefore, in Japanese Patent Publication No. 60-47887, a two-stage charging method is proposed in which mixed raw materials are charged into a pallet of a sintering machine so that the easily meltable ore is in the upper layer and the hardly meltable ore is in the lower layer. is proposed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前掲公報で開示されている二段装入方法は、上層部用原
料と下層部用原料とを、それぞれ別個の系列で焼結機の
パレットまで搬送し、下層に難溶融性原料を友人した後
で、易溶敵性原料をその上に装入している。そのため、
原料搬送系統が2系統必要となり、設備の設置数が多く
なる。その結果、装置が複雑化し、保守・管理が面倒に
なり、設備費の負担も大きくなる。この欠点と比較する
と、二段装入による実操業上の効果も減殺される。
The two-stage charging method disclosed in the above publication involves transporting the raw materials for the upper layer and the raw materials for the lower layer in separate lines to the pallet of the sintering machine, and then transporting the refractory raw materials to the lower layer. Then, the easily soluble hostile raw material is charged on top of it. Therefore,
Two raw material transport systems are required, which increases the number of equipment installed. As a result, the equipment becomes complicated, maintenance and management become troublesome, and the burden of equipment costs increases. Compared to this drawback, the effectiveness of two-stage charging in actual operation is also diminished.

そこで、本発明は、傾斜配列された複数の棒材で構成さ
れたフルイによる分級装入を活用することによって、独
立した複数の原料搬送系統を必要とすることなく、焼結
性の悪い原料の事前処理したものを上層部に偏在させ、
他の焼結原料と同様に均一な焼結反応を受けさせ、歩留
り良く且つ品質上の問題を解消し1ヱがら焼結鉱を製造
することを目的とする。
Therefore, the present invention utilizes classification charging using a sieve made up of a plurality of bars arranged at an angle, thereby eliminating the need for a plurality of independent raw material conveyance systems and eliminating the need for raw materials with poor sinterability. Pre-processed items are unevenly distributed in upper management,
The purpose is to undergo a uniform sintering reaction similar to other sintering raw materials, and to produce sintered ore with a high yield and eliminate quality problems.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、易溶融性焼結原料、低SiO2原料等の難溶
融性焼結原料にCaO等の低融点化副原料及び必要に応
じて炭材等を混合造粒して粒径が6〜13mの比較的粗
いミニペレット等の粗粒とし、これを易焼結性原料、返
鉱、炭材、副原料等の通常原料と混合してホッパーに収
容し、このホッパーの下方に傾斜配置された複数の棒材
よりなる一次フルイで粗粒と細粒に分級して、該一次フ
ルイ下方に併設した粗粒ホッパーと細粒ホッパーにそれ
ぞれ分級収容し、前記粗粒ホッパーと前記細粒ホッパー
下方にそれぞれ傾斜配列された複数の棒材よりなる二次
フルイでそれぞれ分級して、前記細粒ホッパーからの含
細粒原料は焼結パレット上で下層から上層に粒径が次第
に小さくなるように装入され、前記粗粒ホッパーからの
粗粒原料は前記細粒原料によって形成された原料充填層
上に装入されて表層を形成し、表層側に粒径が次第に小
さくなるように装入されることを特徴とする焼結原料の
装入方法である。
The present invention involves mixing and granulating easily melting sintering raw materials, hardly melting sintering raw materials such as low SiO2 raw materials, low melting point auxiliary raw materials such as CaO, and carbonaceous materials as necessary to obtain a particle size of 6 to 6. Coarse particles such as relatively coarse mini pellets of 13 m are mixed with ordinary raw materials such as easily sinterable raw materials, return ore, carbonaceous materials, and auxiliary raw materials and stored in a hopper. A primary sieve consisting of a plurality of rods is used to classify coarse grains and fine grains, and the particles are classified and stored in a coarse grain hopper and a fine grain hopper installed below the primary sieve, respectively. The fine-grained raw material from the fine-grain hopper is sorted by a secondary sieve consisting of a plurality of rods arranged at an angle, respectively, and the fine-grained raw material from the fine-grain hopper is loaded onto a sintering pallet so that the particle size gradually decreases from the lower layer to the upper layer. The coarse grain raw material from the coarse grain hopper is charged onto the raw material packed bed formed by the fine grain raw material to form a surface layer, and the coarse grain raw material is charged to the surface layer side so that the particle size gradually becomes smaller. This is a method for charging raw materials for sintering.

