JP2018178166A - Manufacturing method of blending raw material for sinter - Google Patents

Manufacturing method of blending raw material for sinter Download PDF

Info

Publication number
JP2018178166A
JP2018178166A JP2017076048A JP2017076048A JP2018178166A JP 2018178166 A JP2018178166 A JP 2018178166A JP 2017076048 A JP2017076048 A JP 2017076048A JP 2017076048 A JP2017076048 A JP 2017076048A JP 2018178166 A JP2018178166 A JP 2018178166A
Authority
JP
Japan
Prior art keywords
raw material
ore
sintering
post
return
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017076048A
Other languages
Japanese (ja)
Other versions
JP6834720B2 (en
Inventor
理 石山
Osamu Ishiyama
理 石山
松村 勝
Masaru Matsumura
勝 松村
泰英 山口
Yasuhide Yamaguchi
泰英 山口
大山 浩一
Koichi Oyama
浩一 大山
功朗 大橋
Masaaki Ohashi
功朗 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2017076048A priority Critical patent/JP6834720B2/en
Publication of JP2018178166A publication Critical patent/JP2018178166A/en
Application granted granted Critical
Publication of JP6834720B2 publication Critical patent/JP6834720B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a blending raw material for sinter which can prevent burying of granulated charcoal wood without largely raising cost.SOLUTION: A manufacturing method of a blending raw material for sinter manufacturing the blending raw material for sinter by blending and granulating raw materials including iron-ore, auxiliary materials, charcoal wood and return fines includes a main raw material granulation step (S1) making a main raw material by blending and granulating a part of the return fines, iron-ore and auxiliary materials in the raw materials, and a rear addition step (S2) adding the remains of the return fines and all of the charcoal wood in the raw materials at the same time to the main raw material. Mass ratio of the return fines used in the rear addition step (S2) for the gross weight of the return fines contained in the blending raw material for sinter is 1/15-7/15.SELECTED DRAWING: Figure 3

Description

本発明は、焼結用配合原料の製造方法に関する。   The present invention relates to a method of producing a compounding material for sintering.

焼結用原料は、複数種類の鉄鉱石、石灰石(CaO源)や橄欖石(SiO2、MgO源)等の副原料、粉コークス等の炭材、返鉱などを含む。
焼結用原料は、銘柄毎に原料槽に貯蔵されて、配合に応じて定量切り出しされる。切り出された各原料は、原料搬送用のベルトコンベア上で合流し、ドラムミキサー等の造粒機に搬送される。造粒機では、焼結用原料に水分が添加されて造粒される。
Raw materials for sintering include multiple types of iron ore, auxiliary materials such as limestone (CaO source) and vermiculite (SiO 2 , MgO source), carbonaceous materials such as powdered coke, returned ore, and the like.
The raw materials for sintering are stored in the raw material tank for each grade, and are cut out quantitatively according to the composition. The cut out raw materials are joined together on a belt conveyor for raw material transfer, and are transferred to a granulator such as a drum mixer. In the granulator, water is added to the raw material for sintering to be granulated.

造粒後の焼結用原料(以下、「焼結用配合原料」とも記す)は、原料装入装置のサージホッパーから焼結機に供給され、パレットに装入されて焼結充填層を形成する。
焼結充填層はパレットとともに水平方向に移送され、充填層の最上部に点火される。さらに、焼結充填層の上方から下方に向かって、大気中の空気が同層内を通して下方吸引されることによって、粉コークスが燃焼する。燃焼により生成した高温ガスにより焼結用配合原料の粒子が加熱昇温される。
The raw material for sintering after granulation (hereinafter also referred to as "compounding material for sintering") is supplied from the surge hopper of the raw material charging device to the sintering machine, and is charged into the pallet to form a sintered packed bed. Do.
The sintered packed bed is transferred horizontally with the pallet and ignited at the top of the packed bed. Furthermore, the coke breeze burns by the air in the atmosphere being drawn downward through the layer from the top to the bottom of the sintered packed bed. The particles of the compounding raw material for sintering are heated and heated by the high temperature gas generated by the combustion.

加熱と吸引により、焼結充填層の上層部から下層部に向かって焼結が進行する。最下層まで焼結が完了した塊状物(以下、「焼結ケーキ」とも記す)は、焼結機の排鉱部で粗破砕された後に、冷却機により冷却され、篩で整粒される。篩上が焼結鉱となり、篩下は返鉱として焼結用原料に用いられる。   Sintering progresses from the upper layer portion to the lower layer portion of the sintered packed bed by heating and suction. The mass (hereinafter also referred to as “sinter cake”) which has been sintered to the lowermost layer is roughly crushed in a displacement portion of a sintering machine, cooled by a cooler, and sized by a sieve. The sieve is sintered ore, and the sieve is used as a return material for sintering materials.

焼結用原料は、必ずしも同時に全ての原料を混合・造粒する必要はない。
例えば、特許文献1には、焼結用原料を造粒した後に、返鉱を焼結用配合原料に対して5〜25質量%の比率で添加することにより、造粒物の水分含有率を低下させる技術が記載されている。
The raw materials for sintering do not necessarily have to mix and granulate all the raw materials at the same time.
For example, in Patent Document 1, after granulating a sintering material, the water content of the granulated material is obtained by adding a return ore at a ratio of 5 to 25% by mass with respect to the sintering compound material. Techniques to reduce are described.

