JP2007284728A - Method of granulating raw material for iron manufacture - Google Patents

Method of granulating raw material for iron manufacture Download PDF

Info

Publication number
JP2007284728A
JP2007284728A JP2006111449A JP2006111449A JP2007284728A JP 2007284728 A JP2007284728 A JP 2007284728A JP 2006111449 A JP2006111449 A JP 2006111449A JP 2006111449 A JP2006111449 A JP 2006111449A JP 2007284728 A JP2007284728 A JP 2007284728A
Authority
JP
Japan
Prior art keywords
water
iron
raw material
iron oxide
raw materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006111449A
Other languages
Japanese (ja)
Inventor
Jun Ishii
純 石井
Ryota Murai
亮太 村井
Shiro Watakabe
史朗 渡壁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006111449A priority Critical patent/JP2007284728A/en
Publication of JP2007284728A publication Critical patent/JP2007284728A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of granulating a raw material for iron manufacture into a predetermined appropriate grain size in a high granulation yield, when producing an agglomerate for the iron manufacture. <P>SOLUTION: This granulation method includes granulating the raw material for iron manufacture containing two or more types of raw iron oxides having different wettability with water from each other, under the presence of water, wherein the two or more types of the raw iron oxides have a contact angle with water of 25 degrees or less. The granulation method includes granulating the raw iron oxides having close wettability to each other, and accordingly can provide a granulated substance having a uniform and adequate grain size distribution in an improved granulation yield. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、製鉄用原料の造粒方法に関するもので、特に高炉などの竪型製鉄炉で用いられる製鉄用塊成鉱の製造に好適な造粒方法に関するものである。   The present invention relates to a method for granulating a raw material for iron making, and particularly to a granulating method suitable for producing an agglomerate for iron making used in a vertical iron making furnace such as a blast furnace.

高炉などの堅型製鉄炉(以下、高炉を例に説明する)を用いて行われる銑鉄製造プロセスでは、炉内の原料充填層内に還元ガスを流通させるために、原料充填層内の空隙率を一定値以上に保つことが重要である。このため鉄原料などの炉内装入物は粒度分布が大きいことが望ましく、装入後に粉化するおそれがある装入物は、その強度を高めて粉化を抑制する必要がある。   In a pig iron manufacturing process performed using a solid iron furnace such as a blast furnace (hereinafter described as an example of a blast furnace), the porosity in the raw material packed bed is used to distribute the reducing gas in the raw material packed bed in the furnace. It is important to keep the above a certain value. For this reason, it is desirable that the furnace interior inclusions such as iron raw materials have a large particle size distribution, and it is necessary to increase the strength of the charges that may be pulverized after charging to suppress pulverization.

このため、特に大型高炉においては、粉鉱石にバインダー、炭材などを配合した原料に水を加えて造粒し、この造粒物を炭材の燃焼熱により焼き固めた焼結鉱や、粉鉱石をペレタイザーなどで球状に成形した後、1000℃以上で高温加熱硬化させた焼成ペレットなどの焼成塊成鉱が広く用いられている。
一方、特に省エネルギーを目的に高温加熱処理しない非焼成塊成鉱に関する検討も進められており、例えば、特許文献1には、粉鉱石にバインダーと水分を加えてペレット化又はブリケット化する技術が開示されている。
特開昭53−129113号公報
For this reason, particularly in large blast furnaces, granulated by adding water to the raw material in which a binder, carbonaceous material, etc. are blended with powdered ore, and this granulated material is baked and hardened by the combustion heat of the carbonaceous material. A calcined agglomerate such as calcined pellets obtained by forming ore into a spherical shape with a pelletizer or the like and then heat-curing it at 1000 ° C. or higher is widely used.
On the other hand, studies on non-fired agglomerated minerals that are not heat-treated at high temperatures are also being promoted, particularly for the purpose of energy saving. For example, Patent Document 1 discloses a technique for pelletizing or briquetting by adding a binder and moisture to fine ore. Has been.
JP-A-53-129113