〔作用〕 本発明においては、難焼結性の特定原料に対してCaO
の多量添加等による無害化処理等の事前処理を施した後
に、ミニペレット化したものを粒径6〜13市程度の粗
粒となし、該ミニペレットを一度焼結配合原料として、
他の易焼結性原料と配合し、単系統の輸送ラインでパレ
ット上に運び、ここで一次フルイによって粒径(6〜1
3疵)で差別化されている粗粒のミニペレットを分離し
、それらを表層形成用二次フルイで分級し、下層形成用
二次フルイでパレット上に分級装入された他の配合原料
による原料充填層上に装入し、原料充填層の表層のみに
偏在させるものである。つまり、これにより形成される
原料充填層は、下層は粗く、中・上層に行くに従って細
かくなる粒度上の偏析をもつように装入する。これによ
って、焼結配合原料は、下層から上層に向けて順次粒度
が細かくなって行くように偏析を受けており、一方、最
上層には無害化された特定原料だけが焼結反応が起こら
ない形で偏在するという通気的にも熱的にも理想的な原
料充填層が形成される。これにより、能率9歩留り9品
質共に良好な焼結操業をH焼結原料使用下でも維持する
ことができる。
[Function] In the present invention, CaO is added to a specific raw material that is difficult to sinter.
After pretreatment such as detoxification treatment by adding a large amount of
It is mixed with other easily sinterable raw materials and conveyed on a pallet by a single transportation line, where it is passed through a primary sieve to a particle size (6 to 1
Separate the coarse mini-pellets that are differentiated by It is charged onto the raw material packed bed and is unevenly distributed only on the surface layer of the raw material packed bed. That is, the raw material packed bed thus formed is charged so that the lower layer is coarse and the grain size segregation becomes finer toward the middle and upper layers. As a result, the raw materials for sintering are segregated so that the particle size becomes finer from the bottom layer to the top layer, while in the top layer, only the specific raw materials that have been rendered harmless do not undergo the sintering reaction. A packed bed of raw materials is formed that is unevenly distributed in shape and is ideal in terms of ventilation and heat. As a result, a sintering operation with good efficiency, yield, and quality can be maintained even when H sintering raw materials are used.

ここで、本発明の作用について、より深く理解する上で
、必要な参考記述を次に示しておく。
Here, reference descriptions necessary for a deeper understanding of the operation of the present invention are shown below.

■ 本発明者等は、多孔質・低SiO2原料に関して、
指数Rc−o= ((Ca0%−1,2XS102%)
/(Fe%)]とした場合、返鉱を除く配合原料につい
て0.08≦RC,0<0.25となるようにCaOを
調整することによって、該低SiO2原料を支障なく使
用できることも先に提案済みである。本発明では、その
原理によって多量のCaOと低SiO2原料とをミニベ
レット化して、無害化するのである。
■ The present inventors, regarding porous and low SiO2 raw materials,
Index Rc-o= ((Ca0%-1,2XS102%)
/(Fe%)], by adjusting CaO so that 0.08≦RC, 0<0.25 for the blended raw materials excluding return ore, the low SiO2 raw material can be used without any problems. It has already been proposed. In the present invention, based on this principle, a large amount of CaO and low-SiO2 raw materials are made into mini pellets and rendered harmless.

■ ミニペレットの粒度を6〜13IIlfflとして
いるが、これは焼結配合原料の中でミニベレットを粒度
的に差別化するためであり、配合原料の粒径がたとえば
一5市が100%であれば、該ミニペレットの粒径は6
〜10mmでも良い。ミニペレットの上限粒径は、なる
べく大きくした方が良いが、配合原料と差別化する際の
ミニベレット製造上の実用粒度範囲を勘案して決められ
る。ミニペレットの上限粒径は、配合原料の最大粒径+
1lnfflとしている。
■ The particle size of the mini pellets is set at 6 to 13IIffl, but this is to differentiate the mini pellets in terms of particle size among the sintering compound raw materials. For example, the particle size of the mini pellets is 6
~10mm is also acceptable. Although it is better to make the upper limit particle size of mini pellets as large as possible, it is determined by taking into consideration the practical particle size range for producing mini pellets when differentiating them from blended raw materials. The upper limit particle size of mini pellets is the maximum particle size of the blended raw materials +
1lnffl.

しかし、これらは完全性を要求するものではない。However, these do not require completeness.

