JP2013082980A - Method for manufacturing sintered ore - Google Patents

Method for manufacturing sintered ore Download PDF

Info

Publication number
JP2013082980A
JP2013082980A JP2011224866A JP2011224866A JP2013082980A JP 2013082980 A JP2013082980 A JP 2013082980A JP 2011224866 A JP2011224866 A JP 2011224866A JP 2011224866 A JP2011224866 A JP 2011224866A JP 2013082980 A JP2013082980 A JP 2013082980A
Authority
JP
Japan
Prior art keywords
coal
raw material
mass
sintered ore
packed bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011224866A
Other languages
Japanese (ja)
Other versions
JP5811756B2 (en
Inventor
Shinji Kawachi
慎治 河内
Shunji Kasama
俊次 笠間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2011224866A priority Critical patent/JP5811756B2/en
Publication of JP2013082980A publication Critical patent/JP2013082980A/en
Application granted granted Critical
Publication of JP5811756B2 publication Critical patent/JP5811756B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method for a sintered ore which can improve a product yield of the sintered ore without causing the lowering or the like of the rigidity of the sintered core at an upper layer of the sintered ore.SOLUTION: There is provided the manufacturing method for the sintered ore using a lower suction type sintered ore in which coal containing volatile content being not smaller than 10 mass% to the total mass is spread on a surface of a raw material filling layer within 2 minutes after the raw material filling layer fed with ore on a pallet is extracted from an ignition furnace at a rate of 11 mass% or less of the total mass of a coal material and coal in the raw material filling layer. A grain size of the coal is ≤0.25 mm.

Description

本発明は、焼結鉱の製造方法に関する。   The present invention relates to a method for producing a sintered ore.

日本の製鉄所における主たる高炉用原料は焼結鉱である。この焼結鉱には、下方吸引式のドワイトロイド型焼結機が用いられる。この方法においては熱効率に関する次のような本質的な課題がある。すなわち、焼結パレット内の原料充填層下層の焼結原料は、下方に吸引される上層コークスの燃焼排ガスにより余熱され、熱が十分伝えられる。これに対し、原料充填層上層の鉱石は、排ガスにより余熱されないため熱が不足気味になる。また、焼成後の焼結鉱は、上方より吸引された空気により急速冷却される。このため、焼結鉱ケーキの上層部における焼結鉱は脆くなり、上層部の成品歩留、強度が低下する。   The main raw material for blast furnaces at Japanese steelworks is sintered ore. For this sintered ore, a downward suction type Dwytroid type sintering machine is used. This method has the following essential problems regarding thermal efficiency. That is, the sintering raw material in the lower layer of the raw material packed layer in the sintering pallet is preheated by the combustion gas of the upper coke sucked downward, and the heat is sufficiently transmitted. On the other hand, the ore in the upper layer of the raw material packed bed is not sufficiently heated by the exhaust gas, so the heat becomes insufficient. Moreover, the sintered ore after firing is rapidly cooled by the air sucked from above. For this reason, the sintered ore in the upper layer part of a sintered ore cake becomes weak, and the product yield and intensity | strength of an upper layer part fall.

上記課題を改善するために、今までに、数多くの手段が提案されている。その中に、原料装入後、原料ベッドの表層に炭材を追加する方法がある。原料ベッドの表層に炭材を追加する方法の一つは、点火前の原料充填層の表層に燃料を供給する方法である(特許文献1、2参照)。   In order to improve the above problems, many means have been proposed so far. Among them, there is a method of adding carbonaceous material to the surface layer of the raw material bed after charging the raw material. One method of adding carbonaceous material to the surface layer of the raw material bed is a method of supplying fuel to the surface layer of the raw material packed layer before ignition (see Patent Documents 1 and 2).

もう一つは、点火後の原料充填層(ベッド)の表層に、高炉ガス灰のような遅燃性微粉末を少量散布し、遅燃性微粉末を吸引ガスによって燃焼ゾーンへ導入する方法である。 The other is a method in which a small amount of slow-flammable fine powder such as blast furnace gas ash is sprayed on the surface of the raw material packed bed (bed) after ignition, and the slow-flammable fine powder is introduced into the combustion zone by suction gas. is there.

特開昭60−39129号公報JP-A-60-39129 特開2000−178661号公報JP 2000-178661 A 特開昭41−7041号公報JP-A-41-7041

しかし、一般的な焼結機では原料フィーダーから点火炉までの間のスペースが限られるため、特許文献1、2に開示された技術を一般的な焼結機に適用することは困難であった。   However, since the space between the raw material feeder and the ignition furnace is limited in a general sintering machine, it has been difficult to apply the techniques disclosed in Patent Documents 1 and 2 to a general sintering machine. .