一般に、焼成塊成鉱や非焼成塊成鉱には、種々の産地・銘柄の鉄鉱石(粉鉱石)のほか、焼結鉱製造時に発生する篩下粉である焼結返鉱、各種ダスト類、各種鉄粉類など様々な酸化鉄原料が用いられる。
このような酸化鉄原料を用いた塊成鉱の製造工程において、酸化鉄原料(通常、バインダーなどの副原料が添加された酸化鉄原料)を水の存在下で造粒する場合、成形歩留まりが十分に確保できず、また、造粒物の粒度分布が大きくなり、適正な粒径への制御が難しいという問題がある。
したがって本発明の目的は、製鉄用塊成鉱を製造する際に、複数種類の酸化鉄原料が配合された製鉄用原料を高い成形歩留まりで適正な粒度分布に造粒することができる造粒方法を提供することにある。
In general, calcined agglomerated or non-calcined agglomerated minerals include iron ore of various origins and brands (sintered ore), sinter-returned powder that is generated under sinter ore, and various dusts. Various iron oxide raw materials such as various iron powders are used.
In the production process of agglomerated minerals using such an iron oxide raw material, when the iron oxide raw material (usually an iron oxide raw material to which auxiliary materials such as a binder are added) is granulated in the presence of water, the molding yield is reduced. There is a problem that the particle size distribution of the granulated product cannot be ensured sufficiently, and it is difficult to control the particle size to an appropriate particle size.
Accordingly, an object of the present invention is to provide a granulation method capable of granulating an ironmaking raw material in which a plurality of types of iron oxide raw materials are blended into an appropriate particle size distribution at a high molding yield when producing an agglomerate for iron making. Is to provide.

本発明者は、上述した種々の酸化鉄原料を用いた製鉄用塊成鉱の製造工程において、造粒物の成形歩留まりの低下や粒度分布の不良が生じる原因とその対策について検討を行い、その結果、以下のような知見を得た。
粉体を水の存在下で造粒して得られた造粒物を構成する粒子間の結合力は、水の表面張力や粘着力若しくは粉体の凹凸による結合など、主に物理的な力に起因して仮留めの役割を果たす一次結合力と、主に水や粉体の性状の変化に起因して粒子間を強固に結合する二次結合力に大別することができる。粉体の造粒工程においては、粉体はまず一次結合力で成形され、さらに二次結合力で結合力が強化され、所定の結合強度を有する成形体(造粒物)が得られる。上記一次結合力による成形では、水の表面張力に起因する結合力が重要な役割を果たすことが知られている。粉体の粒子間を水により結合する場合、水の表面張力による結合力は以下の式で計算することができる(「造粒技術」橋本健次著,エポック社刊,1991)。
The present inventor examined the cause of the decrease in the molding yield of the granulated product and the failure of the particle size distribution in the production process of the agglomerate for iron making using the various iron oxide raw materials described above, and measures for that. As a result, the following knowledge was obtained.
The bonding force between the particles that make up the granulated product obtained by granulating the powder in the presence of water is mainly a physical force such as the surface tension or adhesive force of water, or bonding due to unevenness of the powder. It can be roughly classified into a primary binding force that plays a role of temporary fixing and a secondary binding force that strongly bonds particles mainly due to changes in the properties of water and powder. In the granulation step of the powder, the powder is first molded with a primary bonding force, and further the bonding force is strengthened with a secondary bonding force, whereby a molded body (granulated product) having a predetermined bonding strength is obtained. It is known that the bonding force due to the surface tension of water plays an important role in the molding by the primary bonding force. When the powder particles are bonded by water, the bonding force due to the surface tension of water can be calculated by the following formula ("Granulation Technology" by Kenji Hashimoto, published by Epoch, 1991).

Figure 2007284728
F:粒子間の結合力
d:粒子径
T:水の表面張力
θ:粉体と水の接触角
Figure 2007284728
F: Bonding force between particles d: Particle diameter T: Surface tension of water θ: Contact angle between powder and water

上記の式からして、造粒すべき製鉄用原料中に水とのぬれ性が異なる複数種類の酸化鉄原料が混在する場合、ぬれ性の大きい(=θが小さい)原料の粒子間の結合力は、ぬれ性が小さい(=θが大きい)原料の粒子間の結合力に較べて大きくなる。つまり、これらの酸化鉄原料を混在させて造粒を行う場合、ぬれ性の大きい原料は粒子どうしの結合力が強いため造粒されやすく、一方、ぬれ性の小さい原料は粒子どうしの結合力が弱いため造粒がされにくくなり、造粒物成分にはぬれ性の大きい原料が偏析することになる。また、ぬれ性の大きい原料に優先して水が付着することにより、ぬれ性の小さい原料には水が十分行き渡らなくなるため、ぬれ性の小さい原料は造粒することが困難となり、造粒物の粒度分布は、原料粒子に近い小さい粒径と非常に大きな粒径の二極に分かれる傾向がある。この結果、塊成鉱としての適切な粒度範囲に対する成形歩留まりは大幅に低下する。   From the above formula, when multiple types of iron oxide raw materials with different wettability with water are mixed in the raw material for iron making to be granulated, the bond between the particles of the raw material with high wettability (= small θ) The force is larger than the bonding force between the raw material particles having low wettability (= θ is large). In other words, when granulation is performed by mixing these iron oxide raw materials, a raw material with high wettability is easy to be granulated because of its strong bonding force between particles, while a raw material with low wettability has a strong bonding force between particles. Since it is weak, it is difficult to granulate, and the raw material having high wettability is segregated in the granulated product component. In addition, since water adheres preferentially to raw materials with high wettability, water does not spread sufficiently to raw materials with low wettability, making it difficult to granulate raw materials with low wettability. The particle size distribution tends to be divided into two poles, a small particle size close to the raw material particles and a very large particle size. As a result, the molding yield for an appropriate particle size range as agglomerated ore is greatly reduced.