特許文献2には、粉コークス等の固体燃料系粉原料を、ドラムミキサーの下流側途中で後添加させることにより、造粒物の粒径を大きくする技術が記載されている。   Patent Document 2 describes a technology for increasing the particle diameter of granulated material by post-adding a solid fuel-based powder raw material such as powdered coke on the downstream side of a drum mixer.

特許文献3には、焼結用原料を造粒した後に、固体炭材粒子と返鉱を全量添加することにより、固体炭材粒子が造粒物に埋没して燃焼速度が低下するのを防ぐ技術が記載されている。   According to Patent Document 3, after the raw material for sintering is granulated, the solid carbon material particles are completely buried in the granulated product to prevent the burning rate from being reduced by adding the whole amount of the solid carbon material particles and the return ore. The technology is described.

特開2009−097027号公報Unexamined-Japanese-Patent No. 2009-097027 特開2003−160815号公報Japanese Patent Application Publication No. 2003-160815 特開2015−193930号公報JP, 2015-193930, A

しかしながら、特許文献1〜3に記載の技術は以下のような問題があった。
特許文献1は炭材を先に添加するため、炭材が造粒物に埋没するという問題があった。
炭材が埋没すると、焼結の際に炭材が充填層内の空気と接触し難くなるため、燃焼速度が低下するという問題があった。
However, the techniques described in Patent Documents 1 to 3 have the following problems.
Patent Document 1 has a problem that the carbon material is buried in the granulated material because the carbon material is added first.
When the carbon material is buried, the carbon material is difficult to contact with the air in the packed bed at the time of sintering, and there is a problem that the burning rate is reduced.

特許文献2は、炭材を後添加するため、特許文献1よりは炭材が造粒物に埋没し難いものの、埋没を防ぐ手段が他にないため、燃焼速度が低下するのを十分に防ぐことができないという問題があった。   Patent document 2 is more difficult to immerse the carbon material in the granulated material than the patent document 1 because the carbon material is post-added, but since there is no other means to prevent the burial, the combustion rate is sufficiently prevented from decreasing. There was a problem that I could not do it.

特許文献3は炭材と返鉱を後添加することにより、炭材の埋没を防ぐことができるという点で有用である。
しかしながら、特許文献3では炭材と返鉱の全量を後添加しているため、後添加のための設備が大型化し、コストが高くなるという問題があった。
Patent Document 3 is useful in that the carbon material can be prevented from being buried by post-addition of the carbon material and the return ore.
However, in Patent Document 3, since the entire amount of the carbon material and the return ore is post-added, there is a problem that the facility for the post-addition becomes large and the cost becomes high.

本発明は上記課題に鑑みてなされたものであり、コストを大幅に上昇させることなく、造粒中の炭材の埋没を防ぐことができる、焼結用配合原料の製造方法を提供することを目的とする。   The present invention has been made in view of the above problems, and it is an object of the present invention to provide a method for producing a compounding material for sintering, which can prevent the carbon material from being buried during granulation without significantly increasing the cost. To aim.

本発明に係る焼結用配合原料の製造方法は、鉄鉱石、副原料、炭材、返鉱を含む原料を混合・造粒して焼結用配合原料を製造する、焼結用配合原料の製造方法であって、前記原料のうちの返鉱の一部、鉄鉱石、副原料を混合・造粒して主原料とする、主原料造粒工程と、前記原料のうちの返鉱の残り、および炭材の全量を同時に前記主原料に添加する、後添加工程と、を実施し、前記焼結用配合原料に含まれる返鉱の総量に対する、前記後添加工程で用いられる返鉱の質量比が1/15〜7/15であることを特徴とする、焼結用配合原料の製造方法である。   The method for producing a compounding material for sintering according to the present invention is a compounding material for sintering, which mixes and granulates materials including iron ore, auxiliary material, carbon material and return ore to produce a compounding material for sintering. In the production method, a main raw material granulating step of mixing and granulating some of the raw materials among the raw materials, iron ore, and secondary raw materials as the main raw materials; And post-addition step of simultaneously adding the whole amount of the carbonaceous material to the main raw material, and the mass of the return ore used in the post-addition step with respect to the total amount of return ore contained in the sintering compounding raw material The ratio is 1/15 to 7/15, which is a method for producing a compounding material for sintering.

この発明によれば、炭材と返鉱とを同時に後添加することで、混合による炭材の主原料への分散時に、返鉱が炭材と主原料との接触を阻止する。そのため、造粒時に炭材が造粒物に埋没して燃焼速度を悪化させるのを防ぐことができる。
この発明によれば、返鉱は一部のみを後添加するので、後添加設備の大型化を防ぐことができ、後添加工程を実施することによるコストの上昇を防ぐことができる。
この発明によれば、焼結用配合原料に含まれる返鉱の総量に対する、前記後添加工程で用いられる返鉱の質量比が1/15〜7/15であり、返鉱が炭材と原料との接触を阻止する効果が高い範囲で返鉱を後添加する。
そのため、返鉱を全量後添加しなくても造粒中の炭材の埋没を防ぐことができる。
According to the present invention, by simultaneously post-adding the carbon material and the return metal, the return metal prevents the contact of the carbon material with the main material at the time of dispersing the carbon material into the main material by mixing. Therefore, it is possible to prevent the carbon material from being buried in the granulated material at the time of granulation to deteriorate the burning rate.
According to the present invention, since only a part of the returned ore is post-added, the upsizing of the post-addition equipment can be prevented, and an increase in cost due to the implementation of the post-addition step can be prevented.
According to the present invention, the mass ratio of the returned ore used in the post-addition step is 1/15 to 7/15 with respect to the total amount of returned ore contained in the compounding raw material for sintering, and the returned ore comprises the carbonaceous material and the raw material Post addition of return metal in the range where the effect of preventing contact with is high.
Therefore, it is possible to prevent the burying of the carbon material during granulation without adding the entire amount of return ore.

