JPS5856721B2 - Low-Si operation method for blast furnace in pulverized coal injection - Google Patents

Low-Si operation method for blast furnace in pulverized coal injection

Info

Publication number
JPS5856721B2
JPS5856721B2 JP2096181A JP2096181A JPS5856721B2 JP S5856721 B2 JPS5856721 B2 JP S5856721B2 JP 2096181 A JP2096181 A JP 2096181A JP 2096181 A JP2096181 A JP 2096181A JP S5856721 B2 JPS5856721 B2 JP S5856721B2
Authority
JP
Japan
Prior art keywords
pulverized coal
blast furnace
iron
furnace
pig iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2096181A
Other languages
Japanese (ja)
Other versions
JPS57137402A (en
Inventor
尚夫 浜田
暢男 槌谷
寿光 小板橋
稔宏 稲谷
侠児 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2096181A priority Critical patent/JPS5856721B2/en
Publication of JPS57137402A publication Critical patent/JPS57137402A/en
Publication of JPS5856721B2 publication Critical patent/JPS5856721B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/02Making special pig-iron, e.g. by applying additives, e.g. oxides of other metals
    • C21B5/023Injection of the additives into the melting part
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/02Making special pig-iron, e.g. by applying additives, e.g. oxides of other metals
    • C21B5/023Injection of the additives into the melting part
    • C21B5/026Injection of the additives into the melting part of plastic material

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)

Description

【発明の詳細な説明】 本発明は、微粉炭を送風羽口から炉内に吹込む高炉操業
法において、出銑する銑鉄中のSi含有量を減少させる
ための高炉操業法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a blast furnace operating method in which pulverized coal is blown into the furnace through a blast tuyere, and is used to reduce the Si content in tapped iron.

高炉で鉄鉱石から銑鉄を製造する燃料として、主として
コークスが使用されている他に、重油や石炭も使用され
ている従来の高炉操業法においては、高価なコークスの
消費量(コークス比)を減少させるために、送風羽口か
ら安価な重油やタールを吹込む方法が採用されていた。
In the conventional blast furnace operation method, in which coke is mainly used as a fuel to produce pig iron from iron ore, heavy oil and coal are also used, reducing the consumption of expensive coke (coke ratio) In order to do this, a method was used in which cheap heavy oil or tar was injected through the tuyeres.

しかし、最近の石油価格の高騰により、コークスと重油
の価格が逆転し、重油を少なくした低重油化操業か、あ
るいは、重油を使用しないオイルレス操業やオール・コ
ークス操業が行われるようになっている。
However, due to the recent rise in oil prices, the prices of coke and heavy oil have reversed, leading to reduced heavy oil operation, oil-less operation, or all-coke operation that uses less heavy oil. There is.

オール・コークス操業では羽口先温度の上昇によるスリ
ップの発生などの操業異常が起こり易い。
All-coke operation is prone to operational abnormalities such as slippage due to increased tuyere tip temperature.

また重油に比べてコークス中の水素含有量が少ないこと
から炉内ガス中H2%の減少によって、炉頂ガス利用率
が低下し、重油の減少量以上にコークス比が大巾に増加
するなどの問題点が発生している。
In addition, since the hydrogen content in coke is lower than in heavy oil, a decrease in H2% in the furnace gas will reduce the furnace top gas utilization rate, and the coke ratio will increase significantly more than the decrease in heavy oil. A problem has occurred.

このような状況において、送風羽目から微粉炭を吹込む
方法は、石炭に含有される水素弁によって、炉内ガス中
H2%が上昇して炉頂ガス利用率が増加し、燃料比が減
少することと、微粉炭の原料となる石炭は重油やコーク
スよりも安価であることから、高炉の燃料コストの低減
に有効な手段とみなされている。
In such a situation, the method of injecting pulverized coal from the air blower causes the H2% in the furnace gas to rise due to the hydrogen valve contained in the coal, increasing the furnace top gas utilization rate and decreasing the fuel ratio. In addition, coal, which is the raw material for pulverized coal, is cheaper than heavy oil or coke, so it is considered an effective means of reducing fuel costs for blast furnaces.