また、特許文献3では、散布する遅燃性微粉末の種類、量や粒度に規定がなく、また有効な散布位置(散布時期)に関して開示されておらず、ベッド表面から燃焼ゾーンへ遅燃性微粉末を気流で導入する方法では、遅燃性微粉末の導入量に限界があるため、十分な効果が得られないと察せられる。   Moreover, in patent document 3, there is no regulation in the kind, amount, and particle size of the slow-flammability fine powder to be sprayed, and there is no disclosure regarding an effective spraying position (spraying time), and slow-flammability from the bed surface to the combustion zone. In the method of introducing the fine powder by the air flow, it is considered that a sufficient effect cannot be obtained because there is a limit to the amount of the slow-flammable fine powder introduced.

本発明の目的は、焼結鉱の上層部の焼結鉱の強度等の低下を招くことなく焼結機の生産性を格段に向上させることにある。   An object of the present invention is to significantly improve the productivity of a sintering machine without causing a decrease in the strength of the sintered ore in the upper layer portion of the sintered ore.

上記目的を達成するため、本発明者らは、原料充填層上層部の熱を必要十分に補償できるように、原料充填層に点火後散布した炭材を原料充填層表面で燃焼させる方法を採用することとした。そして、本発明者らは、この方法について広範な実験的検討を行うことで、特段の生産性効果が得られる条件を見出し、下記の発明に想到するに至った。   In order to achieve the above object, the present inventors adopt a method of burning the carbon material sprayed after igniting the raw material packed layer on the raw material packed layer surface so that the heat of the upper part of the raw material packed layer can be compensated sufficiently and sufficiently. It was decided to. The inventors of the present invention have conducted extensive experimental studies on this method, have found conditions for obtaining a special productivity effect, and have come up with the following invention.

即ち、本発明のある観点によれば、下方吸引型焼結機を用いた焼結鉱の製造方法であって、パレット上に給鉱された原料充填層が点火炉を出てから2分以内に、揮発分を総質量に対して10質量%以上含む石炭を、原料充填層中の炭材及び石炭の総質量の11質量%以下の割合で、原料充填層の表面に散布することを特徴とする焼結鉱製造方法が提供される。   That is, according to one aspect of the present invention, there is provided a method for producing sintered ore using a lower suction type sintering machine, wherein the raw material packed layer fed on the pallet leaves the ignition furnace within 2 minutes. In addition, the coal containing 10% by mass or more of volatile matter with respect to the total mass is sprayed on the surface of the raw material packed bed at a ratio of 11% by mass or less of the total mass of the carbonaceous material and coal in the raw material packed bed. A method for producing sinter is provided.

ここで、石炭の粒度が、0.25mm以下であってもよい。   Here, the particle size of coal may be 0.25 mm or less.

また、原料充填層が点火炉を出てから0.2分経過した時点で、石炭の散布を開始するようにしてもよい。   Moreover, you may make it start coal dispersion | spreading at the time of 0.2 minutes having passed since the raw material packed bed left the ignition furnace.

本発明によれば、散布する炭材の種類、量、および散布時期を本発明の範囲に設定することにより、原料充填層の表層に散布された石炭の着火、燃焼が円滑に進行して原料充填層上層部の熱が補償され、特段の生産性向上効果が得られる。さらに、原料充填層の表面に所定時間内に所定量の石炭を散布することにより、コークスに代えて、固体燃料の一部に従来使用できなかった揮発分を有する石炭の使用が可能となり、製造コストを削減できる。   According to the present invention, by setting the type, amount, and spraying time of the carbonaceous material to be dispersed within the range of the present invention, the ignition and combustion of the coal sprayed on the surface layer of the raw material packed bed proceeds smoothly and the raw material The heat of the upper part of the packed bed is compensated, and a special productivity improvement effect is obtained. Furthermore, by spraying a predetermined amount of coal on the surface of the raw material packed bed within a predetermined time, instead of coke, it becomes possible to use coal having a volatile content that could not be used conventionally as part of solid fuel. Cost can be reduced.

鍋試験及び原料充填層の表面に石炭を散布する方法を示す図である。It is a figure which shows the method of spraying coal on the surface of a pot test and a raw material packed bed. NSBC炭散の散布終了までの時間と未燃石炭の関係を示す図である。It is a figure which shows the time until the completion | finish of dispersion | spreading of NSBC charcoal, and unburned coal.