■ 製造されたミニペレットが再度配合原料と合流して
搬送される過程で、ミニベレット自体が多少崩壊するこ
とは避けられない。このミニペレットの部分的崩壊によ
って、本来期待されている効果よりは、現実の効果は小
さくなるので、この点も予め配慮した配合粒径とするこ
とが好ましいといえる。
■ It is inevitable that the mini-pellets themselves will disintegrate to some extent during the process in which the produced mini-pellets are recombined with the blended raw materials and transported. Since the actual effect is smaller than the originally expected effect due to the partial collapse of the mini-pellets, it is preferable to take this point into consideration in advance when determining the blended particle size.

〔実施例〕〔Example〕

第1図は、本発明の実施例を示したフローである。 FIG. 1 is a flowchart showing an embodiment of the present invention.

易溶耐性原料、低S+Oz原料、高結晶水含有原料等の
難焼結性原料については、パー)Iで示すようにバイン
ダー及び返鉱と混合した後、比較的多量のCaOと炭材
とを添加する。そして、配合原料に水を加えながら、ペ
レタイザーで粒径6〜13mmの擬似粒子又はミニペレ
ットを造粒する。この擬似粒子又はミニペレットを、原
料輸送系を経由して分級装入装置に輸送する。
For difficult-to-sinter raw materials such as easily soluble raw materials, low S+Oz raw materials, and high crystallization water-containing raw materials, a relatively large amount of CaO and carbonaceous materials are mixed with binder and return ore as shown in Part) I. Added. Then, while adding water to the blended raw materials, pseudo particles or mini pellets having a particle size of 6 to 13 mm are granulated using a pelletizer. The pseudo-particles or mini-pellets are transported to a classification/charging device via a raw material transport system.

他方、易焼結性原料は、パート■で示すように返鉱、炭
材、副原料、雑原料等と混合されて、パー)Iから分級
装入装置に至る原料輸送系の途中に送り込む。そして、
パートIからの原料と混合された状態で、分級装入装置
によって粒度分級されながら、焼結機のパレットに装入
される。
On the other hand, the easily sinterable raw material is mixed with return ore, carbonaceous materials, auxiliary raw materials, miscellaneous raw materials, etc., as shown in part (2), and sent into the raw material transportation system from part (1) to the classification and charging device. and,
Mixed with the raw material from Part I, it is charged to the pallet of the sintering machine while being classified by particle size by a classifying and charging device.

この分級装入装置としては、第2図に示すように傾斜配
列された複数の棒材で構成されるフルイを2段に配置し
たものを使用することが効果的である。すなわち、パー
トIからの難焼結性原料を主体とした原料1よ、パー)
IIからの易焼結性原料を主体とした原料と共に混合さ
れて、サージホッパー1に収容され、底部に設けたドラ
ムフィーダ2から一次フルイ3の上に供給される。この
一次フルイ3によって、供給された原料は細粒部分及び
粗粒原料に粒度分級され、それぞれ細粒用ホッパー4a
及び粗粒用ホッパー4bに収容される。このとき、パー
)1で得られた擬似粒子又はミニペレットは、その粒径
が大きなことがら粗粒用ホッパー4b側に送り込まれる
As this classification and charging device, it is effective to use one in which sieves each consisting of a plurality of bars arranged at an angle are arranged in two stages as shown in FIG. That is, raw material 1, which is mainly composed of difficult-to-sinter raw materials from Part I,
It is mixed with raw materials mainly consisting of easily sinterable raw materials from II, stored in a surge hopper 1, and fed onto a primary sieve 3 from a drum feeder 2 provided at the bottom. By this primary sieve 3, the supplied raw material is classified into a fine part and a coarse part, and a fine part hopper 4a is used for each part.
and is accommodated in the coarse grain hopper 4b. At this time, the pseudo particles or mini pellets obtained in Par) 1 are sent to the coarse particle hopper 4b side because of their large particle size.

ホッパー4a、 4bに収容されている細粒及び粗粒原
料は、それぞれホッパー4a、 4b下部に設けられて
いる細粒用ドラムフィーダ5a及び粗粒用ドラムフィー
ダ5bによって細粒用二次フルイ6a、  粗粒用二次
フルイ6bに供給される。二次フルイ6a、 6bで、
細粒原料及び粗粒原料は更に分級されて、焼結機のパレ
ット7に装入される。
The fine grain and coarse grain materials stored in the hoppers 4a and 4b are transferred to a secondary sieve 6a for fine grains and a drum feeder 5b for fine grains and a drum feeder 5b for coarse grains provided at the bottom of the hoppers 4a and 4b, respectively. It is supplied to the secondary sieve 6b for coarse particles. With secondary sieves 6a and 6b,
The fine-grain raw material and the coarse-grain raw material are further classified and charged into a pallet 7 of the sintering machine.