しかし、微粉炭吹込みは、次のように溶銑中のSiを増
加させるという問題点を有している。
However, pulverized coal injection has the following problem of increasing Si in the hot metal.

送風羽口から吹込まれた微粉炭は、羽口先の2000℃
以上の高炉内で最も温度の高い燃焼帯で燃焼するので、
石炭中の灰分の中のSiO2が、SiO+(、+SiO
+CO(1) の反応で、SiOが発生し、SiOは炉下部の高温帯を
上昇する間にCによって還元されてSiとなり、銑鉄中
に吸収されて銑鉄中のSiを増加させる。
The pulverized coal blown through the tuyeres reaches a temperature of 2000℃ at the tip of the tuyere.
Since combustion occurs in the combustion zone with the highest temperature in the blast furnace,
SiO2 in the ash in the coal becomes SiO+(, +SiO
The reaction of +CO(1) generates SiO, which is reduced by C while rising through the high-temperature zone at the bottom of the furnace to become Si, which is absorbed into the pig iron and increases the Si content in the pig iron.

銑鉄中のSi%については、溶銑を製鋼で精錬する場合
の有利性や高炉の低燃料比操業指向から、銑鉄中のSi
%を低く安定させる必要性が特に高まっているので、上
述のような現象は大きな問題点である。
Regarding the Si% in pig iron, the Si% in pig iron is
The above-mentioned phenomenon is a major problem, especially since there is an increasing need to keep the % low and stable.

高炉装入物中に含有されるSi、Mn。Sなどの不純物
は、炉内での各種反応を経て、最終的には炉外へ排出さ
れるスラグと銑鉄に分配される。
Si and Mn contained in blast furnace charge. Impurities such as S go through various reactions within the furnace and are eventually distributed to the slag and pig iron that are discharged outside the furnace.

Siの銑鉄への移行は、羽口先や炉下部の高温帯で発生
するSiOを介して、鉱石の溶融位置から炉床場溜りの
スラグ浴表面までの領域で起こることが知られている。
It is known that the transfer of Si to pig iron occurs in the region from the melting position of the ore to the surface of the slag bath in the hearth pit, via SiO generated at the tip of the tuyere and in the high-temperature zone at the bottom of the furnace.

したがって、銑鉄中のSiを低下させるためには、Si
Oの発生を抑制するか、鉱石溶融位置を下方に移動させ
、炉下部へのFeO量を増加させる必要がある。
Therefore, in order to reduce Si in pig iron, Si
It is necessary to suppress the generation of O or move the ore melting position downward to increase the amount of FeO to the lower part of the furnace.

従来の低Si操業法は、熱流比(固体とガスの熱流量の
比)を増加させて、鉄鉱石の溶融位置を下方に移動させ
ることにより低Si化するものであり、装入物が炉頂か
ら装入されてから炉下部へ降下するまで長時間を要する
ことから、即効性に乏しい。
The conventional low-Si operation method increases the heat flow ratio (ratio of solid heat flow rate to gas heat flow rate) and moves the melting position of iron ore downward to reduce Si. Since it takes a long time to descend to the bottom of the furnace after it is charged from the top, it is not effective immediately.

また熱流比をあげることは、炉熱を低くおさえることに
なるので、操業トラブルを起こし易い。
Increasing the heat flow ratio also means keeping the furnace heat low, which tends to cause operational troubles.

本発明の目的は、微粉炭吹込みにおける高炉操業法にお
いて発生する前述のごとき問題点を解消させて、出銑す
る銑鉄中のSi含有量を減少させることにある。
An object of the present invention is to eliminate the above-mentioned problems that occur in the blast furnace operation method using pulverized coal injection, and to reduce the Si content in the pig iron to be tapped.

本発明は、微粉炭の吹込みにおける高炉の操業法におい
て、微粉炭とともに酸化鉄または還元鉄を送風羽口から
高炉内に吹込み、これにより出銑する銑鉄中のSi含有
量を減少させることを特徴とする、微粉炭の吹込みにお
ける高炉の低Si操業法を要旨とするものである。
The present invention is a method of operating a blast furnace in which pulverized coal is injected, in which iron oxide or reduced iron is injected into the blast furnace from the blast tuyeres together with pulverized coal, thereby reducing the Si content in the pig iron being tapped. The gist of this paper is a method for operating a blast furnace with low Si in the injection of pulverized coal, which is characterized by the following.