上記のような問題を解決するためには、ぬれ性が近い酸化鉄原料どうしを組み合わせて造粒すればよい。具体的には、酸化鉄原料のぬれ性は水との接触角により評価できるため、複数の種類の酸化鉄原料を配合する場合、水との接触角の差が所定の数値範囲内にある酸化鉄原料を用いるようにすればよく、これにより成形歩留まりが高められ、均質で適正な粒度分布(狭い粒度分布範囲)を有する造粒物を得ることができる。   In order to solve the above problems, the iron oxide raw materials having close wettability may be combined and granulated. Specifically, since the wettability of the iron oxide raw material can be evaluated based on the contact angle with water, when multiple types of iron oxide raw materials are blended, the oxidation in which the difference in contact angle with water is within a predetermined numerical range. What is necessary is just to use an iron raw material, and this can raise a shaping | molding yield and can obtain the granulated material which has a homogeneous and appropriate particle size distribution (narrow particle size distribution range).

本発明は以上のような知見に基づきなされたもので、その要旨は以下のとおりである。
[1]水とのぬれ性が異なる2種以上の酸化鉄原料が配合された製鉄用原料を水の存在下で造粒するに際し、前記2種以上の酸化鉄原料として、水との接触角の差が25度以内であるものを配合することを特徴とする製鉄用原料の造粒方法。
[2]上記[1]の造粒方法において、酸化鉄原料が細粒焼結鉱又は/及び細粒鉄鉱石であることを特徴とする製鉄用原料の造粒方法。
The present invention has been made on the basis of the above findings, and the gist thereof is as follows.
[1] When granulating an iron-making raw material containing two or more types of iron oxide raw materials having different wettability with water in the presence of water, the contact angle with water is used as the two or more types of iron oxide raw materials. A method for granulating a raw material for iron making, characterized in that the difference between the two is within 25 degrees.
[2] A granulation method for a raw material for iron making, wherein the iron oxide raw material is fine-grained sintered ore and / or fine-grained iron ore in the granulation method of [1].

本発明の製鉄用原料の造粒方法によれば、製鉄用塊成鉱を製造する際に、製鉄用原料を高い成形歩留まりで適正な粒度分布に造粒することができる。   According to the method for granulating a raw material for iron making according to the present invention, the raw material for iron making can be granulated to an appropriate particle size distribution with a high molding yield when producing the agglomerate for iron making.

本発明では、水とのぬれ性が異なる2種以上の酸化鉄原料が配合された製鉄用原料を水の存在下で造粒するに際し、ぬれ性がなるべく近い組み合わせの酸化鉄原料を用いて造粒を行うものである。
製鉄用原料には、種々の産地・銘柄の鉄鉱石(粉鉱石)のほか、焼結鉱製造時に発生する篩下粉である焼結返鉱、各種ダスト類、各種鉄粉類など様々な酸化鉄原料が用いられる。このような酸化鉄原料の水とのぬれ性は、酸化鉄原料と水との接触角により評価することができる。
In the present invention, when granulating an iron-making raw material containing two or more types of iron oxide raw materials having different wettability with water in the presence of water, a combination of iron oxide raw materials having as close wettability as possible is used. It is what makes the grain.
In addition to iron ore of various origins and brands (sintered ore), various raw materials for iron making include various types of oxidation, such as sinter-returned powder, various dusts, various iron powders, etc. An iron raw material is used. Such wettability of the iron oxide raw material with water can be evaluated by the contact angle between the iron oxide raw material and water.