前記後添加工程は、前記焼結用配合原料100質量%に対して前記返鉱を1質量%以上、7質量%以下の範囲で添加する工程であることが好ましい。
この発明によれば、炭材と焼結用配合原料との接触を返鉱が阻止する効果が高い範囲で、返鉱を後添加するので、コストを大幅に上昇させることなく、造粒中の炭材の埋没を防ぐことができる。
The post-addition step is preferably a step of adding the return ore in a range of 1% by mass or more and 7% by mass or less with respect to 100% by mass of the compounding raw material for sintering.
According to the present invention, since the return metal is post-added within a range in which the return metal has a high effect of preventing the contact between the carbon material and the compounding raw material for sintering, the granulation during granulation is performed without significantly increasing the cost. It is possible to prevent the burial of the carbon material.

原料に含まれる返鉱の総量に対する、後添加する返鉱の質量比と、生産性の関係を示すグラフ。The graph which shows the mass ratio of the returned addition ore to add to the total amount of the returned ore contained in a raw material, and the relationship of productivity. 本発明の第1の実施形態に係る焼結用配合原料の製造装置を示す図。The figure which shows the manufacturing apparatus of the mixing | blending raw material for sintering which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る焼結用配合原料の製造方法を示すフロー図。BRIEF DESCRIPTION OF THE DRAWINGS The flowchart which shows the manufacturing method of the compounding raw material for sintering which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る焼結用配合原料の製造装置を示す図。The figure which shows the manufacturing apparatus of the compounding raw material for sintering which concerns on the 2nd Embodiment of this invention. 後添加する返鉱の質量比と、生産性の増加量a、および返鉱の後添加量と生産性の関係が線形であると仮定した場合の生産性の増加量bとの関係を示すグラフ。Graph showing the relationship between the mass ratio of the post-added return ore, the increase in productivity a, and the increase in productivity b assuming that the relationship between the post-addition amount of the ore and the productivity is linear .

(発明の経緯)
まず、本発明を創出するに至った経緯について、簡単に説明する。
特許文献3に記載のように、炭材と返鉱を、他の原料の造粒後(主原料の造粒後)に後添加することにより、造粒物への炭材の埋没を防ぐことができることは公知である。
(History of invention)
First, the process of creating the present invention will be briefly described.
As described in Patent Document 3, preventing the carbon material from being buried in the granulated material by post-adding the carbon material and the return ore after granulation of the other raw materials (after granulation of the main raw material) It is known that it is possible.

一方で、特許文献3は返鉱の全量を後添加しているため、後添加工程に要する設備の大型化、高コスト化を招く恐れがあった。また、返鉱の後添加量をどの程度にすれば、造粒物への炭材の埋没を防ぐ効果が得られるのかも不明であった。   On the other hand, in Patent Document 3, since the entire amount of returned ore is post-added, there is a possibility that the enlargement of equipment required for the post-addition step and cost increase may be caused. In addition, it was also unclear how much the effect of preventing the carbon material from being buried in the granulated product could be obtained by setting the post-addition amount of the return ore.

そこで、本発明者は、特許文献3とは逆に、焼結用配合原料中の返鉱の総量に対する、後添加する返鉱の質量比を、0から徐々に増やして造粒を行い、生産性への影響を調査した。   Therefore, contrary to Patent Document 3, the present inventors perform granulation by gradually increasing the mass ratio of the post-added return metal from 0 to the total amount of return metal in the compounding raw material for sintering. The influence on sex was investigated.

その結果、図1に示すように、添加する返鉱の割合が少ない方が、添加による生産性の向上効果が大きい場合があることが分かった。   As a result, as shown in FIG. 1, it was found that the effect of improving the productivity by the addition may be greater as the proportion of the returned ore to be added is smaller.

具体的には、図1では、焼結用配合原料に含まれる返鉱の総量に対する、後添加する返鉱の質量比が、10/15以上の場合は、点線で示した参考線のように、添加する返鉱の割合と生産性が、線形の関係にあった。
一方で、質量比が1/15〜7/15の範囲では、参考線よりも生産性が高くなっていた。この結果は、質量比が1/15〜7/15の範囲では、他の範囲よりも、造粒物への炭材の埋没を返鉱が防ぐ効果が、高いことを示している。
Specifically, in FIG. 1, when the mass ratio of the post-added return ore to the total amount of ore included in the compounding raw material for sintering is 10/15 or more, as indicated by the reference line indicated by the dotted line. , The proportion of returned ore added and productivity were in a linear relationship.
On the other hand, when the mass ratio is in the range of 1/15 to 7/15, the productivity is higher than that of the reference line. This result indicates that in the range of 1/15 to 7/15 of the mass ratio, the effect of the reversion preventing the carbon material from being buried in the granulated material is higher than that in the other range.

この結果から、質量比が1/15〜7/15の範囲で返鉱を後添加すれば、後添加工程に要する設備を大型化させずに、造粒物への炭材の埋没を防ぐ効果を高くできることを本発明者は見出し、本発明を創出するに至った。
以上が、本発明を創出するに至った経緯である。
From this result, it is possible to prevent the burial of the carbon material in the granulated material without increasing the size of the equipment required for the post-addition step if the return ore is post-added in the mass ratio range of 1/15 to 7/15. The inventors have found that it is possible to make the present invention high.
The above is the background of the invention.