本発明の操業方法を図面によって説明する。The operating method of the present invention will be explained with reference to the drawings.

図面は、本発明の方法を実施するための、高炉に付設し
た、微粉炭とともに鉄鉱石等の添加物質を羽口から高炉
内に吹込むための設備に係るものであって、微粉炭と添
加物質のそれぞれを別口に導くための各供給系統を示す
ものである。
The drawings relate to equipment attached to a blast furnace for carrying out the method of the present invention, for injecting additives such as iron ore into the blast furnace together with pulverized coal through the tuyeres. It shows each supply system to lead each to a separate outlet.

高炉1の炉頂から主として鉄鉱石とコースタとからなる
装入物が装入され、炉下部から銑鉄とスラグが排出され
る。
A charge consisting mainly of iron ore and coaster is charged from the top of the blast furnace 1, and pig iron and slag are discharged from the bottom of the furnace.

コークスを燃焼させる高温の空気は、環状管2を経由し
て、多数の送風羽口3から炉内へ導入される。
High-temperature air for burning coke is introduced into the furnace through a large number of blowing tuyeres 3 via an annular pipe 2.

微粉炭は、石炭を気体輸送に適する水分まで乾燥して粉
砕し、原料ホッパー4から中間タンク5を介して圧送タ
ンク6から輸送管10に送り込み、空気や各種のガスを
搬送気体として、送風羽口3に設けられた吹込みノズル
11から炉内へ吹込む。
Pulverized coal is produced by drying and pulverizing coal to a moisture level suitable for gas transportation, and feeding it from a raw material hopper 4 through an intermediate tank 5, from a pressure tank 6 to a transport pipe 10, and then using air or various gases as carrier gas to blow the air into a blower. The air is blown into the furnace through a blow nozzle 11 provided at the port 3.

酸化鉄または還元鉄は、これを微粉炭と同程度まで、普
通は100 mesh以下が50%以上になるまで粉砕
したものを原料ホンパー7、中間タンク8、圧送タンク
9を介して輸送管10に送り込み、微粉炭と混合されて
吹込みノズル11から炉内へ吹込まれる。
Iron oxide or reduced iron is pulverized to the same level as pulverized coal, usually 50% or more of 100 mesh or less, and then transported to a transport pipe 10 via a raw material pumper 7, an intermediate tank 8, and a pressure tank 9. It is mixed with pulverized coal and blown into the furnace from the blowing nozzle 11.

これらの添加物質は、予め微粉炭と混合してから、原料
ホンパー4、中間タンク5、圧送タンク6を経由して送
り込むこともできるが、添加物質は、石炭よりも密度力
状きいためにホッパーやタンク内で分級を起こし易い。
These additive substances can be mixed with pulverized coal in advance and then fed through the raw material hopper 4, intermediate tank 5, and pressure tank 6, but since the additive substances have a higher density and force than coal, It is easy to cause classification in the tank.

中間タンク5,8は、常圧の原料ホンパー4,7と高圧
の圧送タンク6゜9との各々の中間の弁の開閉動作に応
じて均圧または排圧の機能をもっている。
The intermediate tanks 5, 8 have a pressure equalization or exhaust pressure function according to the opening/closing operation of intermediate valves between the normal pressure material pumpers 4, 7 and the high pressure pressure feeding tank 6.9.

圧送タンク6.9は、いわゆる粉体用インジュクション
タンクであり、粉体を定量的に輸送管10中に送り込む
機能をもっている。
The pressure tank 6.9 is a so-called powder injection tank, and has a function of quantitatively feeding powder into the transport pipe 10.

微粉炭吹込み量を一定に保ちながら、添加物質の量を変
更して銑鉄のSi%を制却する場合は、前記のとおりの
別々の原料供給系統にした方が便利である。
When controlling the Si% of pig iron by changing the amount of additives while keeping the amount of pulverized coal injected constant, it is more convenient to use separate raw material supply systems as described above.