液体−固体間の接触角は、平面に切り出し研磨した固体面上に液滴を滴下して直接測定することが可能であるが、固体が粒体粒子である場合、そのような接触角の測定は困難であるため、間接的に接触角を測定する方法が採られる。液体と粉体間の接触角θを測定する方法については、吉永らによって詳細な測定方法(浸透速度法)が示されている(水曜会誌,18(1977)p561)。
すなわち、図2に示される試験装置において、試料管2の下端を濾紙4によって塞ぎ、この中に微粉砕した粒体試料3を装入した後、温度調節器6によって一定温度に保温された液体試料7(水)の中に静かに浸漬させる。この際の液面高さの上昇速度は以下の式で示される。
The contact angle between the liquid and the solid can be directly measured by dropping a droplet on a solid surface cut into a flat surface and polished. However, when the solid is a granular particle, measurement of such a contact angle is possible. However, it is difficult to measure the contact angle indirectly. Regarding the method of measuring the contact angle θ between the liquid and the powder, Yoshinaga et al. Have shown a detailed measuring method (permeation rate method) (Wednesday Society, 18 (1977) p561).
That is, in the test apparatus shown in FIG. 2, the lower end of the sample tube 2 is closed with the filter paper 4, the finely pulverized granule sample 3 is charged therein, and then the liquid kept at a constant temperature by the temperature controller 6. Gently immerse in sample 7 (water). The rising speed of the liquid level at this time is expressed by the following equation.

Figure 2007284728
t:浸透時間
h:液面高さ
r:毛管半径
g:重力加速度
γ:液体の表面張力
η:液体の粘度
θ:粉体−液滴の接触角
Figure 2007284728
t: Penetration time h: Liquid surface height r: Capillary radius g: Gravity acceleration γ L : Liquid surface tension η: Liquid viscosity θ: Powder-droplet contact angle

そして、観測される液面高さの逆数(1/h)をX軸、液面の上昇速度(dh/dt)をY軸にとって整理し、グラフの匂配を求めることにより、接触角θを算出することができる。具体的には、まず、酸化鉄原料を微粉砕して53〜105μmの粒度範囲に調整する。次に、この微粉砕試料(粉体試料)3gを図2に示した試験装置の試料管2(内径約6mm)に装入し、粉体試料を十分に圧密するためタッピング操作を200回行う。さらに、試料管2を図2に示すように静かに液面に浸し、液面の上昇速度がほぼ0になるまで一定時間ごとに液面高さを測定し、上記の手法で接触角θを算出する。
なお、粒子の粒径測定方法としては、篩い分けによる粒度測定方法のほか、JIS Z 8825-1に示されるレーザー回折散乱法などを用いることができる。
Then, the reciprocal (1 / h) of the observed liquid level is arranged on the X axis, the rising speed (dh / dt) of the liquid level is arranged on the Y axis, and the contact angle θ is calculated by obtaining the odor distribution of the graph. Can be calculated. Specifically, first, the iron oxide raw material is finely pulverized and adjusted to a particle size range of 53 to 105 μm. Next, 3 g of this finely pulverized sample (powder sample) is loaded into the sample tube 2 (inner diameter of about 6 mm) of the test apparatus shown in FIG. 2, and the tapping operation is performed 200 times in order to sufficiently compact the powder sample. . Further, the sample tube 2 is gently immersed in the liquid surface as shown in FIG. 2, and the liquid surface height is measured at regular intervals until the rising speed of the liquid surface becomes almost zero, and the contact angle θ is determined by the above method. calculate.
As a particle size measuring method of the particles, in addition to a particle size measuring method by sieving, a laser diffraction scattering method shown in JIS Z 8825-1 can be used.

図1は、水とのぬれ性が異なる2種類の酸化鉄原料を水の存在下で造粒した場合に、両酸化鉄原料の水との接触角の差と造粒時の成形歩留まり(10〜40mmに造粒された成形物の質量比)との関係を示したものである。この造粒試験では、表1に示される酸化鉄原料(鉄鉱石A〜E、焼結返鉱)のうち2種類を組み合わせて配合した製鉄用原料を用いて造粒試験を行った。造粒条件としては、2種類の酸化鉄原料(各10kg)を粉砕して粒度を100μm以下に調整したものに、水を0.6kg、二次結合力強化用バインダーであるアルミナセメントを0.6kg添加してミキサーで30分撹拌し、次いで、直径50cmのディスクペレタイザーを用いて30rpmで造粒を行った。   FIG. 1 shows that when two types of iron oxide raw materials having different wettability with water are granulated in the presence of water, the difference in contact angle between both iron oxide raw materials and water and the molding yield during granulation (10 This shows the relationship with the mass ratio of the molded product granulated to ˜40 mm. In this granulation test, the granulation test was performed using the raw materials for iron making blended by combining two of the iron oxide raw materials (iron ores A to E and sintered ore) shown in Table 1. As granulation conditions, two types of iron oxide raw materials (each 10 kg) were pulverized and the particle size was adjusted to 100 μm or less, 0.6 kg of water, and alumina cement as a binder for strengthening the secondary bond strength was set to 0. 6 kg was added and stirred with a mixer for 30 minutes, and then granulated at 30 rpm using a disk pelletizer having a diameter of 50 cm.