なお、一次フルイ3及び二次フルイ6a、 6bは、複
数の棒材を、少なくとも下位側が山型を形作るように傾
斜配列してフルイ面を構成したものである。この装入装
置自体は、前述の特願昭5o−64677号で提案した
ものであり、棒材の先端(下位側)に向がうほど棒材の
相互間隔が大きくなっているため、基端側で細粒が棒材
の隙間を通過し、先端側で粗粒が棒材間を通過する。そ
こで、図示するように二次フルイ5a、 5bの棒材の
下位側をパレット7の進行方向Xに関して上流側になる
ように、棒材を傾斜させておくとき、パレット7上に形
成された原料充填層8は、下層から上層に向けて粒径が
小さくなる粒度偏析をもつものとなる。また、コークス
等も、表層部に偏析した状態で装入される。
The primary sieve 3 and the secondary sieves 6a and 6b are constructed by arranging a plurality of rods at an angle so that at least the lower side forms a mountain shape to form a sieve surface. This charging device itself was proposed in the above-mentioned Japanese Patent Application No. 5O-64677, and since the distance between the bars increases toward the tip (lower side) of the bars, Fine grains pass through the gaps between the bars on the side, and coarse grains pass between the bars on the tip side. Therefore, when the bars of the secondary sieves 5a and 5b are tilted so that the lower side of the bars is on the upstream side with respect to the traveling direction The packed bed 8 has particle size segregation in which the particle size decreases from the lower layer to the upper layer. Further, coke and the like are also charged in a state where they are segregated in the surface layer.

このような粒度偏析をもって原料充填層8が形成される
ため、第3図で模式的に示したように、バートIからの
擬似粒子又はミニペレット9は、原料充填層8の上層部
に偏析する。そして、この擬似粒子又はミニペレット9
は、難焼結性原料を多量のCaOと混合して調整したも
のであるために、CaO含有量が局部的に高くなってい
る。このように、焼結時に比較的低温で、しかも通気性
の良好な個所に難焼結性原料が多量のCaOと共に存在
するため、表層のコークスを点火炉10で着火させ原料
充填層8の焼結を行うとき、難焼結性原料の焼結も円滑
に進行する。
Since the raw material packed bed 8 is formed with such particle size segregation, as schematically shown in FIG. . And this pseudo particle or mini pellet 9
Because the material was prepared by mixing a difficult-to-sinter raw material with a large amount of CaO, the CaO content is locally high. In this way, since the difficult-to-sinter raw material exists together with a large amount of CaO at a relatively low temperature and well-ventilated area during sintering, the coke in the surface layer is ignited in the ignition furnace 10 and the raw material packed layer 8 is sintered. When performing sintering, the sintering of difficult-to-sinter raw materials also proceeds smoothly.

ここでは、難焼結性原料として鉱石A、易焼結性原料と
して鉱石Bを使用した。鉱石A、Bの成分及び粒度分布
は、第1表に示す。この難焼結性原料に、3重量%の石
灰石(バインダー)、20重量%の返鉱、35重量%の
炭材及び15重量%の石灰石を加え、粒径6〜13羽の
ミニペレットを調整した。他方、易焼結性原料は、従来
と同様に炭材。
Here, ore A was used as a difficult-to-sinter raw material, and ore B was used as an easily sinterable raw material. The components and particle size distribution of ores A and B are shown in Table 1. To this hard-to-sinter raw material, 3% by weight of limestone (binder), 20% by weight of return ore, 35% by weight of carbonaceous material, and 15% by weight of limestone are added to prepare mini pellets with a particle size of 6 to 13 particles. did. On the other hand, the easily sinterable raw material is carbonaceous material, as in the past.

返鉱、副原料等と混合した。この易焼結性原料を主体と
する配合原料に、前述のミニペレットを20重量%の割
合で混合し、第2図に示した分級装入装置で、焼結機の
パレット7に装入した。
Mixed with return ore, auxiliary raw materials, etc. The above-mentioned mini pellets were mixed in a blended raw material mainly consisting of this easily sinterable raw material at a ratio of 20% by weight, and charged into the pallet 7 of the sintering machine using the classification charging device shown in Fig. 2. .