下方吸引型焼結機を用いた焼結鉱の製造においては、焼結パレット内の原料充填層下層の焼結原料は、下方に吸引される上層コークスの燃焼排ガスにより余熱され、熱が十分伝えられる。これに対し、原料充填層上層の鉱石は、排ガスにより余熱されないため熱が不足し、また、焼成後の焼結鉱は、上方より吸引された空気により急速冷却され、脆い焼結鉱となる。本実施形態によれば、原料充填層の表面に石炭を散布し、熱を供給することにより、焼結鉱製造設備の上層部を十分に加熱できるので、熱不足による上層部の焼結鉱の歩留の低下を抑制することによって、焼結の生産性を向上させることができる。   In the production of sintered ore using a lower suction type sintering machine, the sintering raw material in the lower layer of the raw material packed bed in the sintering pallet is preheated by the combustion gas of the upper coke sucked downward, and the heat is transferred sufficiently. It is done. On the other hand, since the ore in the upper layer of the raw material packed layer is not heated by the exhaust gas, the heat is insufficient, and the sintered ore after firing is rapidly cooled by the air sucked from above and becomes brittle sintered ore. According to the present embodiment, the upper layer part of the sinter production facility can be sufficiently heated by spraying coal on the surface of the raw material packed bed and supplying heat. By suppressing the decrease in yield, the productivity of sintering can be improved.

本実施形態では、パレット上に給鉱された原料充填層が点火炉を出てから2分以内に、揮発分を石炭の総質量に対して10質量%以上含む石炭を、全炭材量の11質量%以下の割合で原料充填層の表面に散布する。ここで、全炭材量とは、例えば、原料充填層中の炭材と石炭との総質量を意味する。   In this embodiment, within 2 minutes after the raw material packed bed fed on the pallet exits the ignition furnace, coal containing 10% by mass or more of volatile matter with respect to the total mass of the coal, It sprays on the surface of a raw material packed layer in the ratio of 11 mass% or less. Here, the total amount of carbon material means, for example, the total mass of the carbon material and coal in the raw material packed bed.

ここに、石炭の散布の方法は特に定められるものではなく、例えば、気流とともに吸引させる方法、適当なフィーダーを介して表層に散布する方法などの公知の方法を任意に用いることができる。   Here, the method of spraying coal is not particularly defined, and for example, a known method such as a method of sucking together with an air current or a method of spraying on a surface layer through an appropriate feeder can be arbitrarily used.

また、散布する石炭の揮発分は、その割合が高いほど効果が大きいため好ましい。これは、原料充填層表面の冷却されやすい環境においても燃焼が円滑に進行し、燃え残りの燃料が少ないためである。本実施形態では、主要な石炭の揮発分が10〜40%であることから、揮発分の割合を石炭の総質量に対して10質量%以上とした。また、揮発分の質量%は、19質量%以上がより好ましい。この理由は以下の通りである。即ち、揮発分は原料充填層内の焼結燃焼帯で発熱し、固形分は原料充填層の上層で発熱することが多い。一方、石炭の揮発分が少ない場合、石炭の固形分が原料充填層の上層に過剰に存在することになる。したがって、石炭の揮発分が少ない場合、原料充填層の上層にて過溶融が生じ、上層部の通気性が低下する可能性があると考えられる。揮発分が10質量%以上であれば、本実施形態の効果は得られるが、原料充填層上層部の通気性を確保するという観点からは、19質量%以上であることがより好ましい。   Moreover, since the effect is so large that the ratio of the volatile matter of the sprayed coal is high, it is preferable. This is because combustion proceeds smoothly even in an environment where the surface of the raw material packed bed is easily cooled, and there is little unburned fuel. In this embodiment, since the volatile matter of main coal is 10 to 40%, the ratio of the volatile matter is set to 10% by mass or more with respect to the total mass of coal. Moreover, 19 mass% or more is more preferable as mass% of a volatile matter. The reason is as follows. That is, the volatile matter often generates heat in the sintering combustion zone in the raw material packed bed, and the solid content often generates heat in the upper layer of the raw material packed bed. On the other hand, when the volatile content of coal is small, the solid content of coal is excessively present in the upper layer of the raw material packed bed. Therefore, when the volatile matter of coal is small, it is considered that overmelting occurs in the upper layer of the raw material packed layer, and the air permeability of the upper layer portion may be lowered. If the volatile content is 10% by mass or more, the effect of the present embodiment can be obtained, but it is more preferably 19% by mass or more from the viewpoint of ensuring air permeability of the upper part of the raw material packed layer.