次に、図面を参照して、本発明の第1の実施形態について、図2および図3を参照して説明する。   Next, a first embodiment of the present invention will be described with reference to FIGS. 2 and 3 with reference to the drawings.

まず、図2を参照して、第1の実施形態に係る焼結用配合原料の製造方法に用いられる、焼結用配合原料製造装置1の構成について説明する。   First, with reference to FIG. 2, the structure of the compounding raw material manufacturing apparatus 1 for sintering used for the manufacturing method of the compounding raw material for sintering which concerns on 1st Embodiment is demonstrated.

図2に示すように、焼結用配合原料製造装置1は、主造粒ライン3、後添加ライン5、および造粒物搬送コンベア13を備える。   As shown in FIG. 2, the sintering compound raw material manufacturing apparatus 1 includes a main granulation line 3, a post-addition line 5, and a granulated material conveyance conveyer 13.

主造粒ライン3は、返鉱の一部、鉄鉱石、副原料を混合・造粒して主原料とするラインであり、原料槽7、主原料搬送コンベア9、造粒機11を備える。
原料槽7は、返鉱の一部、鉄鉱石、副原料がそれぞれ貯蔵された槽である。原料槽7の一つは、返鉱が貯蔵された原料槽7Bである。
主原料搬送コンベア9は、原料槽7から切り出された原料を、造粒機11に搬送する装置であり、例えばベルトコンベアが用いられる。主原料搬送コンベア9は、原料槽7の下方に設けられる。
The main granulation line 3 is a line which mixes and granulates a part of return ore, iron ore, and auxiliary materials, and is used as a main material, and is provided with a raw material tank 7, a main raw material conveyance conveyor 9, and a granulator 11.
The raw material tank 7 is a tank in which a part of returned ore, iron ore, and auxiliary materials are stored. One of the raw material tanks 7 is a raw material tank 7B in which return ore is stored.
The main raw material conveyance conveyor 9 is an apparatus for conveying the raw material cut out from the raw material tank 7 to the granulator 11, and for example, a belt conveyor is used. The main raw material transport conveyor 9 is provided below the raw material tank 7.

造粒機11は、原料槽7から切り出された原料に水を添加して造粒することにより、主原料を製造する装置であり、例えばドラムミキサーが用いられる。   The granulator 11 is an apparatus which manufactures the main raw material by adding water to the raw material cut out from the raw material tank 7, and granulating, and a drum mixer is used, for example.

後添加ライン5は、返鉱の残り(主造粒ライン3で造粒されない返鉱)と炭材を混合・造粒して主原料に後添加するラインであり、原料槽15、17、後添加原料搬送コンベア19を備える。
原料槽15は、炭材が貯蔵された槽である。原料槽17は、返鉱が貯蔵された槽である。
後添加原料搬送コンベア19は、原料槽15、17から切り出された炭材および返鉱を、造粒物搬送コンベア13に搬送する装置であり、例えばベルトコンベアが用いられる。後添加原料搬送コンベア19は、造粒物搬送コンベア13の上方に設けられる。
The post addition line 5 is a line for mixing and granulating the remaining portion of the return ore (return ore not granulated in the main granulation line 3) and the carbonaceous material and post-adding them to the main raw material. An additive material transport conveyor 19 is provided.
The raw material tank 15 is a tank in which a carbon material is stored. The raw material tank 17 is a tank in which return ore is stored.
The post-addition raw material conveyance conveyor 19 is a device for conveying the carbon material and return metal cut out from the raw material tanks 15 and 17 to the granulated material conveyance conveyor 13, and for example, a belt conveyor is used. The post-addition raw material transfer conveyor 19 is provided above the granulated material transfer conveyor 13.

造粒物搬送コンベア13は、造粒機11で造粒された主原料、および後添加された配合原料を焼結機に搬送する装置であり、例えばベルトコンベアが用いられる。造粒物搬送コンベア13は、上流側の端部が造粒機11内に配置されるように、造粒機11の下流端部に設けられる。
以上が、焼結用配合原料製造装置1の構成の説明である。
The granulated material transport conveyor 13 is a device for transporting the main raw material granulated by the granulator 11 and the post-added compounded raw material to the sintering machine, and for example, a belt conveyor is used. The granulated material transfer conveyor 13 is provided at the downstream end of the granulator 11 such that the upstream end is disposed in the granulator 11.
The above is description of a structure of the compounding raw material manufacturing apparatus 1 for sintering.

次に、焼結用配合原料製造装置1を用いた焼結用配合原料の製造方法について、図2および図3を参照して説明する。   Next, a method of producing the compounded raw material for sintering using the compounded raw material manufacturing apparatus 1 for sintering will be described with reference to FIGS. 2 and 3.

まず、主造粒ライン3を用いて、鉄鉱石、副原料、返鉱の一部を含む原料を混合・造粒して主原料を製造する(図3のS1、主原料造粒工程)。
具体的には、まず、原料槽7から鉄鉱石、副原料、返鉱の一部を含む原料を切り出して主原料搬送コンベア9で造粒機11に搬送する。
First, the main granulation line 3 is used to mix and granulate iron ore, auxiliary materials, and raw materials including a part of returned ore to produce a main raw material (S1 in FIG. 3, main raw material granulation step).
Specifically, first, a raw material including iron ore, a secondary raw material, and a part of return ore is cut out from the raw material tank 7 and conveyed to the granulator 11 by the main raw material conveyance conveyor 9.

