JP3642027B2 - Blast furnace operation method - Google Patents

Blast furnace operation method Download PDF

Info

Publication number
JP3642027B2
JP3642027B2 JP2001024793A JP2001024793A JP3642027B2 JP 3642027 B2 JP3642027 B2 JP 3642027B2 JP 2001024793 A JP2001024793 A JP 2001024793A JP 2001024793 A JP2001024793 A JP 2001024793A JP 3642027 B2 JP3642027 B2 JP 3642027B2
Authority
JP
Japan
Prior art keywords
blast furnace
reduction
ore
amount
sintered ore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001024793A
Other languages
Japanese (ja)
Other versions
JP2002226904A (en
Inventor
道貴 佐藤
登 坂本
達郎 有山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2001024793A priority Critical patent/JP3642027B2/en
Publication of JP2002226904A publication Critical patent/JP2002226904A/en
Application granted granted Critical
Publication of JP3642027B2 publication Critical patent/JP3642027B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Iron (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、焼結鉱を製造し、この焼結鉱を含む高炉装入原料を高炉に装入して高炉操業する高炉操業方法に関する。
【0002】
【従来の技術】
製鉄法の主流をなす高炉製鉄法は、全必要エネルギーの約8割を石炭等の炭材に依存しており、溶銑製造などに使用された後CO+COの形で系外に放出され、その中のCOは他の熱源として使用されて最終的にはCOの状態で排出される。
【0003】
一方、近年、工業の発達にともなってエネルギー消費量が飛躍的に増加し、地球温暖化問題が顕在化してきており、CO削減が社会的ニーズとなっている。1997年の「京都議定書」によれば、日本におけるCO排出量を2010年までに1990年比で6%削減することが求められている。したがって、日本における最終エネルギー消費の11%強を占める鉄鋼業においてもCO削減が強く求められており、なかでも、高炉を含む製銑工程はエネルギー最大消費部門であり、製銑工程におけるCO削減が極めて重要である。
【0004】
【発明が解決すべき課題】
しかしながら、従来、焼結機および高炉トータルでのCO排出量削減の具体的な指針が示されていないのが現状である。
【0005】
本発明はかかる事情に鑑みてなされたものであって、焼結機および高炉トータルのCO排出量を有効に削減することができる高炉操業方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
発明者らは、上記課題を解決すべく種々検討した結果、焼結鉱を予備還元することにより、焼結機の炭材原単位が上昇し高炉での燃料比が低下するが、予備還元率が30%以上となれば焼結の際の炭材原単位上昇分よりも高炉における燃料比低下分多くすることが可能であり、それに見合ったCO量を削減することができることを見出した。すなわち、焼結機および高炉において、高炉に装入される焼結鉱として予備還元されていないものを用いた場合に発生するCO量よりも所定量少ないCO発生量となるように、30%以上の所定の還元率で焼結鉱の予備還元を行えばよいことを見出した。
【0007】
本発明はこのような知見に基づいて完成されたものであり、粉鉄鉱石および炭材を含む原料を焼結機により焼結して焼結鉱を製造する工程と、この焼結鉱を含む高炉装入原料を高炉に装入して高炉操業する工程とを有する高炉操業方法であって、前記焼結鉱の予備還元率を、前記高炉装入原料の予備還元率が30%以上になるように、かつ焼結機および高炉において、高炉に装入される焼結鉱として予備還元されていないものを用いた場合に発生するCO量よりも、所定量以上少ないCO発生量となるように制御することを特徴とする高炉操業方法を提供するものである。
【0008】
この場合に、前記所定量は10%であることが好ましい。
【0009】
【発明の実施の形態】
以下、本発明について具体的に説明する。
本発明では、焼結機および高炉トータルとしてCOの排出量が所定量以上削減されるような還元率で焼結鉱の予備還元を行う。まず、このように予備還元された部分還元焼結鉱を使用することにより高炉の操業がどのように変化するかを高炉に対する総括物質・熱収支を基にしたリストモデルによって説明する。
【0010】
図1は高炉内部のガス温度分布を示す図であり、図2は部分還元焼結鉱を用いた場合の高炉操業を示すリスト線図である。
【0011】
図1では、高炉内部のガス温度は炉頂部で約150〜200℃、羽口先で2000〜2400℃である。また、シャフト部にはいわゆる熱保存帯と称するほぼ1000℃一定の温度領域が存在する。この熱保存帯では酸化鉄はFeO〜Fe還元平衡から僅かにずれたガス組成および還元段階で存在する。図2において、上段の横軸は高炉のガスの酸化度(換言すれば、炭素原子に対する酸素原子比O/C)である。ガスの酸化度は高炉下部でガス組成がCOのみの場合は1であり、ガスが酸化鉄を還元しながら上部に移行して最終的に全量CO(+N)となった場合は2である。一方縦軸は鉄原子に対する酸素原子比(O/Fe)を示す。装入時の最も酸化度の高い状態がFe(酸化度=1.5)であり、高炉内で順次還元が進むにつれ、Fe(酸化度=1.33)、FeO(酸化度=1.05)となり最終的には金属鉄(酸化度=0)になる。また、これを還元率で表せばFe(還元率=0%)、Fe(還元率=11.3%)、FeO(還元率=30%)、金属鉄(還元率=100%)である。
【0012】
図2の下段は酸化鉄のCOによる還元平衡図である。横軸は上述と同様ガスの酸化度を表し、縦軸は還元平衡温度を表す。図1より熱保存帯の温度を1000℃とした場合、図2の下段よりこの温度におけるFe〜FeO還元平衡時のガス酸化度(O/C)が求められる。鉱石(FeO)の酸化度が1.05であることから図2上段のW点が求まる。
【0013】
一方、酸化度1.5の鉱石(Fe)を炉頂より装入した場合、直線P−P(以下操作線と称す)に沿って鉱石の酸化度およびガスの酸化度が変化する。高炉の燃料比はこの直線の勾配(C/Fe)で決定される。高炉の操業が理想的に行われ、還元平衡に到達している場合には、この直線はW点に接し、燃料比は最小値をとる。しかし、実際の高炉では酸化鉄の還元は平衡よりずれるため操作線はW点を通らず、例えばP点を通る。ここで直線P−Wと直線P−Pの長さの比(P−W)/(P−P)は高炉の還元平衡到達度を表し、シャフト効率と称されるものである。通常、高炉のシャフト効率は0.90〜0.95程度である。
【0014】
高炉装入原料の予備還元率を30%未満とした場合、高炉装入原料の酸化度は1.5より低いから、図2のPに代わってPT″になる。これによりガス組成(酸化度)も低下し、その結果高炉発生ガスの発熱量が上昇する。ただし、この場合は操作線の勾配は変化しないので燃料比は原則的には変化しない。
【0015】
これに対して、高炉装入原料の予備還元率が30%を超える場合には、W点の縦座標は1.05より低いW′点に移行する。シャフト効率一定と仮定すると、操作線はシャフト効率(P−P1′/P−W′)が一定となるP1′点を通ることになり、その結果操作線の勾配は小さくなり燃料比は低下する。
【0016】
すなわち、高炉装入原料の予備還元率が30%以上(FeOと一部金属鉄が存在する還元段階)では予備還元率に応じ高炉の燃料比の低減が可能となり、その結果として高炉発生ガス量(=CO発生量)の削減が可能となる。
【0017】
ところで、このように焼結鉱の予備還元を行うことは、従来、高炉でほぼ全部を還元していた焼結鉱の還元の一部を焼結機で行うことを意味する。ここで、高炉装入原料の燃料比は上述のように装入原料の予備還元率が30%を超えると低下するが、焼結機では鉱石の還元に要する炭材が余分に必要となる。この場合に、焼結機では、理想的には炭材が全てCOになるまで鉄鉱石の還元を行うことができるのに対し、高炉ではCO/COが一定の分配比となるため、鉄鉱石を還元するための炭材は全量COとはならず必ず一定割合でCOが発生する。このため、同じ量の鉄鉱石を還元する場合に、高炉での還元のほうが焼結機での還元よりも炭材原単位が高くならざるを得ない。したがって、高炉での燃料比低減によって削減されるCO発生量のほうが、焼結機の炭材原単位上昇にともなって増加するCO発生量よりも多くなることとなる。すなわち、高炉操業全体のCO発生量を削減するためには、焼結鉱を予備還元して高炉装入原料の予備還元率が30%を超える範囲で、高炉に装入される焼結鉱として予備還元されていないものを用いた場合に焼結機および高炉から発生するCO量よりも、所定量以上少ないCO発生量となるような還元率で焼結鉱を予備還元すればよい。この場合に、CO削減量を有効なものとするためには、10%以上少ないCO量にすることが好ましい。なお、このように高炉における燃料比が低減した場合には、使用するコークス量自体も少なくなるから、実際にはコークス炉におけるCO発生量も削減され、CO削減率はさらに高くなる。
【0018】
次に、本発明の高炉操業の具体例について説明する。
図3は、本発明の方法の具体例を示す図である。ここでは、擬似粒子製造設備100で製造した擬似粒子を下方吸引式無端移動型焼結機200で焼結し、高炉300へ装入する。
【0019】
擬似粒子製造設備100は、粉鉄鉱石を貯留する粉鉄鉱石ホッパ1と、返鉱を貯留する返鉱ホッパ2と、媒溶剤を貯留する媒溶剤ホッパ3と、内層用の粉コークスを貯留する内層用粉コークスホッパ4と、一次ドラムミキサ5と、ディスクペレタイザ6と、外層用の粉コークスを貯留する外層用粉コークスホッパ7と、二次ドラムミキサ8とを備えている。粉鉄鉱石ホッパ1から供給される粉鉄鉱石と返鉱ホッパ2から供給される返鉱が焼結原料を構成する。
【0020】
擬似粒子を製造する際には、各ホッパから焼結原料としての粉鉄鉱石および返鉱、媒溶剤ならびに粉コークスを所定量切り出し一次ドラムミキサ5に供給し、水を添加しながら混合する。つづいて、前記混合原料をディスクペレタイザ6に供給し、水を添加しながら造粒する。これにより、粉鉱石中に粉コークスが分散した状態の生ペレットが形成される。次に、ディスクペレタイザ6で造粒した生ペレットを二次ドラムミキサ8に供給し、水および外層用粉コークスホッパ7から切り出した粉コークスを添加しながら混合する。この混合により、生ペレットの表面に粉コークスが被覆され、擬似粒子が製造される。なお、原料条件に応じ一次ドラムミキサ5で造粒が充分行われる場合は、ディスクペレタイザ6による造粒工程を省略しても良い。
【0021】
このようにして製造された擬似粒子は、図4に示すように、焼結原料21中に粉コークス22が分散した状態の内層23と粉コークスからなる外層24との2層構造を有し、粒径が2〜20mmである。
【0022】
一方、下方吸引式無端移動型焼結機200は、無端移動式の移動グレート11を有しており、その移動グレート11上に、装入システム10により上記擬似粒子が供給され、層状のベッド13aが形成されるようになっている。移動グレート11の移動経路には点火炉12が設けられており、移動グレート11上の擬似粒子がその点火炉12を通過する際に点火されてベッド13aの焼結が開始され、焼結ベッド13bが形成される。移動グレート11の出口側には、図示しない塊砕機が設けられており、この塊砕機により移動グレート11から落下した焼結鉱が粉砕されてコンベア14に供給され、高炉300へ供給される。