石炭の原料充填層表面への散布は、パレット上に給鉱された原料充填層が点火炉を出てから2分以内に終了する。原料充填層が点火炉を出てから2分を超えると、原料充填層の表面の温度が低下して散布した石炭への着火が不十分となり、未燃の石炭が原料充填層の表面に残存するからである。ここで、原料充填層が点火炉を出てから所定のクリアランス時間を経過した際に、石炭の散布が開始される。ここで、クリアランス時間は、点火炉とそれに続く石炭散布装置との設備配置上のクリアランスに対応した搬送時間を意味する。石炭の着火の観点からは点火炉及び石炭散布装置はできるだけ接近させて配置する方が好ましいが、石炭散布装置への点火炉からの熱影響に基づいてクリアランスは決められる。クリアランス時間は、例えば0.2分とすることができる。   Scattering of the coal onto the surface of the raw material packed bed is completed within 2 minutes after the raw material packed bed fed on the pallet leaves the ignition furnace. If more than 2 minutes have passed since the raw material packed bed left the ignition furnace, the temperature of the raw material packed bed surface decreased and the sprayed coal became insufficiently ignited, leaving unburned coal on the surface of the raw material packed bed. Because it does. Here, when a predetermined clearance time elapses after the raw material packed bed leaves the ignition furnace, coal spraying is started. Here, clearance time means the conveyance time corresponding to the clearance on equipment arrangement | positioning with an ignition furnace and the subsequent coal spraying apparatus. From the viewpoint of ignition of coal, it is preferable to dispose the ignition furnace and the coal spraying device as close as possible, but the clearance is determined based on the thermal influence from the ignition furnace on the coal spraying device. The clearance time can be set to 0.2 minutes, for example.

散布する石炭の量は、全炭材量の11質量%以下であることが好ましい。11質量%までは石炭の増加とともに生産性向上の効果が得られるが、11質量%を超えると生産性が低下するからである。このような生産性の低下は、過剰な石炭の散布による過剰な溶融により原料充填層の上層部の通気性が低下するためと考えられる。また、石炭の量は、全炭材量の7質量%以下であることがさらに好ましい。これは上述の過溶融が7質量%以上で発生し始め、散布した石炭による生産性向上効果を相殺するためである。   The amount of coal to be dispersed is preferably 11% by mass or less of the total amount of carbonaceous material. This is because, up to 11% by mass, the effect of improving productivity can be obtained with an increase in coal, but when it exceeds 11% by mass, the productivity is lowered. Such a decrease in productivity is considered to be due to a decrease in the air permeability of the upper layer portion of the raw material packed bed due to excessive melting due to excessive coal spraying. Further, the amount of coal is more preferably 7% by mass or less of the total amount of carbonaceous material. This is because the above-described overmelting starts to occur at 7% by mass or more and offsets the productivity improvement effect by the dispersed coal.

散布する石炭の粒度は、1mm以下であることが好ましい。石炭の粒度が1mmを超えると燃焼速度が低下して散布した石炭を原料充填層の表面で完全に着火させることが困難となる。石炭の粒度は、好ましくは、0.5mm以下、更に好ましくは0.25mm以下となる。0.25mm以下であれば散布した石炭はより十分に燃焼される。なお、粒度は、JISZ8801に準じた篩いを用い、ロータップシェーカーにて3分間処理することによって規定(測定)した。即ち、本実施形態での粒度は、篩の目開きの大きさによって規定されるものである。   The particle size of the coal to be dispersed is preferably 1 mm or less. If the particle size of the coal exceeds 1 mm, the combustion rate decreases and it becomes difficult to completely ignite the dispersed coal on the surface of the raw material packed bed. The particle size of the coal is preferably 0.5 mm or less, more preferably 0.25 mm or less. If it is 0.25 mm or less, the sprayed coal will be burned more fully. The particle size was specified (measured) by using a sieve according to JISZ8801 and treating for 3 minutes with a low-tap shaker. That is, the particle size in the present embodiment is defined by the size of the sieve openings.

従来、焼結機では揮発分を有する固体燃料は使用できなかった。これは、排ガス中に放出された揮発分が後段の集塵機やブロアーに付着して、それぞれ火災や振動の原因となるためである。しかし、本発明においては、石炭から放出される揮発分は、焼結燃焼帯を通過する際に完全に燃焼されるため、この問題が解消される。   Conventionally, solid fuel having a volatile content cannot be used in a sintering machine. This is because the volatile matter released into the exhaust gas adheres to the subsequent dust collector and blower, causing fire and vibration, respectively. However, in the present invention, the volatile matter released from the coal is completely burned when passing through the sintered combustion zone, so this problem is solved.