なお、添加物質のみを気体輸送して吹込むこともできる
が、微粉炭との混合吹込みの方が効果が太きい。
Note that although it is also possible to inject only the additive substance by gas transport, it is more effective to inject a mixture with pulverized coal.

酸化鉄としては、鉄鉱石や焼結鉱のほかに高炉ダスト、
焼結ダスト、転炉ダストなどを使用することができる。
In addition to iron ore and sintered ore, iron oxides include blast furnace dust,
Sintering dust, converter dust, etc. can be used.

次に高炉内へ吹込まれた酸化鉄または還元鉄の作用を述
べる。
Next, we will discuss the effects of iron oxide or reduced iron injected into the blast furnace.

鉄鉱石の場合は、羽口先の高温帯で加熱されて溶融し、
一部還元されてF’e Oとして炉床部へ滴下して の形で反応して、銑鉄中のSiを低下させる。
In the case of iron ore, it is heated and melted in the high temperature zone at the tip of the tuyere.
It is partially reduced and reacts as F'e O which drips into the hearth, lowering the Si content in the pig iron.

吹込まれた鉄鉱石は、羽口先の高温帯で溶融を完了しな
いと羽口先のコークス循環帯(レースウェイ)周辺帯の
コークス充填層で目づまりを起こし、風圧が上昇して操
業トラブルの原因となるので、粒径を小さくする必要が
ある。
If the injected iron ore does not complete melting in the high temperature zone at the tuyere tip, it will clog the coke packed layer around the coke circulation zone (raceway) at the tuyere tip, increasing wind pressure and causing operational troubles. Therefore, it is necessary to reduce the particle size.

焼結鉱の場合は、(2)式と同じ反応が起こるが、焼成
時に一旦溶融し、カルシウムフェライトが生成している
ので溶融し易い。
In the case of sintered ore, the same reaction as in equation (2) occurs, but it is melted during firing and calcium ferrite is generated, so it is easy to melt.

鉄鉱石の場合は、PB粉(ペレット製造用原料)が輸入
されているので微粉鉱が入手し易いが、焼結鉱の場合は
、粉砕する必要がある。
In the case of iron ore, fine powder ore is easily available because PB powder (raw material for pellet production) is imported, but in the case of sintered ore, it is necessary to crush it.

還元鉄吹込みの場合は、羽口先の高温帯での反応で酸化
されて、自らの酸化反応の発熱で加熱、溶融するので、
鉄鉱石や焼結鉱と比べてはるかに溶融し易い長所がある
In the case of reduced iron injection, it is oxidized by a reaction in the high temperature zone at the tip of the tuyere, and is heated and melted by the heat generated by its own oxidation reaction.
It has the advantage of being much easier to melt than iron ore or sintered ore.

しかし還元鉄は、鉄鉱石が50%以上に還元されたもの
であるので、鉄鉱石や焼結鉱よりも高価である。
However, since reduced iron is iron ore reduced to 50% or more, it is more expensive than iron ore or sintered ore.

添加物は、各各を単独に用いることもできるし、状況に
よって適宜混合して使用することもできる。
Each of the additives can be used alone, or they can be mixed as appropriate depending on the situation.

通常の微粉炭吹込み量が銑鉄トンあたり30〜150k
g程度あるのに対して、酸化鉄または還元鉄の吹込量は
5〜50kg程度でよい。
Normal pulverized coal injection amount is 30-150k per ton of pig iron.
In contrast, the amount of iron oxide or reduced iron blown may be about 5 to 50 kg.

吹込の設備としては、既存の微粉炭吹込み設備の一部を
改造するのみでよく、これにより微粉炭と添加物質を一
緒に吹込むことができる。
As for the blowing equipment, it is only necessary to modify a part of the existing pulverized coal blowing equipment, thereby making it possible to blow pulverized coal and additives together.

実施例 高炉において、本発明の方法による吹込みの試験を行な
ったところ、出銑した銑鉄を当りの微粉炭、鉄鉱石、焼
結鉱、還元鉄の各々の吹込量に対して、以下のとおりの
Si含有量の銑鉄が製造された。
Example In a blast furnace, an injection test using the method of the present invention was conducted, and the results were as follows for each injection amount of pulverized coal, iron ore, sintered ore, and reduced iron per tapped pig iron. Pig iron with a Si content of .