【0023】
移動グレート11の直下には、移動グレート11の進行方向に沿って、複数の風箱15が配列されており、各風箱15には垂直ダクト16が接続されている。これら垂直ダクト16は、水平に配置された主排ガスダクト17に接続され、排ガスが主排ガスダクト17を経て排出されるようになっている。主排ガスダクト17には排ガス循環路18が設けられており、この排ガス循環路18は焼結ベッド13の上方のガス供給部19に接続されており、焼結の際に排ガスが循環されるようになっている。排ガスは、メインブロア31により、主排ガスダクト17から電気集塵機30等を経て煙突32から排出される。
【0024】
この下方吸引式無端移動型焼結機200の移動グレート11上に装入システム10を介して上記擬似粒子が供給され、焼結される。焼結にあたっては移動グレート11上に擬似粒子のベッド13aを形成し、点火炉12によりベッド13a表面に点火し、風箱15を介して下向きに空気を吸引しながら焼成し、焼結鉱の集合体である焼結ベッド13bを形成する。このようにして焼結された後、移動グレート11から焼結鉱が落下し、出口側の塊砕機により落下した焼結鉱が粉砕されてコンベア14に供給され、高炉300へ供給される。
【0025】
このような焼結処理の際には、排ガス循環路18およびガス供給部19を介して排ガスを循環させることが好ましい。このように排ガスを循環させることにより系内の酸素分圧を下げることができ、炭材の燃焼を抑制しつつ焼結および還元を進行させることができ生産性を向上させることができる。
【0026】
擬似粒子として上述したように焼結原料21中に粉コークス22が分散した内層23と粉コークスからなる外層24との2層構造のものを用いた場合には、擬似粒子の焼結の際に、内層23の焼結原料21中に分散した粉コークス22が主に焼結原料の還元に寄与し、外層24の粉コークスが主に焼結に寄与する。すなわち、内層の粉コークスと外層の粉コークスとで機能が分離され、還元と焼結とが同時に進行する。本発明者等の検討結果によれば、内層23での還元反応では、気・固反応よりもむしろ固・固反応が主体となって進行し、このような場合、還元反応は内層の粉コークス22の粒子径に依存し、粒径が小さいほど還元反応が生じやすくなることが判明した。具体的には、粒径が3mmよりも粗いコークスを使用した場合には、還元反応が抑制され、コークスが内層23内に残留するが、3mmアンダーのコークスを用いることにより、コークスがほぼ還元反応に消費された。したがって、内層用の粉コークスとしては3mmアンダーのものを用いることが好ましい。この場合に、焼結鉱の予備還元率は主に内層の粉コークスの量によって調節することができる。
【0027】
なお、高炉装入原料としては、予備還元した部分還元焼結鉱の他、通常焼結鉱等、他の原料を用いることができる。
【0028】
次に、部分還元焼結鉱を用いた場合の高炉装入原料の予備還元率が高炉操業の操業諸元に及ぼす影響について説明する。ここでは、微粉炭(PCR):200kg/t、レースウェイの理論温度(TFT):2100℃、シャフト効率:92%、ヒートロス:250000kcal/t(一定)としている。
【0029】
図5は、コークス比(CR)、鉱石とコークスとの重量比(O/C)、送風量、酸素過剰率、炉頂温度、炉頂ガスカロリー、および圧損に対する高炉装入原料の予備還元率の影響を示す図である。なお、各項目について、実線が通常コークスを用いた場合であり、破線が高反応性コークスを用いた場合である。
【0030】
CRに関しては、上述した燃料比の大部分をなすものであり、上述のように予備還元率が30%以上で低減しているのがわかる。ただし、予備還元率40%以上では酸素過剰率が0.7を下回り、シャフト効率を下げ送風量上昇を余儀なくされるため、CR削減効果が低下する。O/Cに関しては、予備還元率が30%を超えると予備還元に伴う鉱石の減少よりもCRの減少のほうが大きいため上昇に向かう。送風量に関しては、予備還元率が30%以上では還元に必要なCOガス発生量を少なくできるので、大きく低減する。酸素過剰率は送風中の酸素量と微粉炭を完全燃焼させる酸素量との比であるが、予備還元率の上昇による送風量の低減にともない低下する。炉頂温度に関しては、予備還元率の上昇にともない装入物量が相対的に減るので上昇するが、予備還元率30%以上では炉頂ガス量も同時に減るのでほとんど変化しなくなる。炉頂ガスカロリーは予備還元率30%までは予備還元率の上昇にともなって上昇するが、予備還元率30%以上では炉頂ガス量低減にともなって低下する。圧損ΔPは炉頂からストックライン10mまでの圧損の値であるが、予備還元率30%以上では送風量の低減にともなって低減する。
【0031】
【実施例】
以下、本発明の実施例について説明する。
図3に示す擬似粒子製造設備100および下方吸引式無端移動型焼結機200により擬似粒子の作成および焼結を行って予備還元率が50%の部分還元焼結鉱を製造し、高炉に装入する主原料を、部分還元焼結鉱80mass%、ペレットmass%、塊鉱石10mass%になるようにして高炉操業を行った。この際の条件は、送風温度1200℃微粉炭吹き込み比(PCR)200kg/t、羽口先燃焼温度200℃とした。この際のコークス炉、焼結機および高炉におけるCOの排出量を求めた。一方、比較のため実質的に予備還元されていない焼結鉱を用いた以外は同様の条件で高炉操業した場合のコークス炉、焼結機および高炉におけるCO排出量(排出炭素量のCO換算値)も求めた。これらのCO排出量を比較して図6に示す。
【0032】
図6に示すように、部分還元焼結鉱を用いた本発明例の場合には、焼結機におけるCO排出量が部分還元焼結鉱を用いない比較例の2.2倍となったが、高炉で26%、コークス炉で15%CO排出量が少なくなったため、コークス炉、焼結機および高炉のトータルでは12%COを削減することができた。コークス炉からのCO排出量の差の絶対値は小さいことから、部分還元焼結鉱を用いることにより焼結機および高炉でのCO削減量はほぼ12%であった。このように所定の予備還元率の部分還元焼結鉱を用いることにより、予備還元されていない焼結鉱を用いた場合よりも、焼結機および高炉で12%のCO量削減が達成できることが確認された。
【0033】
【発明の効果】
本発明によれば、焼結機および高炉トータルのCO排出量を有効に削減することができる高炉操業方法が提供される。したがって、本発明は地球温暖化防止の観点から極めて価値が高いものである。
【図面の簡単な説明】
【図1】高炉内のガス温度分布を示す図。
【図2】部分還元焼結鉱を用いた場合の高炉操業を示すリスト線図。
【図3】本発明の方法の具体例を示す図。
【図4】部分還元焼結鉱を製造するための2層構造の擬似粒子を示す断面図。
【図5】高炉におけるコークス比(CR)、鉱石とコークスとの重量比(O/C)、送風量、酸素過剰率、炉頂温度、炉頂ガスカロリー、および圧損に対する高炉装入原料の影響を示す図。
【図6】本発明の効果を示す図。
【符号の説明】
1……粉鉄鉱石ホッパ
2……返鉱ホッパ
3……媒溶剤ホッパ
4……内層用粉コークスホッパ
5……一次ドラムミキサ
6……ディスクペレタイザ
7……外層用粉コークスホッパ
8……二次ドラムミキサ
10……装入システム
11……移動グレート
12……点火炉
13a……ベッド
13b……焼結ベッド
18……排ガス循環路
100……擬似粒子製造設備
200……下方吸引式無端移動型焼結機
300……高炉
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a blast furnace operating method in which a sintered ore is manufactured, and a blast furnace charging raw material including the sintered ore is charged into a blast furnace to operate the blast furnace.
[0002]
[Prior art]
The blast furnace iron making process, which is the mainstream of the iron making process, relies on carbon materials such as coal for about 80% of the total energy required. After being used for hot metal production etc., it is released out of the system in the form of CO + CO 2. The inside CO is used as another heat source and is finally discharged in the state of CO 2 .
[0003]
On the other hand, in recent years, with the development of industry, energy consumption has increased dramatically, the problem of global warming has become obvious, and CO 2 reduction has become a social need. According to the 1997 “Kyoto Protocol”, CO 2 emissions in Japan are required to be reduced by 6% by 2010 from the 1990 level. Therefore, even in the steel industry, which accounts for over 11% of final energy consumption in Japan, there is a strong demand for CO 2 reduction. Among these, the ironmaking process including blast furnaces is the largest energy consumption sector, and CO 2 in the ironmaking process. Reduction is extremely important.
[0004]
[Problems to be Solved by the Invention]
However, at present, there is no specific guideline for reducing CO 2 emissions in the sintering machine and blast furnace total.
[0005]
The present invention was made in view of such circumstances, and an object thereof is to provide a blast furnace method which can effectively reduce the CO 2 emissions of the sintering machine and blast furnace total.
[0006]
[Means for Solving the Problems]