次に、造粒機11で、原料に水を加えて混合・造粒する。造粒した材料(主原料)は、造粒物搬送コンベア13に搭載される。   Next, water is added to the raw material in the granulator 11 to mix and granulate. The granulated material (main raw material) is mounted on a granulated material conveying conveyor 13.

次に、後添加ライン5を用いて、返鉱の残り、および炭材の全量を同時に主原料に添加する(図3のS2、後添加工程)。
具体的には、まず、原料槽15、17から炭材と返鉱を切り出して、後添加原料搬送コンベア19に搭載する。
後添加ライン5には、必ずしも炭材と返鉱を混合する混合機等を設ける必要はない。炭材と返鉱が、搬送時の造粒物搬送コンベア13上、焼結機(図不示)のサージホッパー(図不示)内およびスローピングシュート(図不示)上で、自然に混合されれば十分である。
Next, the post-addition line 5 is used to simultaneously add the remainder of the return and the entire amount of carbonaceous material to the main raw material (S2, post-addition step in FIG. 3).
Specifically, first, the carbon material and the return ore are cut out from the raw material tanks 15 and 17 and mounted on the post-added raw material conveyance conveyor 19.
The post addition line 5 does not necessarily have to be provided with a mixer or the like for mixing the carbon material and the return ore. Charcoal material and return ore are naturally mixed on the granulated material conveyance conveyer 13 at the time of conveyance, in the surge hopper (not shown) of the sintering machine (not shown) and on the sloping shoot (not shown). It is enough.

次に、後添加原料搬送コンベア19で、炭材と返鉱を造粒物搬送コンベア13まで搬送し、造粒物搬送コンベア13上の主原料に同時に後添加する。
この際、炭材と主原料との接触を返鉱が阻止するため、炭材が主原料に埋没するのを防ぐ。
Next, the carbon material and the returned ore are conveyed to the granulated material conveying conveyor 13 by the post-addition raw material conveying conveyor 19 and simultaneously post-added to the main raw material on the granulated material conveying conveyor 13.
At this time, since the returning ore prevents the contact between the carbon material and the main raw material, the carbon material is prevented from being buried in the main raw material.

後添加原料搬送コンベア19における後添加の位置は、特に限定されない。図2の符号Aで示すように、後添加原料搬送コンベア19の上流側の端部(造粒機11内)であってもよい。符号Bに示すように、下流側でもよい。   The position of the post-addition on the post-addition raw material transport conveyor 19 is not particularly limited. As shown by the symbol A in FIG. 2, the upstream end of the post-addition raw material transport conveyor 19 (inside the granulator 11) may be used. As indicated by the symbol B, it may be downstream.

上流側に添加する場合は、より均一に炭材を混合できる点で有利である。下流側に添加する場合は、造粒物への炭材の埋没がさらに起こり難くなる点で有利である。   The addition on the upstream side is advantageous in that the carbonaceous material can be mixed more uniformly. The addition to the downstream side is advantageous in that the carbon material is less likely to be buried in the granulated material.

後添加する炭材の量は、焼結用配合原料中の炭材の全量であることが好ましい。これは、炭材の後添加比率が大きいほど、造粒物へ埋没し難くなり、生産性が向上するためである。   The amount of carbon material to be added is preferably the total amount of carbon material in the compounding raw material for sintering. This is because the larger the post-addition ratio of the carbonaceous material, the more difficult it is to be buried in the granulated material, and the productivity is improved.

焼結用配合原料に含まれる返鉱の総量に対する、後添加する返鉱の質量比は、1/15〜7/15の範囲である。例えば、焼結用配合原料中の返鉱の割合が15質量%の場合、後添加する返鉱の割合は、焼結用配合原料100質量%に対して1質量%以上、7質量%以下となる。
これは、他の範囲よりも、造粒物への炭材の埋没を返鉱が防ぐ効果が高いためである。後添加する返鉱がこの範囲の下限を外れると、後添加の効果が十分に得られない可能性がある。後添加する返鉱がこの範囲の上限を外れると、埋没防止効果が飽和する。
The mass ratio of the post-added return ore to the total amount of return ore contained in the sintering compounding raw material is in the range of 1/15 to 7/15. For example, when the proportion of returned ore in the compounding raw material for sintering is 15% by mass, the proportion of returned ore to be added is 1% by mass or more and 7% by mass or less with respect to 100% by mass of the compounding raw material for sintering Become.
This is because the effect of the return is high for preventing the carbon material from being buried in the granulated material, as compared to other ranges. If the post-addition return falls outside the lower limit of this range, the post-addition effect may not be sufficiently obtained. When the post-added return metal is out of the upper limit of this range, the anti-burring effect is saturated.

炭材と返鉱が後添加された焼結用配合原料は、造粒物搬送コンベア13を用いて焼結機に送られ、焼結に供される。
以上が、焼結用配合原料製造装置1を用いた焼結用配合原料の製造方法の説明である。
The compounding raw material for sintering to which the carbon material and the return ore have been added is sent to a sintering machine using the granulated material conveying conveyor 13 and subjected to sintering.
The above is description of the manufacturing method of the compounding raw material for sintering using the compounding raw material manufacturing apparatus 1 for sintering.

このように、第1の実施形態によれば、鉄鉱石、副原料、返鉱を含む原料を混合・造粒して主原料を製造し、返鉱の残り、および炭材の全量を同時に主原料に添加する。
そのため、造粒物への炭材の埋没を防ぐ効果を高くできる。
As described above, according to the first embodiment, the main raw material is manufactured by mixing and granulating the raw material including iron ore, auxiliary raw material, and return ore, and the remaining portion of the return or main carbon material is simultaneously mainly Add to raw materials.
Therefore, the effect of preventing the carbon material from being buried in the granulated material can be enhanced.