(1)(微粉庚子鉄鉱石)の場合 微粉炭(一般炭): 52kV、−銑鉄 銑鉱石(ブラジルMBR鉱石のPB粉):13kg/l
−銑鉄 銑鉄中のSi%:0.31% (2)(微粉炭+焼結鉱)の場合 微粉炭(一般炭) : 6 ’#/、−銑鉄焼結銑鉄焼
結鉱微粉:15御 銑鉄中のSi%:0.34% (3)(微粉炭+還元鉄粉)の場合 微粉炭(一般炭)二63kg/を1銑鉄 還元鉄粉(還元率97%) : 25kP/,−銑鉄銑
鉄中のSi%:0.29% 上記の吹込みに対して、微粉炭のみ40〜80kVt−
銑鉄吹込みの場合の銑鉄中のSi%は、0、4〜0.6
%であったので、上記のように本発明による効果は明ら
かである。
(1) In the case of (fine powdered Koji iron ore) Pulverized coal (steam coal): 52kV, - Pig iron ore (PB powder from Brazilian MBR ore): 13kg/l
- Si% in pig iron: 0.31% (2) (pulverized coal + sintered ore) Pulverized coal (sintered coal): 6'#/, - Pig iron sintered pig iron sintered ore fine powder: 15 pig iron Si% in: 0.34% (3) (pulverized coal + reduced iron powder): pulverized coal (steam coal) 263 kg/1 pig iron reduced iron powder (reduction rate 97%): 25 kP/, - pig iron Si% inside: 0.29% For the above injection, only pulverized coal was 40 to 80 kVt-
In the case of pig iron injection, the Si% in the pig iron is 0.4 to 0.6.
%, the effect of the present invention is clear as described above.

本発明の効果を要約すると次のようになる。The effects of the present invention can be summarized as follows.

1)高炉の他の操業条件の変更をしないでも、銑鉄のS
i%を低下することができる。
1) S of pig iron can be improved without changing other operating conditions of the blast furnace.
i% can be lowered.

2)微粉炭吹込み設備を利用して吹込むことができる。2) Pulverized coal can be blown using pulverized coal injection equipment.

3)送風羽口から吹込むので、即効性がある。3) Since it is blown in through the tuyeres, it is effective immediately.

4)添加物装入量の調節や吹込みの開始、停止が容易で
ある。
4) It is easy to adjust the amount of additives charged and to start and stop blowing.

5)微粉炭と混合して吹込むので、添加物の単独輸送と
比べて、輸送管の摩耗が少ない。
5) Since it is mixed with pulverized coal and blown in, there is less wear on the transport pipe compared to transporting additives alone.

6)微粉炭単独よりも、添加物と混合したものの方が防
爆上よい。
6) Pulverized coal mixed with additives is better in terms of explosion protection than pulverized coal alone.

以上詳細に述べてきたとおり、本発明によれば、高炉の
熱流比に関係なしに、炉下部へFeOを滴下して銑鉄中
のSi含有量を低減し、また銑鉄のSiレベルを制御す
ることができる。
As described in detail above, according to the present invention, FeO is dropped into the lower part of the blast furnace to reduce the Si content in pig iron and to control the Si level in the pig iron, regardless of the heat flow ratio of the blast furnace. I can do it.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、本発明の方法を実施するための、高炉に付設し
た、微粉炭および添加物質を高炉内に吹込むための設備
に係るものであり、微粉炭および添加物質のそれぞれの
高炉別口に導く供給系統を示したものである。 1・・・・・・高炉、2・・・・・・送風環状管、3・
・・・・・送風羽口、4・・・・・・原料ホッパー、5
・・・・・・中間タンク、6・・・・・・圧送タンク、
7・・・・・・原料ホッパー 8・・・・・・中間タン
ク、9・・・・・・圧送タンク、10・・・・・・輸送
管、11・・・・・・吹込みノズル。
The drawings relate to equipment attached to a blast furnace for injecting pulverized coal and additive substances into the blast furnace for carrying out the method of the present invention, and the drawings show equipment for injecting pulverized coal and additive substances into the blast furnace. This shows the system. 1... Blast furnace, 2... Air blowing annular pipe, 3.
...Blow tuyere, 4...Raw material hopper, 5
...Intermediate tank, 6...Pressure tank,
7... Raw material hopper 8... Intermediate tank, 9... Pressure feeding tank, 10... Transport pipe, 11... Blowing nozzle.