As a result of various studies to solve the above-mentioned problems, the inventors have conducted preliminary reduction of the sintered ore to increase the carbonaceous basic unit of the sintering machine and reduce the fuel ratio in the blast furnace. There it is possible to increase the fuel ratio decrease amount in the blast furnace than the baked coal ZaiHara units rise during sintering if 30% or more, and found that it is possible to reduce the amount of CO 2 commensurate therewith . That is, in the sintering machine and blast furnace, to a predetermined amount less CO 2 emissions than the amount of CO 2 that occurs in the case of using the not pre-reduced as sintering ore is charged into the blast furnace, 30 It has been found that the preliminary reduction of the sintered ore may be performed at a predetermined reduction rate of at least% .
[0007]
The present invention has been completed based on such knowledge, and includes a step of sintering a raw material containing fine iron ore and a carbonaceous material by a sintering machine to produce a sintered ore, and the sintered ore. A blast furnace operating method including a step of charging a blast furnace charging raw material into the blast furnace and operating the blast furnace, wherein the preliminary reduction rate of the sintered ore is 30% or more. in manner, and the sintering machine and blast furnace, than the amount of CO 2 that occurs in the case of using the not pre-reduced as sintering ore is charged into the blast furnace, a predetermined amount or more small amount of produced CO 2 Thus , a blast furnace operating method characterized by being controlled as described above is provided.
[0008]
In this case, the predetermined amount is preferably 10%.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be specifically described.
In the present invention, the preliminary reduction of the sintered ore is performed at a reduction rate such that the CO 2 emission amount is reduced by a predetermined amount or more as the total of the sintering machine and the blast furnace. First, how the operation of the blast furnace is changed by using the partially reduced sintered ore thus preliminarily reduced will be described using a list model based on the overall material and heat balance for the blast furnace.
[0010]
FIG. 1 is a diagram showing a gas temperature distribution inside a blast furnace, and FIG. 2 is a list diagram showing a blast furnace operation when a partially reduced sintered ore is used.
[0011]
In FIG. 1, the gas temperature inside the blast furnace is about 150-200 ° C. at the top of the furnace and 2000-2400 ° C. at the tuyere. In addition, the shaft portion has a constant temperature region of approximately 1000 ° C. called a so-called heat storage zone. In this heat preservation zone, iron oxide exists in a gas composition and a reduction stage slightly deviating from the FeO-Fe reduction equilibrium. In FIG. 2, the upper horizontal axis represents the degree of oxidation of the gas in the blast furnace (in other words, the oxygen atomic ratio O / C with respect to carbon atoms). The degree of oxidation of the gas is 1 when the gas composition is only CO at the bottom of the blast furnace, and is 2 when the gas moves to the upper part while reducing iron oxide and finally becomes CO 2 (+ N 2 ). is there. On the other hand, the vertical axis represents the oxygen atomic ratio (O / Fe) to iron atoms. The state with the highest degree of oxidation at the time of charging is Fe 2 O 3 (oxidation degree = 1.5). As the reduction proceeds sequentially in the blast furnace, Fe 3 O 4 (oxidation degree = 1.33), FeO ( The degree of oxidation = 1.05), and finally metal iron (degree of oxidation = 0). Moreover, if this is expressed in terms of a reduction rate, Fe 2 O 3 (reduction rate = 0%), Fe 3 O 4 (reduction rate = 11.3%), FeO (reduction rate = 30%), metallic iron (reduction rate = 100%).
[0012]
The lower part of FIG. 2 is a reduction equilibrium diagram of iron oxide by CO. The horizontal axis represents the degree of gas oxidation as described above, and the vertical axis represents the reduction equilibrium temperature. When the temperature of the heat preservation zone is 1000 ° C. from FIG. 1, the degree of gas oxidation (O / C) at the Fe-FeO reduction equilibrium at this temperature is obtained from the lower stage of FIG. Since the oxidation degree of the ore (FeO) is 1.05, the W point in the upper part of FIG. 2 is obtained.
[0013]
On the other hand, when ore (Fe 2 O 3 ) having an oxidation degree of 1.5 is charged from the top of the furnace, the oxidation degree of the ore and the oxidation degree of the gas are along the straight line P T -P B (hereinafter referred to as operation line). Change. The fuel ratio of the blast furnace is determined by this linear gradient (C / Fe). When the operation of the blast furnace is ideally performed and the reduction equilibrium is reached, this straight line is in contact with the W point, and the fuel ratio takes the minimum value. However, in an actual blast furnace, the reduction of iron oxide deviates from equilibrium, so that the operation line does not pass through the W point, for example, passes through the P 1 point. Here, the ratio (P 0 -W) / (P 0 -P 1 ) of the lengths of the straight line P 0 -W and the straight line P 0 -P 1 represents the degree of reduction equilibrium reached in the blast furnace, and is referred to as shaft efficiency. It is. Usually, the shaft efficiency of a blast furnace is about 0.90 to 0.95.
[0014]