(以下、このページ余白) 第1表 第  2  表 このようにして形成された原料充填層8を焼結して焼結
鉱を製造したところ、製品歩留りは76.5%であった
。また、還元粉化指数R111は32.5%と低いもの
であった。これに対し、難焼結性原料を擬似粒子又はミ
ニペレットにすることなく、他は同様な配合割合でパレ
ット7に装入し焼結を行ったところ、製品歩留りは75
%で粉化率RDIは36,6%であった(第2表参照)
。この対比から明らかなように、多量のCaOを含む擬
似粒子又はミニペレットとして難焼結性原料を装入する
ことによって、難焼結性原料を焼結原料として使用する
ことが可能になった。
(Hereinafter, the margins of this page) Table 1 Table 2 When the raw material packed bed 8 thus formed was sintered to produce sintered ore, the product yield was 76.5%. Further, the reduction powdering index R111 was as low as 32.5%. On the other hand, when the difficult-to-sinter raw materials were charged into pallet 7 and sintered in the same proportions without being made into pseudo particles or mini pellets, the product yield was 75.
%, the powderization rate RDI was 36.6% (see Table 2)
. As is clear from this comparison, by charging the difficult-to-sinter raw material as pseudo particles or mini pellets containing a large amount of CaO, it became possible to use the difficult-to-sinter raw material as a sintering raw material.

〔発明の効果〕〔Effect of the invention〕

以上に説明したように、本発明においては、難焼結性原
料を比較的多量のCaOと共に擬似粒子又はミニペレッ
トとして造粒し、易焼結性原料に混合して焼結機のパレ
ットに装入している。そのため、難焼結性原料の周囲に
CaOが偏在した原料充填層が形成され、難焼結性原料
に対する焼結反応が円滑に行われる。その結果、安価で
入手が容易であったが、焼結性が悪いため使用割合が制
限されていたN焼結性原料の増量使用が可能となって、
製造コストを低減させることができる。また、従来のよ
うに原料輸送系統が完全に2系列となった二段装入を行
う必要がないため、設備の簡略化も図られる。
As explained above, in the present invention, a difficult-to-sinter raw material is granulated together with a relatively large amount of CaO as pseudo particles or mini-pellets, mixed with an easily sinterable raw material, and loaded onto a pallet of a sintering machine. It's in. Therefore, a raw material packed layer in which CaO is unevenly distributed is formed around the difficult-to-sinter raw material, and the sintering reaction of the hard-to-sinter raw material is smoothly performed. As a result, it became possible to use an increased amount of N sinterable raw material, which was cheap and easy to obtain, but whose usage rate was limited due to poor sinterability.
Manufacturing costs can be reduced. Furthermore, since there is no need to carry out two-stage charging in which the raw material transportation system is completely two-lined as in the past, the equipment can be simplified.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装入方法のフローを示す図であり、第2
図は本発明で使用する装入装置の一例を示し、第3図は
パレットに装入された原料充填層を模式的に示す図であ
る。 1:サージホッパ−2,5a、 5bニドラムフイ一ダ
3ニー次フルイ     4a:細粒用ホツノ寸−4b
:粗粒用ホッパー  6a、6b:二次フルイア:パレ
ット      8:原料充填層9:擬似粒子又はミニ
ペレット 10:点火炉
FIG. 1 is a diagram showing the flow of the charging method of the present invention, and the second
The figure shows an example of a charging device used in the present invention, and FIG. 3 is a diagram schematically showing a raw material filling bed charged into a pallet. 1: Surge hopper - 2, 5a, 5b Ni drum feeder 3rd secondary sieve 4a: Hot size for fine grains - 4b
: Hopper for coarse particles 6a, 6b: Secondary fluier: Pallet 8: Raw material packed bed 9: Pseudo particles or mini pellets 10: Ignition furnace

Claims (1)