以下、実施例に従って、原料充填層の表面への石炭散布の効果とその操業因子の数値限定の根拠を示す。実施例及び比較例は、鍋試験と呼ばれる実験の結果に基づく。実施例及び比較例で使用される各原料及び各原料の質量%を表1に示す。表1中、「鉱石A」〜「コークス」は原料充填層を構成する材料を示し、「石炭散布」は散布された石炭の質量%を示す。また、「(外数)」は、鉄鉱石及び溶剤の総質量を100としたときの質量%を示す。また、「ベース」は、石炭が散布されない例を示し、「テスト」は、石炭が散布される例を示す。「テスト」の各項目中、「石炭散布」及び「合計」に付された「27」という数値は、質量%が発熱量換算値であることを示す。   In the following, according to the examples, the effect of coal spraying on the surface of the raw material packed bed and the grounds for limiting the numerical values of the operating factors will be shown. The examples and comparative examples are based on the results of an experiment called the pan test. Table 1 shows the raw materials used in Examples and Comparative Examples and the mass% of the raw materials. In Table 1, “Ore A” to “Coke” indicate materials constituting the raw material packed bed, and “Coal Scattering” indicates mass% of the dispersed coal. Further, “(outside number)” indicates mass% when the total mass of iron ore and solvent is 100. “Base” indicates an example in which coal is not sprayed, and “test” indicates an example in which coal is sprayed. In each item of “Test”, the numerical value “27” attached to “Coal Scattering” and “Total” indicates that mass% is a calorific value conversion value.

Figure 2013082980
Figure 2013082980

本実施例及び比較例では、炭材及び石炭の質量は、コークスの発熱量を基準とした発熱量換算値で表される。例えば、全炭材量の発熱量換算値は、コークス配合量(原料充填層中のコークスの質量)+石炭配合量(散布される石炭の質量)×(石炭の発熱量)/(コークスの発熱量)である。また、石炭の質量の発熱量換算値は、石炭配合量(散布される石炭の質量)×(石炭の発熱量)/(コークスの発熱量)となる。ここで、コークス発熱量30.2MJ/kg、石炭発熱量26.6MJ/kgとしている。石炭としては、NSBC炭(揮発分36.5質量%)、サラジ炭(揮発分19.3質量%)、及びコパベラ炭(揮発分13質量%)を使用し、比較例として例えばコークスを使用した。NSBC炭、サラジ炭、コパベラ炭及びコークスの工業分析と元素分析を表2に示す。表2中、「ASH」は灰分の質量%を示し、「VH」は揮発分の質量%を示す。また、「C」、「H」、「S」、「N」、及び「O」は、それぞれ炭素、水素、硫黄、窒素、及び酸素の質量%を示す。
In the present examples and comparative examples, the mass of the carbonaceous material and coal is represented by a calorific value conversion value based on the calorific value of coke. For example, the calorific value converted value of the total amount of coal is: coke blending amount (mass of coke in the raw material packed bed) + coal blending amount (mass of coal to be spread) × (coal calorific value) / (coal heat generation) Amount). Moreover, the calorific value conversion value of the mass of coal is coal blending amount (mass of coal to be spread) × (calorific value of coal) / (calorific value of coke). Here, the coke heat generation amount is 30.2 MJ / kg, and the coal heat generation amount is 26.6 MJ / kg. As the coal, NSBC charcoal (volatile content 36.5% by mass), Saraj charcoal (volatile content 19.3% by mass), and Copabella charcoal (volatile content 13% by mass) were used. For example, coke was used as a comparative example. . Table 2 shows the industrial analysis and elemental analysis of NSBC coal, Saraji coal, Copabella coal and coke. In Table 2, “ASH” represents mass% of ash, and “VH” represents mass% of volatile. Further, “C”, “H”, “S”, “N”, and “O” represent mass% of carbon, hydrogen, sulfur, nitrogen, and oxygen, respectively.

Figure 2013082980
Figure 2013082980

図1に鍋試験に用いる装置及び原料充填層の表面に石炭を散布する方法を示す。鍋試験は、以下のように行われた。まず、原料充填層を構成する表1に示した配合原料をドラムミキサーにより1分間混合し、その後、4分間造粒した。次いで、図1に示す直径(S)300mmの試験鍋1に層厚600mmとなるように造粒後の配合原料を充填した。なお、試験鍋1の下端面はメッシュ状となっている。次いで、熱電対2を用いて原料充填層の表面及びその近傍を90秒間点火した。その後、試験鍋1の下端面から負圧15.0kpaの一定条件で試験鍋1の内部を吸引することで、原料充填層を焼結した。点火が終了してから所定時間内に充填槽の上で所定の篩目の篩網4で石炭3を手篩いすることで、原料充填層の表面に石炭を散布した。   FIG. 1 shows an apparatus used for the pan test and a method of spraying coal on the surface of the raw material packed bed. The pot test was conducted as follows. First, the blended raw materials shown in Table 1 constituting the raw material packed layer were mixed for 1 minute by a drum mixer, and then granulated for 4 minutes. Next, the blended raw material after granulation was filled in a test pan 1 having a diameter (S) of 300 mm shown in FIG. 1 so as to have a layer thickness of 600 mm. In addition, the lower end surface of the test pan 1 has a mesh shape. Next, the surface of the raw material packed layer and its vicinity were ignited for 90 seconds using the thermocouple 2. Then, the raw material filling layer was sintered by sucking the inside of the test pan 1 from the lower end surface of the test pan 1 under a constant condition of a negative pressure of 15.0 kpa. Coal was sprayed on the surface of the raw material packed bed by manually sieving the coal 3 with a sieve mesh 4 of a predetermined sieve on the filling tank within a predetermined time after the ignition was completed.