When the pre-reduction ratio of the blast furnace charge is less than 30%, the oxidation degree of the blast furnace charge is lower than 1.5, so that PT ″ is substituted for PT in FIG. As a result, the calorific value of the gas generated in the blast furnace increases, but in this case, the gradient of the operation line does not change, so the fuel ratio does not change in principle.
[0015]
On the other hand, when the preliminary reduction rate of the blast furnace charge exceeds 30%, the ordinate of the W point shifts to a W ′ point lower than 1.05. Assuming that the shaft efficiency is constant, the operation line passes through the point P 1 ' where the shaft efficiency (P 0 -P 1' / P 0 -W ') is constant, and as a result, the gradient of the operation line becomes smaller and the fuel becomes lower. The ratio drops.
[0016]
That is, when the preliminary reduction rate of the blast furnace charging material is 30% or more (reduction stage in which FeO and some metallic iron exist), the fuel ratio of the blast furnace can be reduced according to the preliminary reduction rate, and as a result, the amount of gas generated in the blast furnace (= CO 2 generation amount) can be reduced.
[0017]
By the way, performing the preliminary reduction of the sintered ore in this way means that a part of the reduction of the sintered ore, which has been conventionally reduced almost entirely in the blast furnace, is performed by the sintering machine. Here, the fuel ratio of the blast furnace charge decreases as described above when the pre-reduction rate of the charge exceeds 30%, but the sintering machine requires an extra carbon material required for ore reduction. In this case, in the sintering machine, iron ore can be reduced ideally until all the carbonaceous material becomes CO 2 , whereas in the blast furnace, CO / CO 2 has a constant distribution ratio, carbonaceous material for reducing the iron ore CO occurs always at a constant rate not the total amount of CO 2. For this reason, when reducing the same amount of iron ore, the reduction in the blast furnace is inevitably higher in the carbon material basic unit than the reduction in the sintering machine. Therefore, the amount of CO 2 generated that is reduced by reducing the fuel ratio in the blast furnace becomes larger than the amount of CO 2 generated that increases with the increase in the carbon dioxide basic unit of the sintering machine. That is, in order to reduce the amount of CO 2 generated in the entire operation of the blast furnace, the sintered ore charged into the blast furnace is preliminarily reduced so that the preliminary reduction rate of the raw material charged in the blast furnace exceeds 30%. When using a material that has not been pre-reduced, the sintered ore may be pre-reduced at a reduction rate that results in a CO 2 generation amount that is a predetermined amount or less less than the CO 2 amount generated from the sintering machine and the blast furnace. . In this case, in order to make the CO 2 reduction amount effective, it is preferable to reduce the CO 2 amount by 10% or more. Note that when the fuel ratio in the blast furnace is reduced in this way, the amount of coke to be used is also reduced, so that the amount of CO 2 generated in the coke furnace is actually reduced, and the CO 2 reduction rate is further increased.
[0018]
Next, a specific example of blast furnace operation of the present invention will be described.
FIG. 3 is a diagram showing a specific example of the method of the present invention. Here, the pseudo particles produced by the pseudo particle production facility 100 are sintered by the downward suction type endless moving type sintering machine 200 and charged into the blast furnace 300.
[0019]
The pseudo particle manufacturing facility 100 stores a powdered iron ore hopper 1 that stores powdered iron ore, a return ore hopper 2 that stores returned ore, a medium hopper 3 that stores medium solvent, and powder coke for inner layers. An inner layer powder coke hopper 4, a primary drum mixer 5, a disk pelletizer 6, an outer layer powder coke hopper 7 for storing outer layer powder coke, and a secondary drum mixer 8 are provided. The fine iron ore supplied from the fine iron ore hopper 1 and the return ore supplied from the return ore hopper 2 constitute a sintered raw material.
[0020]
When manufacturing pseudo particles, a predetermined amount of fine iron ore and return mineral, medium solvent, and fine coke as a sintering raw material are cut out from each hopper, supplied to the primary drum mixer 5, and mixed while adding water. Subsequently, the mixed raw material is supplied to the disk pelletizer 6 and granulated while adding water. Thereby, the raw pellet of the state in which the powder coke was dispersed in the powdered ore is formed. Next, the raw pellets granulated by the disk pelletizer 6 are supplied to the secondary drum mixer 8 and mixed while adding water and the powder coke cut out from the powder coke hopper 7 for the outer layer. By this mixing, powder coke is coated on the surface of the raw pellets, and pseudo particles are produced. If granulation is sufficiently performed by the primary drum mixer 5 according to the raw material conditions, the granulation step by the disk pelletizer 6 may be omitted.
[0021]