図1によれば、2種以上の酸化鉄原料の水との接触角の差が25度以内であれば、優れた成形歩留まりが得られている。このため本発明では、水とのぬれ性が異なる2種以上の酸化鉄原料が配合された製鉄用原料を水の存在下で造粒するに際し、前記2種以上の酸化鉄原料として、水との接触角の差が25度以内であるものを配合し、造粒を行う。これにより、均質で適正な粒度分布の造粒物を得ることができる。   According to FIG. 1, if the difference in contact angle between two or more iron oxide raw materials and water is within 25 degrees, an excellent molding yield is obtained. For this reason, in the present invention, when granulating an iron-making raw material containing two or more types of iron oxide raw materials having different wettability with water in the presence of water, as the two or more types of iron oxide raw materials, water and A mixture having a contact angle difference of 25 degrees or less is granulated. Thereby, a granulated product having a uniform and proper particle size distribution can be obtained.

本発明の製鉄用原料の造粒方法は、焼結鉱などのような焼成塊成鉱の製造工程、熱処理を伴わない非焼成塊成鉱の製造工程のいずれにも適用することができる。
造粒される製鉄用原料には、バインダーなどの酸化鉄原料以外の原料を配合できることは言うまでもない。一般には、焼結鉱などの焼成塊成鉱用の原料には、酸化鉄原料のほかに、石灰、炭材、珪石、蛇紋岩、ニッケルスラグ、ドロマイトなどが配合される。また、非焼成塊成鉱用の原料には、二次結合力により造粒物強度を強化するために、例えば、セメント、石灰などを配合してもよい。また、炉内高温域で焼結することにより熱間強度を確保するための酸化鉄微粉などを配合してもよい。この酸化鉄微粉としては、例えば、鋼材酸洗ライン回収粉(いわゆるルスナー酸化鉄など)、鉄鋼製造プロセスで生じる精錬ダスト、鉄鉱石微粉などが挙げられ、これらの1種以上を用いることができる。
The method for granulating a raw material for iron making according to the present invention can be applied to both a production process of a fired agglomerated mineral such as sintered ore and a process of producing a non-fired agglomerate without heat treatment.
It goes without saying that raw materials other than iron oxide raw materials such as a binder can be blended in the raw material for iron making to be granulated. In general, lime, carbonaceous material, silica, serpentine, nickel slag, dolomite and the like are blended in addition to the iron oxide raw material as a raw material for the sintered agglomerate such as sintered ore. Moreover, in order to reinforce the strength of the granulated material by the secondary binding force, for example, cement, lime, or the like may be blended with the raw material for the unfired agglomerated mineral. Moreover, you may mix | blend the iron oxide fine powder etc. for ensuring hot strength by sintering in a high temperature area in a furnace. Examples of the iron oxide fine powder include steel pickling line recovery powder (so-called Rusner iron oxide and the like), refining dust generated in the steel manufacturing process, iron ore fine powder, and the like, and one or more of these can be used.

造粒方法としては、(1)ディスクペレタイザーを用いたペレタイジング法、ドラムミキサーを用いたドラム造粒法などの回転造粒法、(2)押出成型法、ブリケット成型法、打錠圧縮成型法などの圧縮成型法、などを適用できるが、本発明は回転造粒法による造粒に特に有効である。
造粒後の処理は任意であり、一般に、焼成塊成鉱の場合には、必要に応じて二次造粒などを経た後、焼成(焼結)して焼成塊成鉱とする。また、非焼成塊成鉱の場合には、必要に応じて二次造粒などを経た後、乾燥・養生して非焼成塊成鉱とする。
As granulation methods, (1) pelletizing method using disc pelletizer, rotary granulation method such as drum granulation method using drum mixer, (2) extrusion molding method, briquette molding method, tablet compression molding method, etc. However, the present invention is particularly effective for granulation by the rotary granulation method.
The treatment after granulation is arbitrary. In general, in the case of calcined agglomerated minerals, secondary granulation or the like is performed as necessary, and then calcined (sintered) to obtain calcined agglomerated minerals. In the case of non-calcined agglomerated minerals, secondary granulation is performed as necessary, followed by drying and curing to obtain non-calcined agglomerated minerals.