また、第1の実施形態によれば、焼結用配合原料に含まれる返鉱の総量に対する、後添加する返鉱の質量比が、1/15〜7/15の範囲であり、炭材と主原料との接触を返鉱が阻止する効果が高い範囲で、返鉱を後添加する。
そのため、返鉱を全量後添加しなくても、埋没防止効果が得られ、コストを大幅に上昇させることなく、造粒中の炭材の埋没を防ぐことができる。
Further, according to the first embodiment, the mass ratio of the post-added returned ore to the total amount of returned ore contained in the compounding raw material for sintering is in the range of 1/15 to 7/15, and Returning ore is post-added within a range where the returning ore is highly effective in preventing contact with the main raw material.
Therefore, even if it does not add the whole amount of return ore, a burial prevention effect is obtained and it is possible to prevent burial of the carbon material during granulation without significantly increasing the cost.

次に、第2の実施形態について、図4を参照して説明する。
第2の実施形態は、第1の実施形態において、後添加ライン5に原料槽15、17を設けない構成としたものである。
なお、第2の実施形態において、第1の実施形態と同様の機能を果たす要素については同一の番号を付し、主に第1の実施形態と異なる部分について説明する。
Next, a second embodiment will be described with reference to FIG.
In the second embodiment, the raw material tanks 15 and 17 are not provided in the post-addition line 5 in the first embodiment.
In the second embodiment, elements having the same functions as in the first embodiment are given the same reference numerals, and portions different from the first embodiment will be mainly described.

図4に示すように、第2の実施形態に係る焼結用配合原料製造装置1Aは、原料槽15、17が原料槽7の一部として、主造粒ライン3に設けられている。
原料槽15には抜き取り装置23が設けられ、切り出された炭材は、主原料搬送コンベア9に搭載されずに、後添加原料搬送コンベア19に搬送される。
原料槽17には分配器21が設けられ、返鉱の一部が主原料搬送コンベア9に分配され、残りが後添加原料搬送コンベア19に分配される。
As shown in FIG. 4, the raw material tank 15, 17 is provided in the main granulation line 3 as a part of the raw material tank 7, as the sintering compound raw material production apparatus 1 </ b> A according to the second embodiment.
A removal device 23 is provided in the raw material tank 15, and the cut-out carbon material is conveyed to the post-addition raw material conveyance conveyor 19 without being mounted on the main raw material conveyance conveyor 9.
A distributor 21 is provided in the raw material tank 17, and a part of the returned ore is distributed to the main raw material conveyance conveyor 9, and the remaining is distributed to the post-addition raw material conveyance conveyor 19.

このように、後添加ライン5に必ずしも原料槽15、17を設ける必要はなく、主造粒ライン3の原料槽7から返鉱の一部と、炭材を抜き取って後添加ライン5に供給してもよい。
このような構造とすることにより、既存の原料槽7をそのまま用いても、返鉱の一部と、炭材を後添加できる。
なお、焼結用配合原料製造装置1Aを用いた焼結用配合原料の製造方法は、第1の実施形態と同様であるため、説明を省略する。
As described above, it is not necessary to provide the raw material tanks 15 and 17 in the post addition line 5, and a part of the return metal and the carbonaceous material are extracted from the raw material tank 7 of the main granulation line 3 and supplied to the post addition line 5. May be
With such a structure, even if the existing raw material tank 7 is used as it is, it is possible to post-add a part of the return metal and the carbon material.
In addition, since the manufacturing method of the compounding raw material for sintering using the compounding raw material manufacturing apparatus 1A for sintering is the same as that of 1st Embodiment, description is abbreviate | omitted.

このように、第2の実施形態によれば、鉄鉱石、副原料、返鉱を含む原料を混合・造粒して主原料を製造し、返鉱の残り、および炭材の全量を同時に主原料に添加する。
よって、第1の実施形態と同様の効果を奏する。
As described above, according to the second embodiment, the main raw material is manufactured by mixing and granulating the raw materials including iron ore, auxiliary raw material, and return ore, and the balance of the return or mineral and the entire amount of carbon material are simultaneously main Add to raw materials.
Therefore, the same effect as that of the first embodiment can be obtained.

以下、実施例に基づき、本発明を具体的に説明する。
後添加する返鉱の割合を変化させて焼結用配合原料を製造して焼結し、生産性への影響を評価した。具体的な手順は以下の通りである。
Hereinafter, the present invention will be specifically described based on examples.
The proportion of post-added returned ore was changed to produce and sinter a mixed material for sintering, and the influence on productivity was evaluated. The specific procedure is as follows.

まず、焼結機として、鍋試験装置を用意した。
次に、鍋試験装置の試験鍋(内径300mm、高さ660mm)に約1.5kgの床敷鉱を投入した。次に、表1に示す配合比率の焼結用配合原料約70kgを用意した。
First, a pot test apparatus was prepared as a sintering machine.
Next, about 1.5 kg of bedbed was placed in a test pot (inner diameter 300 mm, height 660 mm) of the pot test apparatus. Next, about 70 kg of compounding materials for sintering having the compounding ratio shown in Table 1 were prepared.