The pseudo-particles thus produced have a two-layer structure of an inner layer 23 in which powder coke 22 is dispersed in the sintering raw material 21 and an outer layer 24 made of powder coke, as shown in FIG. The particle size is 2-20 mm.
[0022]
On the other hand, the downward suction type endless moving type sintering machine 200 has an endless moving type moving grate 11, and the pseudo particles are supplied onto the moving grate 11 by the charging system 10, and the layered bed 13a. Is to be formed. An ignition furnace 12 is provided in the movement path of the moving great 11, and the pseudo particles on the moving great 11 are ignited when passing through the ignition furnace 12, and the sintering of the bed 13a is started, and the sintering bed 13b. Is formed. A crusher (not shown) is provided on the exit side of the moving grate 11, and the sintered ore dropped from the moving grate 11 is crushed by the agglomerator and supplied to the conveyor 14 and supplied to the blast furnace 300.
[0023]
A plurality of wind boxes 15 are arranged immediately below the moving grate 11 along the traveling direction of the moving grate 11, and a vertical duct 16 is connected to each wind box 15. These vertical ducts 16 are connected to a main exhaust gas duct 17 disposed horizontally, and exhaust gas is discharged through the main exhaust gas duct 17. An exhaust gas circulation path 18 is provided in the main exhaust gas duct 17, and this exhaust gas circulation path 18 is connected to a gas supply unit 19 above the sintering bed 13 so that the exhaust gas is circulated during sintering. It has become. The exhaust gas is discharged from the chimney 32 by the main blower 31 from the main exhaust gas duct 17 through the electric dust collector 30 and the like.
[0024]
The pseudo particles are supplied onto the moving grate 11 of the lower suction type endless moving type sintering machine 200 via the charging system 10 and sintered. In sintering, a bed 13a of pseudo particles is formed on the moving great 11, and the surface of the bed 13a is ignited by an ignition furnace 12, and fired while sucking air downward through a wind box 15, thereby collecting a sintered ore. The sintered bed 13b which is a body is formed. After being sintered in this way, the sintered ore falls from the moving grate 11, and the sintered ore dropped by the crusher on the outlet side is crushed and supplied to the conveyor 14 and supplied to the blast furnace 300.
[0025]
In such a sintering process, it is preferable to circulate the exhaust gas through the exhaust gas circulation path 18 and the gas supply unit 19. By circulating the exhaust gas in this manner, the oxygen partial pressure in the system can be lowered, and sintering and reduction can be advanced while suppressing combustion of the carbonaceous material, thereby improving productivity.
[0026]
As described above, in the case of using the two-layer structure of the inner layer 23 in which the powder coke 22 is dispersed in the sintering raw material 21 and the outer layer 24 made of powder coke as the pseudo particles, the pseudo particles are sintered. The powder coke 22 dispersed in the sintering material 21 of the inner layer 23 mainly contributes to the reduction of the sintering material, and the powder coke of the outer layer 24 mainly contributes to the sintering. That is, the functions are separated between the inner layer coke and the outer layer coke, and reduction and sintering proceed simultaneously. According to the study results of the present inventors, the reduction reaction in the inner layer 23 proceeds mainly by a solid / solid reaction rather than a gas / solid reaction. It was found that depending on the particle size of 22, the smaller the particle size, the easier the reduction reaction occurs. More specifically, when coke having a particle diameter larger than 3 mm is used, the reduction reaction is suppressed and coke remains in the inner layer 23, but the coke is almost reduced by using the coke having a diameter of 3 mm or less. Was consumed. Accordingly, it is preferable to use a powder coke for the inner layer that is under 3 mm. In this case, the preliminary reduction rate of the sintered ore can be adjusted mainly by the amount of the powder coke in the inner layer.
[0027]
As the blast furnace charging raw material, other raw materials such as normal sintered ore can be used in addition to the pre-reduced partially reduced sintered ore.
[0028]
Next, the influence of the preliminary reduction rate of the raw material charged in the blast furnace when partially reduced sintered ore is used on the operation specifications of the blast furnace operation will be described. Here, pulverized coal (PCR): 200 kg / t, raceway theoretical temperature (TFT): 2100 ° C., shaft efficiency: 92%, heat loss: 250,000 kcal / t (constant).
[0029]
FIG. 5 shows the co-reduction ratio of the blast furnace charge with respect to coke ratio (CR), ore to coke weight ratio (O / C), air flow rate, oxygen excess rate, furnace top temperature, furnace top gas calorie, and pressure loss. It is a figure which shows the influence of. In addition, about each item, a continuous line is a case where normal coke is used, and a broken line is a case where highly reactive coke is used.
[0030]