〔実施例1〕
実施例1−1〜1−9、及び比較例3〜6では、散布される炭材の粒度を0.1mm以下、炭材の散布時間を点火終了後60秒という一定の条件とし、炭材の種類、散布量の影響を検討した。結果は生産率で評価した。
[Example 1]
In Examples 1-1 to 1-9 and Comparative Examples 3 to 6, the particle size of the carbon material to be dispersed is 0.1 mm or less, the carbon material spraying time is set to a constant condition of 60 seconds after the end of ignition, The effect of the type and amount of application was examined. The result was evaluated by the production rate.

まず、焼成後のシンターケーキを2mの高さから4回落下させて破砕し、5mm以上の焼結鉱を成品として回収し質量(W)を測定した。一方焼結時の排ガス温度変化から焼結完了時間(t)を求めた。焼結完了時間は、点火を開始してから、焼結が終了するまでの時間である。生産率は、単位面積、単位時間に得られる成品の重量で定義され、W/(π(S/2))/tで計算される。単位面積は、原料充填層の表面、即ち点火された面の単位面積を示す。試験結果を表3に示す。 First, the sintered sinter cake was dropped 4 times from a height of 2 m and crushed, and a sintered ore of 5 mm or more was recovered as a product and the mass (W) was measured. On the other hand, the sintering completion time (t) was determined from the exhaust gas temperature change during sintering. The sintering completion time is the time from the start of ignition to the end of sintering. The production rate is defined by the weight of the product obtained per unit area and unit time, and is calculated by W / (π (S / 2) 2 ) / t. The unit area indicates the unit area of the surface of the raw material packed layer, that is, the ignited surface. The test results are shown in Table 3.

Figure 2013082980
Figure 2013082980

<散布量0.2%での炭材の種類の比較>
上記からわかるように、原料充填層の表面に炭材を散布していない比較例2に比べ、NSBC炭(揮発分36.5質量%)、サラジ炭(揮発分19.3質量%)、またはコパベラ炭(揮発分13質量%)を表面散布した実施例1−4、1−8、または1−9の場合は、生産率が向上した。また、コークスを表面に散布した比較例4と比較した場合においても、石炭散布の方が、生産率が向上した。原料充填層の表面に散布する炭材は、揮発分の高い石炭が優れていることがわかった。また、参考のために、CaO/Fe=0.3(質量比)、コークス割合が溶剤の総質量に対して17質量%となるように鉄鉱石、生石灰および粉コークスを混合した溶剤を、投入熱量一定の条件で散布した比較例3に対しても石炭散布の優位性が見られた。
<Comparison of types of charcoal with a spread rate of 0.2%>
As can be seen from the above, NSBC charcoal (volatile content 36.5% by mass), Saraj charcoal (volatile content 19.3% by mass), or compared with Comparative Example 2 in which no carbonaceous material is dispersed on the surface of the raw material packed bed, In the case of Examples 1-4, 1-8, or 1-9 in which Copabella coal (13% by mass of volatile content) was sprayed on the surface, the production rate was improved. Moreover, also when compared with the comparative example 4 which sprinkled coke on the surface, the direction of coal distribution improved the production rate. It was found that the carbon material sprayed on the surface of the raw material packed bed is excellent in coal having a high volatile content. For reference, CaO / Fe 2 O 3 = 0.3 (mass ratio), a solvent in which iron ore, quick lime, and powdered coke are mixed so that the coke ratio is 17% by mass with respect to the total mass of the solvent. The advantage of coal spraying was also seen over Comparative Example 3 sprayed under conditions where the input heat amount was constant.

<表面に散布する石炭の量の影響>
11質量%以下の範囲でNSBC炭の表層散布割合を変更した実施例1−1〜1−7によれば、NSBC炭の散布量が増加するに従って生産性向上効果は増加した。一方、散布量が11質量%を超えた比較例5、6では、実施例1−7に比べて生産性が低下した。以上より、表面に散布する石炭の量は11質量%以下の範囲が適切であり、7質量%に近いほど好ましいことがわかった。散布石炭量が11質量%を上限とするのは、原料内に一定のコークスが存在しないと焼結歩留を著しく低下させること、および、表層に散布した石炭が通気抵抗要因となるためである。
<Influence of the amount of coal spread on the surface>
According to Examples 1-1 to 1-7 in which the NSBC coal surface layer application ratio was changed within a range of 11% by mass or less, the productivity improvement effect increased as the NSBC coal application amount increased. On the other hand, in Comparative Examples 5 and 6 in which the application amount exceeded 11% by mass, the productivity decreased compared to Example 1-7. From the above, it was found that the amount of coal sprayed on the surface is suitably in the range of 11% by mass or less, and is preferably closer to 7% by mass. The reason why the amount of sprayed coal is 11% by mass is that if a certain amount of coke is not present in the raw material, the sintering yield will be significantly reduced, and the coal sprayed on the surface layer will become a ventilation resistance factor. .