Figure 2018178166
Figure 2018178166

次に、後添加予定の原料を除いた残部の原料を、ドラム状の混合機を用いて285秒間、混合・造粒して主原料とした。その後、粉コークス全量と返鉱の一部を後添加原料として主原料に添加し、15秒間混合して焼結用配合原料とした。
次に、焼結用配合原料を試験鍋に投入し、充填層の表面を90秒間バーナーで加熱して点火した後、吸引負圧14.7kPa(1500mmAqをkPaに換算)で試験鍋内の空気を吸引した。これにより、焼結用配合原料の上層から下層へと焼結を進行させ、焼結ケーキを製造した。
Next, the remaining raw materials from which the post-addition planned raw materials have been removed are mixed and granulated for 285 seconds using a drum-like mixer to obtain a main raw material. Thereafter, the whole amount of coke breeze and a part of returned ore are added to the main raw material as a post-addition raw material, and mixed for 15 seconds to obtain a compounding raw material for sintering.
Next, the compounding raw material for sintering is put into a test pan, and after igniting the surface of the packed bed with a burner by heating for 90 seconds, air in the test pan under a suction negative pressure of 14.7 kPa (1500 mmAq is converted to kPa) Was aspirated. Thereby, sintering was advanced from the upper layer to the lower layer of the compounding raw material for sintering to produce a sintered cake.

次に、焼結ケーキを2mの高さから5回落下させた後、粒度が5mm以上の焼結鉱を成品として篩分けし、秤量した。さらに、成品の質量、焼結時間、および焼結面積(充填層の点火面の面積)に基づいて、単位焼結時間、単位焼結面積当たりの成品のトン数を生産性(t/d/m2)として算出した。
以上の試験を、後添加する返鉱の割合を0〜15質量%の範囲で変化させて行った。結果を図1に示す。
Next, the sintered cake was dropped 5 times from a height of 2 m, and then sintered ore having a particle size of 5 mm or more was sieved and weighed as a product. Furthermore, based on the mass of the product, the sintering time, and the sintering area (area of the ignition surface of the packed bed), the unit sintering time, the tonnage of the product per unit sintering area can be produced (t / d / Calculated as m 2 ).
The above tests were carried out by changing the proportion of post-added returned ore in the range of 0 to 15% by mass. The results are shown in FIG.

図1に示すように、後添加する返鉱の割合が増えると生産性が向上していた。
ただし、添加量が10質量%以上の場合は、図1の点線に示すように、後添加する返鉱の割合と生産性の関係が線形だったのに対し、1質量%以上、7質量%以下の場合は、線形の関係が見られなかった。また、1質量%以上、7質量%以下の場合は、点線よりも生産性が上にあり、返鉱の添加による効果が高いことが分かった。
As shown in FIG. 1, the productivity was improved as the proportion of the post-added return metal increased.
However, when the addition amount is 10% by mass or more, as shown by the dotted line in FIG. 1, the relationship between the ratio of returned ore to be added and productivity is linear, but 1% by mass or more and 7% by mass In the following cases, no linear relationship was found. Moreover, in the case of 1 mass% or more and 7 mass% or less, it turned out that productivity is higher than a dotted line, and the effect by addition of return ore is high.

そこで、返鉱の添加による効果をより詳細に検討するため、後添加する返鉱の質量比と、生産性の増加量aの関係、および返鉱を後添加することによる生産性の向上効果が、線形であると仮定した場合の増加量bとの関係を求めた。
ここで、増加量aとは、求めた生産性と、後添加する返鉱が0%の場合の生産性の差である。増加量bは、後添加する返鉱の質量比と生産量との関係が、返鉱が0%の場合と、15%の場合の、測定点を通る直線で表せる(線形である)と仮定した場合の生産性と、後添加する返鉱が0%の場合の生産性の差である。増加量bよりも増加量aが大きい場合、返鉱の添加による効果が高いことを意味する。逆に増加量aが増加量b以下の場合、返鉱の添加による効果が低いことを意味する。
結果を表2に示す。後添加する返鉱の質量比と、増加量a、bの関係を図5に示す。
Therefore, in order to examine the effect of the addition of the return metal in more detail, the relationship between the mass ratio of the return metal to be added and the increase amount of productivity a, and the effect of improving the productivity by adding the return metal , And the relationship with the increase amount b when assuming linear.
Here, the amount of increase a is the difference between the obtained productivity and the productivity when the post-addition return ore is 0%. The amount of increase b is assumed that the relationship between the mass ratio of the post-added return ore and the production can be represented by a straight line passing through the measurement point (linear) at 0% and 15% return ore. It is the difference between the productivity in the case of having been done and the productivity in the case of 0% of the return added to be added. If the increase amount a is larger than the increase amount b, it means that the effect of the addition of the return metal is high. Conversely, when the increase amount a is less than the increase amount b, it means that the effect of the addition of return ore is low.
The results are shown in Table 2. The relationship between the mass ratio of returned ore to be added and the increase amounts a and b is shown in FIG.

Figure 2018178166
Figure 2018178166

表1および図5に示すように、返鉱の添加量が1質量%以上、7質量%以下の場合は、増加量aが増加量bよりも大きかった。
この結果から、返鉱の添加量が1質量%以上、7質量%以下の場合は、10質量%以上の場合と比べて返鉱の添加による生産性の向上効果(表2の「a−b」)が高いことが分かった。
As shown in Table 1 and FIG. 5, when the addition amount of return ore was 1 mass% or more and 7 mass% or less, the increase amount a was larger than the increase amount b.
From this result, when the addition amount of return ore is 1 mass% or more and 7 mass% or less, the improvement effect of the productivity by the addition of the return ore compared with the case of 10 mass% or more (a-b in Table 2) ") Was found to be high.