Regarding CR, it makes up most of the fuel ratio described above, and it can be seen that the pre-reduction rate is reduced by 30% or more as described above. However, when the pre-reduction rate is 40% or more, the oxygen excess rate is less than 0.7, and the shaft efficiency is lowered and the air flow rate is forced to increase, so the CR reduction effect is reduced. As for O / C, when the pre-reduction rate exceeds 30%, the decrease in CR is larger than the decrease in ore accompanying the pre-reduction, so that the increase will go. The amount of blown air is greatly reduced because the amount of CO gas generation necessary for reduction can be reduced when the preliminary reduction rate is 30% or more. The oxygen excess rate is a ratio between the amount of oxygen being blown and the amount of oxygen that completely burns the pulverized coal, but decreases as the amount of blown air decreases due to the increase in the preliminary reduction rate. The temperature at the top of the furnace rises because the amount of charged material relatively decreases as the preliminary reduction rate increases. However, when the preliminary reduction rate is 30% or more, the amount of furnace top gas decreases at the same time, so that there is almost no change. The furnace top gas calorie increases with an increase in the preliminary reduction ratio up to a preliminary reduction ratio of 30%, but decreases with a reduction in the furnace top gas amount at a preliminary reduction ratio of 30% or more. The pressure loss ΔP is the value of the pressure loss from the top of the furnace to the stock line 10 m. However, when the pre-reduction rate is 30% or more, the pressure loss ΔP decreases with the reduction of the blowing amount.
[0031]
【Example】
Examples of the present invention will be described below.
The pseudo-particle production facility 100 and the downward suction type endless moving type sintering machine 200 shown in FIG. 3 produce and sinter pseudo-particles to produce partially reduced sintered ore with a pre-reduction ratio of 50%, which is then installed in the blast furnace. The blast furnace operation was performed so that the main raw material to be introduced was 80 mass% of partially reduced sintered ore, pellet mass%, and lump ore 10 mass%. The conditions at this time were a blowing temperature of 1200 ° C., a pulverized coal blowing ratio (PCR) of 200 kg / t, and a tuyere tip combustion temperature of 200 ° C. The amount of CO 2 discharged in the coke oven, sintering machine and blast furnace at this time was determined. On the other hand, substantially coke oven in the case of blast furnace operation under the same conditions except for using sinter that is not pre-reduced, the sintering machine and CO 2 emissions in the blast furnace (discharge amount of carbon CO 2 for comparison (Converted value) was also obtained. These CO 2 emissions are compared and shown in FIG.
[0032]
As shown in FIG. 6, in the case of the present invention example using the partially reduced sintered ore, the CO 2 emission amount in the sintering machine was 2.2 times that of the comparative example not using the partially reduced sintered ore. but 26% in the blast furnace, since became less 15% CO 2 emissions coke oven, coke oven, a sintering machine and blast the total could be reduced 12% CO 2. Since the absolute value of the difference in CO 2 emission from the coke oven is small, the CO 2 reduction amount in the sintering machine and the blast furnace was approximately 12% by using the partially reduced sintered ore. In this way, by using partially reduced sintered ore with a predetermined preliminary reduction rate, it is possible to achieve a 12% reduction in CO 2 in the sintering machine and blast furnace than when using sintered ore that has not been subjected to preliminary reduction. Was confirmed.
[0033]
【The invention's effect】
According to the present invention, blast furnace operation method capable of effectively reducing the CO 2 emissions of the sintering machine and blast furnace total is provided. Therefore, the present invention is extremely valuable from the viewpoint of preventing global warming.
[Brief description of the drawings]
FIG. 1 is a diagram showing a gas temperature distribution in a blast furnace.
FIG. 2 is a list diagram showing blast furnace operation when partially reduced sintered ore is used.
FIG. 3 is a diagram showing a specific example of the method of the present invention.
FIG. 4 is a cross-sectional view showing pseudo particles having a two-layer structure for producing partially reduced sintered ore.
FIG. 5 shows the effect of blast furnace charge on coke ratio (CR), ore and coke weight ratio (O / C), blast volume, oxygen excess rate, furnace top temperature, furnace top gas calorie, and pressure loss in a blast furnace. FIG.
FIG. 6 is a diagram showing the effect of the present invention.
[Explanation of symbols]
1 …… Powder iron ore hopper 2 …… Returning hopper 3 …… Medium solvent hopper 4 …… Inner layer coke hopper 5 …… Primary drum mixer 6 …… Disc pelletizer 7 …… Outer layer coke hopper 8 …… 2 Next drum mixer 10 ... charging system 11 ... moving great 12 ... ignition furnace 13a ... bed 13b ... sintering bed 18 ... exhaust gas circulation path 100 ... pseudo particle production facility 200 ... bottom suction type endless moving type Sintering machine 300 ... Blast furnace