表1に示される酸化鉄原料(鉄鉱石A〜E、焼結返鉱)のうちの2種類を組み合わせて配合した製鉄用原料を用い、造粒試験を行った。表1に示す各酸化鉄原料の水との接触角は、上述した浸透速度法により測定した。
造粒試験では、2種類の酸化鉄原料(各10kg)を破砕して粒度を100μm以下に調整したものに、水を0.6kg、二次結合力強化用バインダーであるアルミナセメントを0.6kg添加してミキサーで30分間攪拌し、次いで、直径50cmのディスクペレタイザーを用いて30rpmの造粒条件で造粒し、造粒物を得た。
The granulation test was performed using the iron-making raw material which mix | blended and mix | blended two types of the iron oxide raw materials (iron ore AE, sintered reverse sinter) shown by Table 1. FIG. The contact angle of each iron oxide raw material shown in Table 1 with water was measured by the penetration rate method described above.
In the granulation test, two types of iron oxide raw materials (10 kg each) were crushed and the particle size was adjusted to 100 μm or less, water was 0.6 kg, and alumina cement as a binder for strengthening the secondary bond strength was 0.6 kg. The mixture was added and stirred for 30 minutes with a mixer, and then granulated under a granulation condition of 30 rpm using a disk pelletizer having a diameter of 50 cm to obtain a granulated product.

各造粒物の造粒性および強度を下記の方法で測定・評価した。その結果を表2に示す。なお、表2中のN/Pは造粒物一個を破壊する際に必要とされる力の大きさを示す。
造粒性の評価については、得られた造粒物の粒度分布を測定し、目標粒度である10〜40mmの粒度範囲の造粒物の質量割合を成形歩留まりとして求め、その質量割合が70mass%以上の場合を“○”、70mass%未満の場合を“×”と評価した。
また、造粒物の強度については、造粒物を24時間乾燥・養生した後、粒径25mmの造粒物20個を選択し、オートグラフ試験機により約1mm/minの速度で圧潰強度を測定し、造粒物20個の最小強度、最大強度、平均強度を求めた。
The granulation property and strength of each granulated product were measured and evaluated by the following methods. The results are shown in Table 2. In addition, N / P in Table 2 shows the magnitude | size of the force required when destroying one granulated material.
For the evaluation of the granulation property, the particle size distribution of the obtained granulated product is measured, and the mass ratio of the granulated product in the particle size range of 10 to 40 mm which is the target particle size is obtained as the molding yield, and the mass ratio is 70 mass%. The case above was evaluated as “◯” and the case of less than 70 mass% was evaluated as “x”.
As for the strength of the granulated material, after drying and curing the granulated material for 24 hours, 20 granulated materials having a particle size of 25 mm are selected, and the crushing strength is measured at a rate of about 1 mm / min by an autograph tester. Measurements were made to determine the minimum strength, maximum strength, and average strength of 20 granules.

[発明例1]
酸化鉄原料として、焼結返鉱(水との接触角74度)と鉄鉱石C(水との接触角68度)を用いた。両酸化鉄原料の水との接触角の差は6度である。
この発明例では、造粒物の粒度範囲は狭く、目標とする粒径10〜40mmの造粒物が多い粒度の揃った造粒物が得られた。また、造粒物の養生後の圧潰強度は最小・最大強度の差が小さく、ほぼ均一な組成の造粒物が得られたと考えられる。
[Invention Example 1]
As the iron oxide raw material, sintered ore (contact angle with water of 74 degrees) and iron ore C (contact angle with water of 68 degrees) were used. The difference in contact angle between both iron oxide raw materials and water is 6 degrees.
In this example of the invention, a granulated product having a narrow particle size range and a large number of granulated products having a target particle size of 10 to 40 mm was obtained. In addition, it is considered that the granulated product having an almost uniform composition was obtained because the difference between the minimum and maximum strengths of the granulated product after curing was small.