〔実施例2〕
実施例2の試験では、炭材の種類、量は一定として、散布開始時間と炭材粒度との影響を検討した。ここで、散布開始時間は、原料充填層への点火が終了してから石炭の散布が開始されるまでの時間である。散布開始時間と炭材粒度とは表層に散布された石炭への着火の如何を支配する因子と考えられるので、ここでは、散布開始時間と炭材粒度との影響を散布した石炭の燃焼率で評価した。燃焼率は、焼成後に、焼結鉱ケーキ表面の焼結鉱を採取して、採取した焼結鉱に残った未燃石炭の量を測定することで求めた。散布する石炭の粒度の影響を調査するため、1.0mm以下、0.5mm以下、0.25mm以下及び0.1mm以下に粉砕したNSBC炭(揮発分36.5質量%)を用いた。石炭散布のタイミングについては、散布開始時間を変え、散布時間を30秒で一定とした。試験条件は、すべて同じ投入熱量とするため、全炭材量に対して0.2質量%分に相当する熱量の石炭を散布した。
[Example 2]
In the test of Example 2, the kind and amount of the carbon material were constant, and the influence of the spray start time and the carbon material particle size was examined. Here, the spray start time is the time from the end of ignition of the raw material packed bed to the start of coal spraying. Since the spray start time and the carbonaceous material particle size are considered to be the factors that govern the ignition of the coal sprayed on the surface layer, here the influence of the spray start time and the carbonaceous material particle size is the burning rate of the sprayed coal. evaluated. The burning rate was obtained by collecting the sintered ore on the surface of the sintered ore cake after firing and measuring the amount of unburned coal remaining in the collected sintered ore. In order to investigate the influence of the particle size of the coal to be dispersed, NSBC charcoal (volatile content 36.5% by mass) pulverized to 1.0 mm or less, 0.5 mm or less, 0.25 mm or less, and 0.1 mm or less was used. Regarding the timing of coal spraying, the spraying start time was changed and the spraying time was kept constant at 30 seconds. In order to make all the test conditions into the same input calorie | heat amount, the coal of the calorie | heat amount equivalent to 0.2 mass% was sprayed with respect to the total amount of coal materials.

0.5mm以下の場合のNSBC炭(揮発分36.5質量%)の粒度と散布開始時間による、焼結後の石炭残留量の変化を図2に示す。横軸は、散布終了までの時間、即ち、点火が終了してから散布が終了するまでの時間を示す。石炭残留量は、石炭粒度の増加または散布終了までの時間、即ち散布開始時間の増加とともに増加した。特に、点火後2分を超えて散布するといずれの粒度においても散布した量のほぼ全量が残留していた。   FIG. 2 shows changes in the amount of residual coal after sintering depending on the particle size of NSBC charcoal (volatile content: 36.5% by mass) and the spraying start time in the case of 0.5 mm or less. The horizontal axis indicates the time until the end of spraying, that is, the time from the end of ignition to the end of spraying. The amount of coal remaining increased with increasing coal particle size or the time until the end of spraying, ie, the spray start time. In particular, when spraying over 2 minutes after ignition, almost all of the sprayed amount remained at any particle size.

この結果から、散布する石炭の粒度は1.0mm以下が好ましく、0.5mm以下がより好ましく、0.25mm以下がさらに好ましいこと、石炭散布は点火後2分以内に行う必要があることが判明した。   From this result, it is found that the particle size of the coal to be dispersed is preferably 1.0 mm or less, more preferably 0.5 mm or less, and further preferably 0.25 mm or less, and the coal dispersion needs to be performed within 2 minutes after ignition. did.

本発明は、下方吸引型焼結機を用いた焼結鉱の製造方法に利用できる。   The present invention can be used in a method for producing sintered ore using a downward suction type sintering machine.

1…試験鍋、2…熱電対、3…石炭、4…篩網
1 ... Test pan, 2 ... Thermocouple, 3 ... Coal, 4 ... Sieve

Claims (3)

下方吸引型焼結機を用いた焼結鉱の製造方法であって、パレット上に給鉱された原料充填層が点火炉を出てから2分以内に、揮発分を総質量に対して10質量%以上含む石炭を、前記原料充填層中の炭材及び前記石炭の総質量の11質量%以下の割合で、前記原料充填層の表面に散布することを特徴とする焼結鉱製造方法。   A method for producing sintered ore using a lower suction type sintering machine, wherein the volatile matter is reduced to 10% of the total mass within 2 minutes after the raw material packed bed fed on the pallet exits the ignition furnace. A method for producing a sintered ore, characterized in that coal containing at least mass% is sprayed on the surface of the raw material packed bed at a ratio of 11% by weight or less of the total mass of the carbonaceous material in the raw material packed bed and the coal. 前記石炭の粒度が、0.25mm以下であることを特徴とする、請求項1記載の焼結鉱製造方法。   The method for producing sinter according to claim 1, wherein the coal has a particle size of 0.25 mm or less. 前記原料充填層が前記点火炉を出てから0.2分経過した時点で、前記石炭の散布を開始することを特徴とする、請求項1または2に記載の焼結鉱製造方法。

The method for producing a sinter according to claim 1 or 2, wherein the spraying of the coal is started when 0.2 minutes have elapsed after the raw material packed bed has left the ignition furnace.

JP2011224866A 2011-10-12 2011-10-12 Method for producing sintered ore Active JP5811756B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011224866A JP5811756B2 (en) 2011-10-12 2011-10-12 Method for producing sintered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011224866A JP5811756B2 (en) 2011-10-12 2011-10-12 Method for producing sintered ore

Publications (2)

Publication Number Publication Date
JP2013082980A true JP2013082980A (en) 2013-05-09
JP5811756B2 JP5811756B2 (en) 2015-11-11

Family

ID=48528444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011224866A Active JP5811756B2 (en) 2011-10-12 2011-10-12 Method for producing sintered ore

Country Status (1)

Country Link
JP (1) JP5811756B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105087913A (en) * 2015-08-04 2015-11-25 江苏省冶金设计院有限公司 Novel pellet metallurgy method
JP7348516B2 (en) 2019-12-10 2023-09-21 日本製鉄株式会社 Method for manufacturing sintered ore
JP7381876B2 (en) 2020-01-31 2023-11-16 日本製鉄株式会社 Sintered ore manufacturing method and sintering machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105087913A (en) * 2015-08-04 2015-11-25 江苏省冶金设计院有限公司 Novel pellet metallurgy method
JP7348516B2 (en) 2019-12-10 2023-09-21 日本製鉄株式会社 Method for manufacturing sintered ore
JP7381876B2 (en) 2020-01-31 2023-11-16 日本製鉄株式会社 Sintered ore manufacturing method and sintering machine

Also Published As

Publication number Publication date
JP5811756B2 (en) 2015-11-11

Similar Documents

Publication Publication Date Title
JP5786795B2 (en) Sinter ore production method using oil palm core shell coal
JP2008024984A (en) Blast furnace operating method using woody biomass as raw material
JP5811756B2 (en) Method for producing sintered ore
JP6686974B2 (en) Sintered ore manufacturing method
JP5403027B2 (en) Blast furnace operating method and coke manufacturing method using woody biomass
CN107419045A (en) The recovery method and blast furnace dedusting ash agglomerated material of blast furnace dedusting ash
JP4837799B2 (en) Method for producing sintered ore
JP2020186436A (en) Manufacturing method of sintered ore
JP2014218713A (en) Method of producing sintered ore
JP5853874B2 (en) Method for producing sintered ore with high combustible carbon material mixed in the upper layer of the sintered layer
JP4918754B2 (en) Semi-reduced sintered ore and method for producing the same
JP2013216938A (en) Method for manufacturing sintered ore by using fine powder granulated carbonic material
JP4830728B2 (en) Method for producing sintered ore
JP2007119841A (en) Method for manufacturing half-reduced and sintered ore
JP5561443B2 (en) Method for producing sintered ore
JP4842410B2 (en) Method for producing solid fuel for sintering, solid fuel for sintering, and method for producing sintered ore using the same
JP2012026016A (en) Method of manufacturing sintered ore
JP6264517B1 (en) Method for producing carbonaceous interior sinter
JP2008019455A (en) Method for producing half-reduced sintered ore
JP7143714B2 (en) Method for producing carbon material for sintering, method for selecting raw material for carbon material for sintering, and method for producing sintered ore
JP2020084204A (en) Manufacturing method of sintered ore
JP5929491B2 (en) Effective utilization of oil palm core
CA3067145C (en) Operating method of an iron making installation and associated operating installation
KR101917596B1 (en) The method for producing sintered ore by using tar
JP6521259B2 (en) Method of producing sintering material for producing sintered ore

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150907

R150 Certificate of patent or registration of utility model

Ref document number: 5811756

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350