Claims (2)

粉鉄鉱石および炭材を含む原料を焼結機により焼結して焼結鉱を製造する工程と、この焼結鉱を含む高炉装入原料を高炉に装入して高炉操業する工程とを有する高炉操業方法であって、
前記焼結鉱の予備還元率を、前記高炉装入原料の予備還元率が30%以上になるように、かつ焼結機および高炉において、高炉に装入される焼結鉱として予備還元されていないものを用いた場合に発生するCO量よりも、所定量以上少ないCO発生量となるように制御することを特徴とする高炉操業方法。
Sintering raw material containing fine iron ore and carbonaceous material with a sintering machine to produce sintered ore, and charging blast furnace containing raw material containing this sintered ore into the blast furnace and operating the blast furnace A blast furnace operating method comprising:
The pre-reduction rate of the sintered ore is pre-reduced as a sintered ore charged in the blast furnace in a sintering machine and a blast furnace so that the pre-reduction rate of the raw material charged in the blast furnace is 30% or more. A method for operating a blast furnace, characterized in that control is performed so that a CO 2 generation amount is a predetermined amount or more less than a CO 2 amount generated when a non-existing one is used.
前記所定量が10%であることを特徴とする請求項1に記載の高炉操業方法。  The blast furnace operating method according to claim 1, wherein the predetermined amount is 10%.
JP2001024793A 2001-01-31 2001-01-31 Blast furnace operation method Expired - Fee Related JP3642027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001024793A JP3642027B2 (en) 2001-01-31 2001-01-31 Blast furnace operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001024793A JP3642027B2 (en) 2001-01-31 2001-01-31 Blast furnace operation method