【特許請求の範囲】[Claims] 1、易溶融性焼結原料、低SiO_2原料等の難溶融性
焼結原料にCaO等の低融点化副原料及び必要に応じて
炭材等を混合造粒して粒径が6〜13mmの比較的粗い
ミニペレット等の粗粒とし、これを易焼結性原料、返鉱
、炭材、副原料等の通常原料と混合してホッパーに収容
し、このホッパーの下方に傾斜配置された複数の棒材よ
りなる一次フルイで粗粒と細粒に分級して、該一次フル
イ下方に併設した粗粒ホッパーと細粒ホッパーにそれぞ
れ分級収容し、前記粗粒ホッパーと前記細粒ホッパー下
方にそれぞれ傾斜配列された複数の棒材よりなる二次フ
ルイでそれぞれ分級して、前記細粒ホッパーからの含細
粒原料は焼結パレット上で下層から上層に粒径が次第に
小さくなるように装入され、前記粗粒ホッパーからの粗
粒原料は前記細粒原料によって形成された原料充填層上
に装入されて表層を形成し、表層側に粒径が次第に小さ
くなるように装入されることを特徴とする焼結原料の装
入方法。
1. Mix and granulate easily melting sintering raw materials, hardly melting sintering raw materials such as low SiO_2 raw materials, low melting point auxiliary raw materials such as CaO, and carbonaceous materials as necessary to obtain particles with a particle size of 6 to 13 mm. Coarse particles such as relatively coarse mini-pellets are mixed with ordinary raw materials such as easily sinterable raw materials, return ore, carbonaceous materials, and auxiliary raw materials and stored in a hopper. A primary sieve made of rods is used to classify coarse grains and fine grains, and the coarse grains and fine grains are classified and stored in a coarse grain hopper and a fine grain hopper installed below the primary sieve, respectively. The fine-grained raw material from the fine-grain hopper is classified by a secondary sieve consisting of a plurality of rods arranged at an angle, and then charged onto a sintering pallet so that the particle size gradually decreases from the lower layer to the upper layer. The coarse grain raw material from the coarse grain hopper is charged onto the raw material packed bed formed by the fine grain raw material to form a surface layer, and the coarse grain raw material is charged to the surface layer side so that the particle size gradually becomes smaller. Characteristic charging method of sintering raw materials.
JP21037888A 1988-08-23 1988-08-23 Method of charging sintering raw material Pending JPH0257641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21037888A JPH0257641A (en) 1988-08-23 1988-08-23 Method of charging sintering raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21037888A JPH0257641A (en) 1988-08-23 1988-08-23 Method of charging sintering raw material

Publications (1)

Publication Number Publication Date
JPH0257641A true JPH0257641A (en) 1990-02-27

Family

ID=16588353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21037888A Pending JPH0257641A (en) 1988-08-23 1988-08-23 Method of charging sintering raw material

Country Status (1)

Country Link
JP (1) JPH0257641A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008101263A (en) * 2006-10-20 2008-05-01 Nippon Steel Corp Method for granulating raw material to be sintered
CN106884088A (en) * 2015-12-16 2017-06-23 鞍钢股份有限公司 A kind of method for improving the sintering finished rate of the super thick bed of material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008101263A (en) * 2006-10-20 2008-05-01 Nippon Steel Corp Method for granulating raw material to be sintered
CN106884088A (en) * 2015-12-16 2017-06-23 鞍钢股份有限公司 A kind of method for improving the sintering finished rate of the super thick bed of material
CN106884088B (en) * 2015-12-16 2018-05-29 鞍钢股份有限公司 A kind of method for improving the sintering finished rate of the super thick bed of material

Similar Documents

Publication Publication Date Title
JP5194378B2 (en) Method for producing sintered ore
EP0614993B1 (en) Method for producing sintered ore
US6451085B1 (en) Method for producing reduced iron
JP2003138319A (en) Method for manufacturing raw material for sintering
JPH0257641A (en) Method of charging sintering raw material
JP2020521050A (en) Sinter plant operation method
JP4087982B2 (en) Granulation method for raw materials for sintering with excellent flammability
JP6342472B2 (en) Raw material processing method
JP2606881B2 (en) Sintering raw material charging method
JPS62130226A (en) Method for feeding ore for sintering
JP3945323B2 (en) Granulation method of sintering raw material
JP2589633B2 (en) Pre-treatment method of sinter ore raw material for blast furnace
JP2000328148A (en) Method for charging raw material for sintering using magnetic force
JP3531409B2 (en) Granular raw materials for high grade sinter production
JP2701178B2 (en) Pre-treatment method of sinter ore raw material for blast furnace
JPH0633151A (en) Production of burned agglomerate
JPH08199250A (en) Production of sintered ore
JPH04193914A (en) Method for supplying sintering raw material
AU762647B2 (en) Apparatus for producing reduced iron
JPH0692620B2 (en) Sintered ore manufacturing method
JPS5952694B2 (en) Sintered ore manufacturing method
JPH05148557A (en) Production of sintered ore
JPH05112834A (en) Manufacture of sintered ore
JPH07173546A (en) Production of sintered ore
JP2003306723A (en) Method for manufacturing sintered ore for blast furnace