[発明例2]
酸化鉄原料として、焼結返鉱(水との接触角74度)と鉄鉱石A(水との接触角52度)を用いた。両酸化鉄原料の水との接触角の差は22度である。
この発明例では、造粒物の粒度範囲は狭く、目標とする粒径10〜40mmの造粒物が多い粒度の揃った造粒物が得られた。また、造粒物の養生後の圧潰強度は最小・最大強度の差が小さく、ほぼ均一な組成の造粒物が得られたと考えられる。
[Invention Example 2]
Sintered ore (contact angle with water of 74 degrees) and iron ore A (contact angle with water of 52 degrees) were used as iron oxide raw materials. The difference in contact angle between both iron oxide raw materials and water is 22 degrees.
In this example of the invention, a granulated product having a narrow particle size range and a large number of granulated products having a target particle size of 10 to 40 mm was obtained. In addition, it is considered that the granulated product having an almost uniform composition was obtained because the difference between the minimum and maximum strengths of the granulated product after curing was small.

[発明例3]
酸化鉄原料として、鉄鉱石D(水との接触角55度)と鉄鉱石A(水との接触角52度)を用いた。両酸化鉄原料の水との接触角の差は3度である。
この発明例では、造粒物の粒度範囲は狭く、目標とする粒径10〜40mmの造粒物が多い粒度の揃った造粒物が得られた。また、造粒物の養生後の圧潰強度は最小・最大強度の差が小さく、ほぼ均一な組成の造粒物が得られたと考えられる。
[Invention Example 3]
As iron oxide raw materials, iron ore D (contact angle with water of 55 degrees) and iron ore A (contact angle with water of 52 degrees) were used. The difference in contact angle between both iron oxide raw materials and water is 3 degrees.
In this example of the invention, a granulated product having a narrow particle size range and a large number of granulated products having a target particle size of 10 to 40 mm was obtained. In addition, it is considered that the granulated product having an almost uniform composition was obtained because the difference between the minimum and maximum strengths of the granulated product after curing was small.

[発明例4]
酸化鉄原料として、鉄鉱石D(水との接触角55度)と鉄鉱石E(水との接触角30度)を用いた。両酸化鉄原料の水との接触角の差は25度である。
この発明例では、造粒物の粒度範囲は狭く、目標とする粒径10〜40mmの造粒物が多い粒度の揃った造粒物が得られた。また、造粒物の養生後の圧潰強度は最小・最大強度の差が小さく、ほぼ均一な組成の造粒物が得られたと考えられる。
[Invention Example 4]
As iron oxide raw materials, iron ore D (contact angle with water of 55 degrees) and iron ore E (contact angle with water of 30 degrees) were used. The difference in contact angle between both iron oxide raw materials and water is 25 degrees.
In this example of the invention, a granulated product having a narrow particle size range and a large number of granulated products having a target particle size of 10 to 40 mm was obtained. In addition, it is considered that the granulated product having an almost uniform composition was obtained because the difference between the minimum and maximum strengths of the granulated product after curing was small.

[比較例1]
酸化鉄原料として、焼結返鉱(水との接触角74度)と鉄鉱石B(水との接触角37度)を用いた。両酸化鉄原料の水との接触角の差は37度である。
この比較例では、造粒物の粒度分布は、殆んど造粒されていない小径のものと、造粒が進んだ大径のものに2分され、目標とする粒径10〜40mmの造粒物は少量しか得られなかった。また、造粒物の養生後の圧潰強度は、粒子によって強度に大幅なばらつきが見られることから、造粒物の組成が偏っているものと考えられる。
[Comparative Example 1]
Sintered ore (contact angle with water of 74 degrees) and iron ore B (contact angle with water of 37 degrees) were used as iron oxide raw materials. The difference in contact angle between both iron oxide raw materials and water is 37 degrees.
In this comparative example, the particle size distribution of the granulated material is divided into two, a small diameter that is hardly granulated and a large diameter that has undergone granulation. Only a small amount of granules was obtained. Moreover, since the crushing strength after curing of the granulated product shows a large variation in strength depending on the particles, it is considered that the composition of the granulated product is biased.

[比較例2]
酸化鉄原料として、鉄鉱石B(水との接触角37度)と鉄鉱石C(水との接触角68度を用いた。両酸化鉄原料の水との接触角の差は31度である。
この比較例では、造粒物の粒度分布は、殆んど造粒されていない小径のものと、造粒が進んだ大径のものに2分され、目標とする粒径10〜40mmの造粒物は少量しか得られなかった。また、造粒物の養生後の圧潰強度は、粒子によって強度に大幅なばらつきが見られることから、造粒物の組成が偏っているものと考えられる。
[Comparative Example 2]
As iron oxide raw materials, iron ore B (contact angle with water of 37 degrees) and iron ore C (contact angle with water of 68 degrees) were used. The difference in contact angle between both iron oxide raw materials and water was 31 degrees. .
In this comparative example, the particle size distribution of the granulated material is divided into two, a small diameter that is hardly granulated and a large diameter that has undergone granulation. Only a small amount of granules was obtained. Moreover, since the crushing strength after curing of the granulated product shows a large variation in strength depending on the particles, it is considered that the composition of the granulated product is biased.

Figure 2007284728
Figure 2007284728

Figure 2007284728
Figure 2007284728

水とのぬれ性が異なる2種類の酸化鉄原料を水の存在下で造粒した場合において、2種類の酸化鉄原料の水との接触角の差と成形歩留まりとの関係を示すグラフGraph showing the relationship between the difference in contact angle between two types of iron oxide raw materials and water and the molding yield when two types of iron oxide raw materials with different wettability with water are granulated in the presence of water 粉体と液体の接触角θを測定する試験装置を示す説明図Explanatory drawing showing a test device that measures the contact angle θ between powder and liquid

Claims (2)

水とのぬれ性が異なる2種以上の酸化鉄原料が配合された製鉄用原料を水の存在下で造粒するに際し、前記2種以上の酸化鉄原料として、水との接触角の差が25度以内であるものを配合することを特徴とする製鉄用原料の造粒方法。   When granulating an iron-making raw material containing two or more types of iron oxide raw materials having different wettability with water in the presence of water, the difference in contact angle with water as the two or more types of iron oxide raw materials is A method for granulating a raw material for iron making, characterized in that a material within 25 degrees is blended. 酸化鉄原料が細粒焼結鉱又は/及び細粒鉄鉱石であることを特徴とする請求項1に記載の製鉄用原料の造粒方法。   The method for granulating a raw material for iron making according to claim 1, wherein the iron oxide raw material is fine-grained sintered ore and / or fine-grained iron ore.
JP2006111449A 2006-04-14 2006-04-14 Method of granulating raw material for iron manufacture Pending JP2007284728A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006111449A JP2007284728A (en) 2006-04-14 2006-04-14 Method of granulating raw material for iron manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006111449A JP2007284728A (en) 2006-04-14 2006-04-14 Method of granulating raw material for iron manufacture

Publications (1)

Publication Number Publication Date
JP2007284728A true JP2007284728A (en) 2007-11-01

Family

ID=38756791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006111449A Pending JP2007284728A (en) 2006-04-14 2006-04-14 Method of granulating raw material for iron manufacture

Country Status (1)

Country Link
JP (1) JP2007284728A (en)

Similar Documents

Publication Publication Date Title
JP2008214715A (en) Method for manufacturing nonfired agglomerated ore for iron manufacture
JP2008261016A (en) Method for manufacturing sintered ore
JP5762403B2 (en) Method for producing aggregate for raw materials charged in blast furnace from metal oxide-containing fine material
JP4627236B2 (en) Manufacturing method of carbonized material agglomerates
US6384126B1 (en) Binder formulation and use thereof in process for forming mineral pellets having both low and high temperature strength
JP2016104901A (en) Modified carbonaceous material for manufacturing sinter ore and manufacturing method of sinter ore using the same
KR101211302B1 (en) Blast furnace operating method using carbon-containing unfired pellets
JP2013209748A (en) Method of manufacturing reduced iron agglomerate
JP2008038181A (en) Method for granulating iron-containing collected dust for iron manufacture
TWI392744B (en) Producing method of direct reduced iron
WO2017194841A1 (en) Binder composition and a sintering process
TWI649429B (en) Manufacturing method of sintered ore
JP5498919B2 (en) Method for producing reduced iron
JP2007284728A (en) Method of granulating raw material for iron manufacture
JP6887717B2 (en) Charcoal interior granulated particles for sinter production and sinter production method using them
JP4867394B2 (en) Non-calcined agglomerate for iron making
JP4767388B2 (en) Method for producing sintered ore with excellent high-temperature properties
JP6264517B1 (en) Method for producing carbonaceous interior sinter
JP5454505B2 (en) Method for producing unfired carbon-containing agglomerated blast furnace
JP2007277684A (en) Nonfired agglomerated ore for iron manufacture
JP2007277683A (en) Nonfired agglomerated ore for iron manufacture
JP5008859B2 (en) Method for drying raw material granulated product and method for producing sintered ore
JP7073959B2 (en) Sintered ore manufacturing method
JP6250482B2 (en) Manufacturing method of granular metallic iron
JP5831397B2 (en) Method for producing sintered ore