1、1A…焼結用配合原料製造装置、3…主造粒ライン、5…後添加ライン、7、7B…原料槽、9…主原料搬送コンベア、11…造粒機、13…造粒物搬送コンベア、15、17…原料槽、19…後添加原料搬送コンベア。   DESCRIPTION OF SYMBOLS 1, 1A ... Compounding raw material manufacturing apparatus for sintering, 3 ... Main granulation line, 5 ... Post addition line, 7, 7B ... Raw material tank, 9 ... Main raw material conveyance conveyor, 11 ... Granulating machine, 13 ... Granulation thing Conveying conveyor, 15, 17 ... Raw material tank, 19 ... Post-added raw material conveying conveyor.

Claims (2)

鉄鉱石、副原料、炭材、返鉱を含む原料を混合・造粒して焼結用配合原料を製造する、焼結用配合原料の製造方法であって、
前記原料のうちの返鉱の一部、鉄鉱石、副原料を混合・造粒して主原料とする、主原料造粒工程と、
前記原料のうちの返鉱の残り、および炭材の全量を同時に前記主原料に添加する、後添加工程と、
を実施し、
前記焼結用配合原料に含まれる返鉱の総量に対する、前記後添加工程で用いられる返鉱の質量比が1/15〜7/15であることを特徴とする、焼結用配合原料の製造方法。
A method for producing a compounding material for sintering, which comprises mixing and granulating materials including iron ore, auxiliary material, carbon material and return ore to produce a compounding material for sintering,
Main raw material granulation process which mixes and granulates a part of returned ore among said raw materials, iron ore, and auxiliary materials as main raw materials,
A post-addition step of simultaneously adding the remainder of the return from the raw material and the entire amount of the carbonaceous material to the main raw material;
To carry out
The mass ratio of the returned ore used in the post-addition step is 1/15 to 7/15 with respect to the total amount of the returned ore contained in the sinter compounded material Method.
請求項1に記載の焼結用配合原料の製造方法であって、
前記後添加工程は、前記焼結用配合原料100質量%に対して前記返鉱を1質量%以上、7質量%以下の範囲で添加する工程であることを特徴とする、焼結用配合原料の製造方法。
It is a manufacturing method of the compounding materials for sintering according to claim 1,
The post-addition step is a step of adding the return ore in a range of 1% by mass or more and 7% by mass or less based on 100% by mass of the compounding raw material for sintering Manufacturing method.
JP2017076048A 2017-04-06 2017-04-06 Manufacturing method of compounding raw materials for sintering Active JP6834720B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017076048A JP6834720B2 (en) 2017-04-06 2017-04-06 Manufacturing method of compounding raw materials for sintering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017076048A JP6834720B2 (en) 2017-04-06 2017-04-06 Manufacturing method of compounding raw materials for sintering

Publications (2)

Publication Number Publication Date
JP2018178166A true JP2018178166A (en) 2018-11-15
JP6834720B2 JP6834720B2 (en) 2021-02-24

Family

ID=64281436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017076048A Active JP6834720B2 (en) 2017-04-06 2017-04-06 Manufacturing method of compounding raw materials for sintering

Country Status (1)

Country Link
JP (1) JP6834720B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0762456A (en) * 1993-08-26 1995-03-07 Nkk Corp Production of sintered ore
JP2009097027A (en) * 2007-10-15 2009-05-07 Sumitomo Metal Ind Ltd Method for producing sintered ore

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0762456A (en) * 1993-08-26 1995-03-07 Nkk Corp Production of sintered ore
JP2009097027A (en) * 2007-10-15 2009-05-07 Sumitomo Metal Ind Ltd Method for producing sintered ore

Also Published As

Publication number Publication date
JP6834720B2 (en) 2021-02-24

Similar Documents

Publication Publication Date Title
JP5699567B2 (en) Method for producing sintered ore
JPH05311257A (en) Production of sintered ore
JP5194378B2 (en) Method for producing sintered ore
JP5315659B2 (en) Method for producing sintered ore
JP2021120479A (en) Method for producing sintered ore and sintering machine
JP6421666B2 (en) Method for producing sintered ore
JP6686974B2 (en) Sintered ore manufacturing method
JP2014001438A (en) Production method for sintered ore
JP6102463B2 (en) Method for producing sintered ore
JP2013245377A (en) Method for producing sintered ore
JP6870439B2 (en) Sintered ore manufacturing method
JP6273957B2 (en) Sinter ore manufacturing method
JP4830728B2 (en) Method for producing sintered ore
JP2021080504A (en) Manufacturing method of sintered ore
JP2018178166A (en) Manufacturing method of blending raw material for sinter
JP6988844B2 (en) Sintered ore manufacturing method
JP2014214339A (en) Method for producing sintered ore
JP2013082980A (en) Method for manufacturing sintered ore
JP6885164B2 (en) Sintered ore manufacturing method
JP7087939B2 (en) Manufacturing method of sintered raw material
JP6887717B2 (en) Charcoal interior granulated particles for sinter production and sinter production method using them
JP7227053B2 (en) Method for producing sintered ore
JP2012026016A (en) Method of manufacturing sintered ore
KR101486869B1 (en) Briquettes for manufacturing sintered ore, manufacturing method of it and method for manufacturing using it
JP7095446B2 (en) Sintered ore manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210118

R151 Written notification of patent or utility model registration

Ref document number: 6834720

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151