Claims (1)

【特許請求の範囲】[Claims] 1 微粉炭の吹込みにおける高炉操業法において、微粉
炭とともに酸化鉄または還元鉄を送風羽口から高炉内に
吹込み、これにより出銑する銑鉄中のSi含有量を減少
させることを特徴とする、微粉炭吹込みにおける高炉の
低Si操業方法。
1. A blast furnace operation method for injection of pulverized coal is characterized by injecting iron oxide or reduced iron together with pulverized coal into the blast furnace from the blast tuyeres, thereby reducing the Si content in the pig iron being tapped. , a method for operating a blast furnace with low Si in pulverized coal injection.
JP2096181A 1981-02-17 1981-02-17 Low-Si operation method for blast furnace in pulverized coal injection Expired JPS5856721B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2096181A JPS5856721B2 (en) 1981-02-17 1981-02-17 Low-Si operation method for blast furnace in pulverized coal injection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2096181A JPS5856721B2 (en) 1981-02-17 1981-02-17 Low-Si operation method for blast furnace in pulverized coal injection

Publications (2)

Publication Number Publication Date
JPS57137402A JPS57137402A (en) 1982-08-25
JPS5856721B2 true JPS5856721B2 (en) 1983-12-16

Family

ID=12041763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2096181A Expired JPS5856721B2 (en) 1981-02-17 1981-02-17 Low-Si operation method for blast furnace in pulverized coal injection

Country Status (1)

Country Link
JP (1) JPS5856721B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61266507A (en) * 1985-05-21 1986-11-26 Kawasaki Steel Corp Method for transporting granular particle to be blown in to blast furnace
JP7339222B2 (en) * 2020-09-03 2023-09-05 株式会社神戸製鋼所 Pig iron manufacturing method

Also Published As

Publication number Publication date
JPS57137402A (en) 1982-08-25

Similar Documents

Publication Publication Date Title
JP4697340B2 (en) Blast furnace operation method
AU2021202096B2 (en) Metallurgical furnace for producing metal alloys
JPH0778252B2 (en) Improvements in or related to iron making with a melting shaft furnace
CA2873706A1 (en) Method and device for introducing fine particulate material into the fluidized bed of a fluidized bed reduction unit
JP2732522B2 (en) Equipment for producing iron or non-ferrous metals from self-soluble or non-self-soluble, self-reducing ores ores
US2526658A (en) Process for smelting iron ore
JPS5856721B2 (en) Low-Si operation method for blast furnace in pulverized coal injection
JP4894949B2 (en) Blast furnace operation method
CN104831070B (en) Smelting reduction metallurgical method
US2349688A (en) Method of producing low carbon iron or steel
JPS597327B2 (en) Low-Si operation method for blast furnace by mixed injection of pulverized coal and basic substance
US3471283A (en) Reduction of iron ore
JP2002226920A (en) Sintered ore manufacturing method, and sintered ore
JP3629740B2 (en) Hot metal production method
US4247323A (en) Process of directly reducing iron oxide-containing materials
JP2881840B2 (en) Blast furnace tuyere powder injection method
JP2990925B2 (en) Method for rapid reduction of ore or metal oxide
US2745732A (en) Method of reducing ores by a particular fuel combustion mixture
EP4324938A1 (en) Method for producing agglomerated ore, method for producing reduced iron, agglomerated ore, sintering machine and pellet firing furnace
JPH06108132A (en) Cylindrical furnace and production of molten iron using this furnace
JPS58126908A (en) Operating method of blast furnace for casting pig by mixed blowing of pulverized coal and silica or siliceous material
JPH08295913A (en) Production of low phosphorus pig iron by smelting reduction furnace
JPS6248749B2 (en)
JPH0421710A (en) Method for operating powder blowing from tuyere in blast furnace
JPH06172829A (en) Operation of blast furnace in blowing pulverized coal