Publications (2)

Publication Number Publication Date
JP2002226904A JP2002226904A (en) 2002-08-14
JP3642027B2 true JP3642027B2 (en) 2005-04-27

Family

ID=18889883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001024793A Expired - Fee Related JP3642027B2 (en) 2001-01-31 2001-01-31 Blast furnace operation method

Country Status (1)

Country Link
JP (1) JP3642027B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4797388B2 (en) * 2005-01-31 2011-10-19 Jfeスチール株式会社 Method for producing semi-reduced sintered ore
JP5549227B2 (en) * 2010-01-07 2014-07-16 新日鐵住金株式会社 Method for producing pre-reduced sintered ore and blast furnace operating method using the same
KR102524475B1 (en) 2021-02-26 2023-04-20 고려대학교 산학협력단 Method for controlling slag composition for hydrogen-based reduction ironmaking process by controlling the mixing ratio of low-reduced iron, sintered ore and coke, and slag compostion thereof

Also Published As

Publication number Publication date
JP2002226904A (en) 2002-08-14

Similar Documents

Publication Publication Date Title
US9034074B2 (en) Process for producing reduced iron pellets, and process for producing pig iron
JP4807103B2 (en) Blast furnace operation method
EP2431484B1 (en) Blast furnace operation method
JP2018178252A (en) Manufacturing method of reduced iron using rotary hearth furnace, and rotary hearth furnace
JP4470490B2 (en) Method for producing semi-reduced agglomerate
JP3642027B2 (en) Blast furnace operation method
JP3879408B2 (en) Method for producing sintered ore and sintered ore
JP2000192153A (en) Sintered ore and production thereof, and operation of blast furnace
JP2008056985A (en) Method for operating blast furnace
JP4529838B2 (en) Sinter ore and blast furnace operation method
JP2003129141A (en) Sintered ore for blast furnace and manufacturing method therefor
JP2008240028A (en) Method for operating blast furnace
JP4085493B2 (en) Manufacturing method of high quality sintered ore
EP4324938A1 (en) Method for producing agglomerated ore, method for producing reduced iron, agglomerated ore, sintering machine and pellet firing furnace
EP4317463A1 (en) Reduced iron production method and reduced iron production device
JP7310858B2 (en) Blast furnace operation method
JP4379083B2 (en) Method for producing semi-reduced agglomerate
JPH09227958A (en) Operation of endless shifting type sintering machine and high-quality sintered ore
JP2827451B2 (en) Blast furnace tuyere powder injection operation method
JPH02236210A (en) Method for operating blast furnace
JP4586407B2 (en) Blast furnace operation method
JP2023080449A (en) Blast furnace operation method
JPH08134517A (en) Operation of blast furnace
JPS5856721B2 (en) Low-Si operation method for blast furnace in pulverized coal injection
JPH02263907A (en) Operating method for blowing powder in blast furnace tuyere

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090204

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100204

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100204

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110204

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees