JP2990925B2 - Method for rapid reduction of ore or metal oxide - Google Patents

Method for rapid reduction of ore or metal oxide

Info

Publication number
JP2990925B2
JP2990925B2 JP4054256A JP5425692A JP2990925B2 JP 2990925 B2 JP2990925 B2 JP 2990925B2 JP 4054256 A JP4054256 A JP 4054256A JP 5425692 A JP5425692 A JP 5425692A JP 2990925 B2 JP2990925 B2 JP 2990925B2
Authority
JP
Japan
Prior art keywords
ore
carbon
reduction
coated
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4054256A
Other languages
Japanese (ja)
Other versions
JPH05214414A (en
Inventor
茂樹 笹原
正賢 清水
健太郎 野沢
綱雄 上條
一也 宮川
勲 小林
晉一 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP4054256A priority Critical patent/JP2990925B2/en
Publication of JPH05214414A publication Critical patent/JPH05214414A/en
Application granted granted Critical
Publication of JP2990925B2 publication Critical patent/JP2990925B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、各種鉱石または金属酸
化物を高速に溶融還元して溶融金属を取り出す方法に関
し、殊に反応空間内における温度低下を防止しつつ高速
に溶融還元を達成することのできる方法に関するもので
ある。尚本発明で対象とする鉱石または金属酸化物にお
ける金属は、炭素によって還元され得るものであり、F
eを始めとして、Mn,Cr,Ni,Si,Cu等が挙
げられる。以下では高炉によって鉄鉱石から銑鉄を製造
する技術即ち高炉操業を主体にして説明を進めるが、も
とより本発明はこの様な高炉方式還元技術に制限される
ものではなく、粒子を供給する装置を備えた還元設備を
使用するものは全て本発明の適用技術対象となる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for extracting molten metal by smelting and reducing various ores or metal oxides at high speed, and more particularly to achieving smelting reduction at high speed while preventing a temperature drop in a reaction space. It is about how you can do it. The metal in the ore or metal oxide targeted in the present invention can be reduced by carbon,
e, Mn, Cr, Ni, Si, Cu and the like. In the following, description will be made mainly on a technique for producing pig iron from iron ore by a blast furnace, that is, blast furnace operation, but the present invention is not necessarily limited to such a blast furnace type reduction technique, and includes a device for supplying particles. Any equipment that uses the reduced equipment is an application technical object of the present invention.

【0002】[0002]

【従来の技術】近年の高炉操業においては、安価な鉄源
の有効利用や溶銑の成分調整を目的として、粉鉱石やス
ケール等の酸化鉄を高炉羽口から吹込む技術の開発が進
められている。例えば特開平1-168802号には、溶銑中の
Siの低減を目的として、微粉炭中にミルスケールとフ
ラックスを混合したものを羽口から吹込む技術が提案さ
れている。また高炉羽口から熱割れ性および難還元性の
粉鉱石を炉内に吹込む技術(特開昭62-224606 号)や、
高炉のシャフト部における鉱石とコークスの装入比率を
一定に維持し、且つ羽口から吹込まれる粉状鉄源や微粉
炭の量を目標出銑量に応じて調整する技術(特開昭64-3
6713号)等も提案されている。
2. Description of the Related Art In recent blast furnace operations, there has been developed a technique of injecting iron oxide such as fine ore or scale from a blast furnace tuyere for the purpose of effectively using an inexpensive iron source and adjusting the composition of hot metal. I have. For example, Japanese Patent Application Laid-Open No. 1-168802 proposes a technique in which a mixture of pulverized coal containing mill scale and flux is blown from a tuyere for the purpose of reducing Si in hot metal. In addition, technology to inject hot or cracking fine ore from the blast furnace tuyere into the furnace (JP-A-62-224606),
Technology for maintaining a constant charging ratio of ore and coke in the shaft portion of a blast furnace and adjusting the amount of powdered iron source and pulverized coal blown from tuyeres in accordance with the target tapping amount (Japanese Patent Laid-Open No. Sho64) -3
No. 6713) has also been proposed.

【0003】一方、粉鉱石と微粉炭の混合吹込みが、炉
芯温度の維持や炉内通気性の確保に有利であるという報
告(「鉄と鋼」,Vol 77,No.1,p1609 )や、粉鉱石と微
粉炭の超複合吹込みと称し、粉鉱石と微粉炭を同時に吹
込むことによって、レースウェイ内での粉鉱石のガス還
元が促進されるとする報告(「材料とプロセス」,Vol.
4,1991,p1920)等もなされている。
[0003] On the other hand, there is a report that the mixed injection of fine ore and pulverized coal is advantageous for maintaining the core temperature and ensuring air permeability in the furnace ("Iron and Steel", Vol 77, No. 1, p1609). And reports that super-combined injection of fine ore and pulverized coal promotes gas reduction of fine ore in the raceway by simultaneously injecting fine ore and pulverized coal ("Materials and Processes"). , Vol.
4,1991, p1920).

【0004】[0004]

【発明が解決しようとする課題】高炉羽口から粉鉱石を
吹込むと、羽口前方に形成されるレースウェイ領域(反
応空間)奥部で、粉鉱石の主成分である酸化鉄が溶融
し、コークスとの間で下記(1) 式の吸熱反応が進行す
る。 FeO+C=Fe+CO−37880kcal/kmol …(1) しかしながら、多量の粉鉱石を吹込んだ場合には、上記
(1) 式の反応の進行によって、レースウェイ外周部(炉
芯コークス層との境界部)で局部的な温度低下が発生し
てスラグが凝固し、その結果通気抵抗が増大してしま
い、炉芯部へのガス流通性が悪くなるという現象を引起
こす。
When fine ore is blown from a tuyere of a blast furnace, iron oxide, which is a main component of the fine ore, melts in the raceway region (reaction space) formed in front of the tuyere. An endothermic reaction of the following formula (1) proceeds with coke. FeO + C = Fe + CO-37880 kcal / kmol (1) However, when a large amount of fine ore is blown, the above
Due to the progress of the reaction of equation (1), a local temperature drop occurs at the outer periphery of the raceway (boundary with the furnace core coke layer), and the slag solidifies, and as a result, the ventilation resistance increases. This causes a phenomenon that the gas flow to the core is deteriorated.

【0005】本発明はこうした技術的課題を解決する為
になされたものであって、その目的は、反応空間内にお
ける気流中で粉鉱石や金属酸化物粒子から溶融金属への
高速還元を図り、反応空間内での局部的な温度低下を防
止しつつ安定した操業を行なうことのできる高速還元方
法を提供することにある。
The present invention has been made to solve such technical problems, and an object of the present invention is to achieve high-speed reduction of fine ore or metal oxide particles to molten metal in a gas stream in a reaction space. An object of the present invention is to provide a high-speed reduction method capable of performing a stable operation while preventing a local temperature decrease in a reaction space.

【0006】[0006]

【課題を解決するための手段】上記目的を達成し得た本
発明の高速還元方法とは、炉内の固体充填層内に高温の
反応空間を予め形成しておくかまたはこれを形成しつ
つ、全面若しくは一部に炭素が被覆された鉱石または金
属酸化物の粒子を、前記反応空間内へ連続的に供給して
該粒子の流れを形成し、この流れの中で前記粒子を溶融
させつつこれを還元せしめて溶融金属となす点に要旨を
有するものである。
The high-speed reduction method of the present invention, which has achieved the above-mentioned object, comprises forming a high-temperature reaction space in a solid packed bed in a furnace in advance or while forming the high-temperature reaction space. Ore or metal oxide particles, the entire surface or a part of which is coated with carbon, are continuously supplied into the reaction space to form a flow of the particles, and the particles are melted in this flow. The gist is that this is reduced to form a molten metal.

【0007】[0007]

【作用】図1は本発明に係る高速還元法を概念的に説明
する為の図である。尚図1における固体充填層は、高炉
におけるコークス層を想定したものであるが、本発明に
おいては固体充填層はコークス層の場合だけに限らず、
他の材料で構成しても良い。即ち、本発明における該充
填層は主に(1) 反応空間の形成、(2) 粉鉱石等への伝
熱、(3) ガスの排出、(4) 溶融金属やスラグの滴下とい
う4つの機能を備えたものである。
FIG. 1 is a diagram for conceptually explaining the rapid reduction method according to the present invention. The solid packed bed in FIG. 1 assumes a coke layer in a blast furnace, but in the present invention, the solid packed bed is not limited to a coke bed,
Other materials may be used. That is, the packed bed in the present invention mainly has four functions: (1) formation of a reaction space, (2) heat transfer to fine ore, (3) discharge of gas, and (4) dropping of molten metal or slag. It is provided with.

【0008】上記(1) の機能は供給された粉鉱石等の粒
子がその流れの中で最終的に還元されるに必要な反応空
間を包囲形成するものであり、また(2) の機能はこの反
応空間中の粉鉱石の還元を促進するために必要な高温を
維持し、かつ同鉱石にその輻射により直接高熱を伝える
ための伝熱媒体の役割を担う。(3) の機能は反応空間内
に供給されたガスおよびその中で発生する排ガスを系外
に放出するための通気機能であり、更に(4) の機能は還
元,液化した生成金属を滴下させて反応空間より取り出
す通液機能である。
The function (1) is to form a reaction space necessary for the particles of the supplied fine ore and the like to be finally reduced in the flow, and the function (2) is The ore serves as a heat transfer medium for maintaining the high temperature required to promote the reduction of the fine ore in the reaction space and for directly transmitting high heat to the ore by radiation. The function of (3) is a ventilation function for discharging the gas supplied into the reaction space and the exhaust gas generated therein to the outside of the system, and the function of (4) is to drop the reduced and liquefied product metal. This is a function of passing liquid out of the reaction space.

【0009】従って、かかる各機能を満たすものであれ
ば、固体充填層を構成する材料の種類を問わないが、例
えばコークスの他に石炭,MgO,Al23 ,Zr2
3,ドロマイト,Mg−C等も反応空間の雰囲気温度
(後述する)に十分に耐えるものが好ましいといえる。
なお材料の形状にも特段の定めはないが塊状のものを使
用する場合は上記(3),(4) の機能から40〜100mm程
度の粒度に調整されたものが望ましい。
Therefore, as long as it fulfills each of the above functions, it does not matter what kind of material constitutes the solid packed bed. For example, in addition to coke, coal, MgO, Al 2 O 3 , Zr 2
It can be said that it is preferable that O 3 , dolomite, Mg—C, and the like also sufficiently withstand the atmospheric temperature (described later) of the reaction space.
Although there is no particular limitation on the shape of the material, when a lump-shaped material is used, it is desirable to adjust the particle size to about 40 to 100 mm from the functions of (3) and (4) above.

【0010】ところでコークスをこの充填層として用い
た場合は前記の機能を安定して達成し、材料費が安価な
割りには耐用寿命が長いという利点に加え、その部分的
な燃焼により反応空間に熱を補給すると同時に同空間を
還元雰囲気に維持して粉鉱石に被覆された炭素の焼失を
抑制し、被覆炭素による高速還元を容易ならしめる他、
部分的に未還元のまま落下した溶融酸化物が存在した場
合でも滴下過程でコークスと接触することにより、さら
に還元反応が進行する等プロセス全体の溶融還元効率が
高く維持されるメリットがあるので特に好ましい材料で
ある。
By the way, when coke is used as this packed bed, the above-mentioned function is stably achieved, and in addition to the advantage that the material cost is inexpensive and the service life is long, the partial combustion of the coke in the reaction space. In addition to supplying heat, the space is maintained in a reducing atmosphere to suppress burnout of the carbon coated on the fine ore, facilitating high-speed reduction with the coated carbon,
Even if there is a molten oxide that has fallen partially unreduced, it comes into contact with coke in the dropping process, so that there is the merit that the smelting reduction efficiency of the entire process is kept high, such as further progress of the reduction reaction. Preferred material.

【0011】また反応空間は、高炉におけるレースウェ
イを想定したものであるが、該反応空間は吹込みによっ
て継続的に形成されるもの、或は予め形成したもののい
ずれをも含む趣旨である。粉鉱石の供給の仕方に関して
も特に制限はなく、高炉の羽口からの吹込みのように炉
の側壁から中芯に向って粒子の流れを形成させる方法で
も良いが、高炉以外の比較的炉高が低い還元炉に適用す
る場合は側壁からの供給にこだわらず、供給装置を炉上
部に設置し、上方または斜上方から下方または斜下方に
向けて供給し、粒子の自重による落下を利用した流れを
形成させるようにしてもかまわない。
Although the reaction space is assumed to be a raceway in a blast furnace, the reaction space includes a space continuously formed by blowing or a space formed in advance. There is no particular limitation on the method of supplying the fine ore, and a method of forming a flow of particles from the side wall of the furnace toward the core as in blowing from the tuyere of the blast furnace may be used. When applied to a reduction furnace with a low height, a supply device is installed at the furnace upper part and supplied from above or diagonally upward to downward or diagonally downward without using the supply from the side wall, and the particles fall by their own weight. The flow may be formed.

【0012】反応空間の雰囲気温度は粉鉱石の予熱およ
び溶融還元反応を短時間に行なわせるためには高温であ
るほど良いと言えるが、固体充填層や還元炉本体への熱
負荷等を考慮すれば1300℃以上、好ましくは150
0℃以上の条件で十分に本発明の目的を達成できる。更
に本発明においては、炭素を被覆して供給する原料は、
鉱石だけに限らず、金属酸化物(例えば予備還元された
もの)をも含む趣旨であるが、以下では鉱石の場合を代
表的に取り上げて説明を進める。
The temperature of the atmosphere in the reaction space is preferably as high as possible in order to perform the preheating and the smelting reduction reaction of the fine ore in a short time, but it is necessary to consider the heat load on the solid packed bed and the reduction furnace body. 1300 ° C or more, preferably 150
The object of the present invention can be sufficiently achieved at a temperature of 0 ° C. or higher. Further, in the present invention, the raw material coated and supplied with carbon is:
This is intended to include not only ores but also metal oxides (for example, pre-reduced ones), but in the following, the case of ores is representatively described.

【0013】本発明者らのこれまでの研究によれば、前
記図1に示す様に、高温雰囲気の気流中で浮遊状態にあ
る粉鉱石は、まずその表面のあちこちでFe2O3 からFe
1-xOへの還元が進みつつ溶融状態になり、引き続き、被
覆された炭素との接触によって高速に還元が進行する。
更に、Fe1-XOから金属鉄まで還元された表面上の溶融鉄
は中心部に次々と凝集し、中心部が溶融鉄で構成されそ
の表面が酸化鉄で覆われた状態になることが分った。
According to the research conducted by the inventors of the present invention, as shown in FIG. 1, fine ore suspended in a high-temperature atmosphere is firstly changed from Fe 2 O 3 to Fe 2 O 3 around its surface.
As the reduction to 1-xO progresses, it becomes a molten state, and subsequently, the reduction proceeds at high speed by contact with the coated carbon.
Furthermore, the molten iron on the surface reduced from Fe 1-X O to metallic iron agglomerates one after another at the center, and the center is composed of molten iron and the surface is covered with iron oxide. I understand.

【0014】上記現象が発生するメカニズムは次の様に
考察できた。図2は粒子の表面部分で還元されて生成し
た溶融鉄が中心部へ移行して酸化鉄に被覆された状態を
形成するに至るまでを段階的に示した模式図であり、図
2(a) は溶融鉄が溶融酸化鉄(スラグ)表面に存在する
状態(段階1)、図2(b) は溶融鉄が溶融酸化鉄中に埋
没浸入していく状態(段階2)、図2(c) は溶融鉄が酸
化鉄中に取り込まれた状態(段階3)を夫々示す。段階
1から段階3に至るまでのエネルギー状態(エネルギー
の差ΔF)を、溶融鉄の表面張力(γM )、酸化鉄の表
面張力(γS)、および溶融鉄−酸化鉄間の界面張力(γ
M-S )の関係で示すと、下記(2) 式の様になる。 ΔF=γS +γM-S −γM …(2)
The mechanism by which the above phenomenon occurs can be considered as follows. FIG. 2 is a schematic diagram showing step by step until molten iron produced by reduction at the surface portion of the particles migrates to the center and forms a state covered with iron oxide. ) Shows the state in which the molten iron exists on the surface of the molten iron oxide (slag) (step 1), and FIG. 2 (b) shows the state in which the molten iron is immersed and infiltrated into the molten iron oxide (step 2). ) Indicates the state in which the molten iron is taken into the iron oxide (step 3). The energy state (energy difference ΔF) from stage 1 to stage 3 is determined by the surface tension of molten iron (γ M ), the surface tension of iron oxide (γ S ), and the interfacial tension between molten iron and iron oxide ( γ
MS ), the following equation (2) is obtained. ΔF = γ S + γ MS −γ M (2)

【0015】ここでγS ≒500 ダイン/cm,γM-S ≒30
0 ダイン/cm,γM ≒1200ダイン/cmであることが分か
っているので、エネルギーの差ΔFは明らかに負の値と
なる。従って、溶融鉄粒子が溶融酸化鉄に覆われた段階
3の状態が最も安定であることが分かる。また段階3で
は、酸化鉄内に取り込まれた溶融鉄は集合して球状化し
更に安定な状態となる。尚段階2は溶融鉄表面への溶融
酸化鉄の流動と見ることもでき、これは表面張力による
移動(いわゆるマランゴニ効果)であり、移動速度は非
常に大きい。
Here, γ S ≒ 500 dyne / cm, γ MS ≒ 30
Since it is known that 0 dynes / cm and γ M ≒ 1200 dynes / cm, the energy difference ΔF is clearly a negative value. Therefore, it can be seen that the state of stage 3 in which the molten iron particles are covered with the molten iron oxide is the most stable. In addition, in Step 3, the molten iron taken into the iron oxide is aggregated and spheroidized to be in a more stable state. Step 2 can also be regarded as the flow of the molten iron oxide to the surface of the molten iron, which is movement by surface tension (the so-called Marangoni effect), and the movement speed is very high.

【0016】以上のことから、溶融した粉鉱石は還元反
応が進行しても表面が常に金属酸化物に覆われた状態で
あり、還元ガスや固体炭素との接触によって、還元反応
の急速な進行が期待される。一方従来技術で示した様
に、羽口から粉鉱石と微粉炭を同時に吹込むことで還元
が促進されるという報告もなされているが、これは微粉
炭吹込みによって、COやH2 の発生位置が羽口側に寄
ったためと推定される。これに対し本発明では、粉鉱石
に炭素を被覆した炭素被覆粉鉱石を供給することとして
いるので、粉鉱石と微粉炭を同時に吹込む技術に比べて
更に効率良く粉鉱石の高速還元に成功し得たのである。
また高速還元が達成されることによって、金属酸化物の
還元反応(吸熱反応)がレースウェイ内で分散して行な
われるので、従来の様にレースウェイの奥部に到達して
から還元反応が行なわれていたときに比べて局部的な温
度低下も防止できる。尚粉鉱石を炭素で被覆する方法に
ついては、特に限定するものではないが、例えば石炭の
乾留によって発生したガスや、重質油の分解によって生
じたガス等を粉鉱石に接触させる方法(流動層を利用し
た方法)を採用することができる。またこの方法を採用
する場合は、粉鉱石とガスを接触させるときの温度は4
00〜800℃程度が適当である。
From the above, the molten fine ore is in a state where the surface is always covered with the metal oxide even if the reduction reaction proceeds, and the reduction reaction proceeds rapidly by contact with the reducing gas or solid carbon. There is expected. On the other hand as shown in the conventional art, although reports have also been made that reduction by writing simultaneously blow the fine ore and pulverized coal from the tuyere is promoted, which is the included pulverized coal injection, CO of or H 2 occurs It is estimated that the position was closer to the tuyere side. On the other hand, in the present invention, since the carbon-coated powder ore obtained by coating the powder ore with carbon is supplied, the high-speed reduction of the powder ore has been succeeded more efficiently compared to the technique of simultaneously injecting the powder ore and the pulverized coal. I got it.
Also, by achieving high-speed reduction, the reduction reaction (endothermic reaction) of the metal oxide is performed in a dispersed manner in the raceway, so that the reduction reaction is performed after reaching the inner part of the raceway as in the conventional case. Local temperature decrease can be prevented as compared with the case where the temperature is low. The method of coating the fine ore with carbon is not particularly limited. For example, a method of contacting the fine ore with a gas generated by dry distillation of coal or a gas generated by the decomposition of heavy oil (fluidized bed) Using a method). When this method is employed, the temperature at which the fine ore is brought into contact with the gas is 4 ° C.
About 00 to 800 ° C. is appropriate.

【0017】本発明においては、適正量の炭素を粉鉱石
に被覆することによって、レースウェイ内の空間を飛遊
している間に炭素被覆鉱石が加熱され、溶融酸化鉄が固
体の炭素と接触して前記(1) 式の反応が急速に進行し、
粉鉱石が金属鉄まで還元される。尚被覆炭素の一部は羽
口前で燃焼してガス化するが、炭素被覆量を調整するこ
とによって、粉鉱石を確実に還元できる。
In the present invention, by coating the fine ore with an appropriate amount of carbon, the carbon-coated ore is heated while flying in the space in the raceway, and the molten iron oxide contacts the solid carbon. As a result, the reaction of the formula (1) proceeds rapidly,
Fine ore is reduced to metallic iron. Part of the coated carbon is burned and gasified in front of the tuyere, but fine ore can be reliably reduced by adjusting the carbon coating amount.

【0018】本発明は、炭素被覆鉱石(若しくは炭素被
覆金属酸化物)を、炉内へ供給することを構成要旨とす
るものであり、図1に示した様に炭素被覆鉱石だけを高
速供給することがあるのは勿論であるが、その他下記に
示す様な供給態様も本発明の技術的範囲に含まれるもの
である。 (1) 炭素被覆鉱石と微粉炭を、混合しつつ、または予め
混合しておいて供給する。 (2) 炭素被覆鉱石と炭素を被覆しない鉱石とを、別々に
または予め混合しておいて供給する。
The present invention is characterized in that carbon-coated ore (or carbon-coated metal oxide) is supplied into a furnace, and only carbon-coated ore is supplied at high speed as shown in FIG. Needless to say, other supply modes as described below are also included in the technical scope of the present invention. (1) Carbon-coated ore and pulverized coal are supplied while being mixed or mixed in advance. (2) The carbon-coated ore and the ore not coated with carbon are supplied separately or mixed in advance.

【0019】また上記(1),(2) に示した方法に加え、反
応空間内の温度調節を目的として、酸素や水蒸気を同時
に供給する様にしてもよい。更に溶融したメタルやスラ
グの滴下を円滑に行なう為に、フラックス(CaO,M
nO,MgO等)を混合または別個に供給してもよい。
In addition to the methods described in the above (1) and (2), oxygen and steam may be supplied simultaneously for the purpose of controlling the temperature in the reaction space. In order to smoothly drop molten metal and slag, flux (CaO, M
nO, MgO, etc.) may be mixed or supplied separately.

【0020】炭素被覆鉱石と微粉炭を混合しつつ高速供
給する場合は、微粉炭を供給する独立したランスを別途
配置する様な装置構成を採用することによっても達成さ
れるが、その他二重管構造のランスによって炭素被覆鉱
石と微粉炭を同心的に同時供給する様にしてもよい。こ
の場合は微粉炭供給は外側からとするのが良い。また炭
素被覆鉱石と微粉炭の供給を、炉の円周方向または高さ
方向に交互若しくは複数本をグループ化した供給管を設
けることによって別々に行なう様にしてもよい。この様
に微粉炭を同時に供給することによって(予め混合する
場合も含む)、送風中の酸素と微粉炭とが反応し、その
燃焼熱が熱源となると同時に鉱石に被覆した炭素が鉱石
の溶融還元以外に消費されることを防止することができ
る。また上記(2) に示した供給方法は、例えば難還元性
の鉱石を炭素で被覆し、通常(比較的還元され易い)鉱
石を炭素被覆しないで供給する場合等である。
When the carbon-coated ore and the pulverized coal are supplied at high speed while being mixed, this can be achieved by adopting an apparatus configuration in which an independent lance for supplying the pulverized coal is separately arranged. The carbon-coated ore and the pulverized coal may be concentrically supplied simultaneously by the lance of the structure. In this case, pulverized coal is preferably supplied from the outside. Alternatively, the supply of the carbon-coated ore and the pulverized coal may be performed separately by providing a supply pipe in which the furnace is arranged alternately or in groups in the circumferential direction or the height direction. By supplying pulverized coal at the same time (including the case of premixing), the oxygen in the blast reacts with the pulverized coal, and the combustion heat serves as a heat source, and at the same time, the carbon coated on the ore melts and reduces the ore. Can be prevented. The supply method shown in the above (2) is, for example, a case where a hardly reducible ore is coated with carbon, and an ordinary (relatively easily reduced) ore is supplied without carbon coating.

【0021】ところで鉱石への炭素被覆量としては、鉱
石中の金属酸化物が炭素との還元反応によって全量が溶
融金属になるのに必要な炭素量と、燃焼反応等によって
ガス化する炭素量とを合計した量を下回らない様にして
おくことが、反応速度や反応効率等を高める上で最も好
ましい。従って、酸素や水蒸気を同時に供給する場合
は、炭素被覆量は、これらとの反応に消費される量も考
慮する必要がある。尚本発明において、「被覆」とは
「全面被覆」または「一部被覆」の双方の意味を含む趣
旨である。また炭素を被覆する鉱石の粒度は、反応効率
等を考慮すれば1mm以下であることが好ましく、より好
ましくは0.1mm以下である。
The amount of carbon coating on the ore includes the amount of carbon necessary for the metal oxide in the ore to become a molten metal by a reduction reaction with carbon and the amount of carbon gasified by a combustion reaction or the like. Is most preferably not lower than the total amount in order to increase the reaction rate and the reaction efficiency. Therefore, when oxygen and water vapor are supplied at the same time, it is necessary to consider the amount consumed for the reaction with the carbon coating amount. In the present invention, the term “coating” is intended to include both “overall coating” and “partial coating”. The particle size of the ore coating the carbon is preferably 1 mm or less, and more preferably 0.1 mm or less in consideration of reaction efficiency and the like.

【0022】尚本発明方法を高炉操業に適用するに当た
っては、従来通り塊状鉱石とコークスを高炉上方から層
状に装入し、レースウェイから吹込まれた炭素被覆鉱石
を溶融還元すると共に、コークスの燃焼によって生じた
COを高炉上方からの塊状鉱石の還元に利用する。一方
高炉以外の炉に適用する場合は、例えば炉内に鉱石を装
入せずに固体充填層をコークスのみで構成し、高速供給
される鉱石の溶融還元を主体として行なう。この場合
は、コークスの消費によって生じたCOガスの有効利用
が問題となる。このCOガスは、燃料,化学成品用原料
として利用することもできるが、プロセス内でエネルギ
ー効率を上げる為の具体例としては、例えば上記COガ
スを粉鉱石の予備還元用ガスとして利用して予備還元鉱
石を製造し、この予備還元鉱石に炭素を被覆して供給用
の原料とするのが有利である。この様にすれば、溶融還
元に用いられる炉自体の規模を比較的小さくすることが
できると共に、充填するコークスの強度も低くでき、将
来的に見れば現状の高炉法や溶融還元プロセスに代わる
方法となり得るものと期待できる。
In applying the method of the present invention to blast furnace operation, a lump ore and coke are charged in a layered manner from above the blast furnace as in the past, and the carbon-coated ore blown from the raceway is melted and reduced, and the coke is burned. The CO generated by the blast furnace is used to reduce massive ore from above the blast furnace. On the other hand, when applied to a furnace other than a blast furnace, for example, the solid packed bed is made of only coke without charging the ore into the furnace, and mainly performs smelting reduction of ore supplied at high speed. In this case, effective utilization of CO gas generated by coke consumption becomes a problem. This CO gas can be used as a raw material for fuels and chemical products. As a specific example of increasing the energy efficiency in the process, for example, the above-mentioned CO gas is used as a gas for preliminary reduction of fine ore. Advantageously, the reduced ore is produced, and the prereduced ore is coated with carbon to provide a feedstock. In this way, the scale of the furnace itself used for smelting reduction can be made relatively small, and the strength of coke to be filled can be reduced, and in the future, a method that can replace the current blast furnace method or smelting reduction process Can be expected.

【0023】[0023]

【実施例】【Example】

実施例1 高炉羽口から吹込まれた粉鉱石の形態が還元率にどの様
な影響を与えるかを調査するため、小型電気炉を用いて
還元試験を行なった。電気炉の炉芯管内の温度を1550℃
に維持し、そこへ還元ガスと一緒に、無処理鉱石、炭素
被覆処理(炭素量:14重量%)した粉鉱石、および微粉
炭を混合した(炭素量:14重量%)粉鉱石の夫々を落下
させて、高速昇温して還元し、夫々の場合の還元率を調
査した。夫々の場合における、還元性ガスの組成と還元
率の関係を図3に示すが、この結果から次の様に考察で
きた。 (1) 粉鉱石の還元率は、無処理鉱石単味、微粉炭との混
合吹込み、炭素被覆鉱石の順に大きくなる。 (2) 炭素被覆鉱石の還元率は、無処理鉱石単味のときよ
りも、酸化度が大きい場合には3倍、酸化度が小さい場
合には2倍程度大きい。また微粉炭との混合吹込みのと
きに比べても1.5 〜2倍程度大きい。 (3) 微粉炭との混合吹込みの場合(従来法)の還元率
は、ガスの酸化度が大きいときには、無処理鉱石単味の
ときよりも2倍程度大きいが、酸化度が小さくなるに従
ってその差は減少し、純COガス中ではほぼ等しくな
る。 以上の結果から、実炉のレースウェイ内に吹込まれた炭
素被覆鉱石は、気流中で還元反応が急速に進行すると期
待される。
Example 1 A reduction test was performed using a small electric furnace in order to investigate how the form of fine ore injected from a blast furnace tuyere affects the reduction rate. The temperature inside the furnace core tube of the electric furnace is 1550 ° C
And the untreated ore, carbon-coated (carbon content: 14% by weight) fine ore, and pulverized coal mixed (carbon content: 14% by weight) together with the reducing gas. It was dropped, heated at a high speed and reduced, and the reduction rate in each case was investigated. FIG. 3 shows the relationship between the composition of the reducing gas and the reduction ratio in each case. From the results, the following can be considered. (1) The reduction rate of fine ore increases in the order of untreated ore, mixed injection with pulverized coal, and carbon-coated ore. (2) The reduction rate of the carbon-coated ore is about three times larger when the degree of oxidation is large and about twice as large when the degree of oxidation is smaller than that of the untreated ore. Also, it is about 1.5 to 2 times as large as when mixed with pulverized coal. (3) In the case of mixed injection with pulverized coal (conventional method), the reduction rate is about twice as large as that of untreated ore when the degree of oxidation of the gas is high, but as the degree of oxidation decreases, the reduction rate decreases. The difference decreases and becomes almost equal in pure CO gas. From the above results, it is expected that the carbon-coated ore injected into the raceway of the actual furnace will undergo a rapid reduction reaction in the gas stream.

【0024】実施例2 図4は、無処理鉱石または炭素被覆鉱石の夫々を吹込ん
だ場合の高炉下部圧損を比較して示したグラフである。
この結果から明らかな様に、炭素被覆処理した粉鉱石を
吹込むことによって、レースウェイ領域でのスラグ溶解
を容易にし、これによって炉下部の圧損上昇を抑制で
き、高炉の安定操業が可能となった。
Example 2 FIG. 4 is a graph showing a comparison of the blast furnace lower pressure loss when untreated ore or carbon-coated ore was injected.
As is evident from the results, the injection of carbon-coated fine ore facilitates melting of slag in the raceway area, thereby suppressing the rise in pressure loss at the lower part of the furnace and enabling stable operation of the blast furnace. Was.

【0025】[0025]

【発明の効果】本発明は以上の様に構成されており、反
応空間内における気流中で鉱石や金属酸化物から溶融金
属へ高速還元することができ、反応空間内の局部的な温
度低下を防止しつつ安定した操業が行なえる様になっ
た。
According to the present invention, the ore or metal oxide can be rapidly reduced to a molten metal in an air stream in the reaction space, and the local temperature decrease in the reaction space can be reduced. Prevention and stable operation became possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る高速還元法を概念的に説明する為
の図である。
FIG. 1 is a diagram for conceptually explaining a rapid reduction method according to the present invention.

【図2】還元されて生成した溶融鉄が酸化鉄に被覆され
るに至るまでを段階的に示した模式図である。
FIG. 2 is a schematic diagram showing step by step until molten iron produced by reduction is coated with iron oxide.

【図3】粉鉱石の各形態における、還元性ガスの組成と
還元率の関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the composition of a reducing gas and the reduction rate in each form of fine ore.

【図4】無処理鉱石と炭素被覆鉱石の夫々を吹込んだ場
合の、高炉下部圧損を比較して示したグラフである。
FIG. 4 is a graph showing a comparison of the blast furnace lower pressure loss when an untreated ore and a carbon-coated ore are respectively injected.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小林 勲 三木市緑が丘町東4−4−5 (72)発明者 稲葉 晉一 加古川市神野町石守513−162 (56)参考文献 特開 昭63−45312(JP,A) (58)調査した分野(Int.Cl.6,DB名) C21B 5/00 C21B 11/00 C21B 13/00 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Isao Kobayashi 4-4-5, Midorigaoka-cho, Miki-shi (72) Inventor Shinichi Inaba 513-162, Ishinomari, Kaminocho, Kakogawa-shi (56) References JP-A-63-45312 (JP) , A) (58) Fields investigated (Int. Cl. 6 , DB name) C21B 5/00 C21B 11/00 C21B 13/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 炉内の固体充填層内に高温の反応空間を
予め形成しておくかまたはこれを形成しつつ、全面若し
くは一部に炭素が被覆された鉱石または金属酸化物の粒
子を、前記反応空間内へ連続的に供給して該粒子の流れ
を形成し、この流れの中で前記粒子を溶融させつつこれ
を還元せしめて溶融金属となすことを特徴とする鉱石ま
たは金属酸化物の高速還元方法。
A high-temperature reaction space is previously formed in a solid packed bed in a furnace, or while forming the high-temperature reaction space, particles of ore or metal oxide coated with carbon on the entire surface or a part thereof, Ore or metal oxide, characterized in that the particles are continuously supplied into the reaction space to form a flow of the particles, and the particles are reduced while melting the particles in the flow to form a molten metal. Fast reduction method.
JP4054256A 1992-02-04 1992-02-04 Method for rapid reduction of ore or metal oxide Expired - Lifetime JP2990925B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4054256A JP2990925B2 (en) 1992-02-04 1992-02-04 Method for rapid reduction of ore or metal oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4054256A JP2990925B2 (en) 1992-02-04 1992-02-04 Method for rapid reduction of ore or metal oxide

Publications (2)

Publication Number Publication Date
JPH05214414A JPH05214414A (en) 1993-08-24
JP2990925B2 true JP2990925B2 (en) 1999-12-13

Family

ID=12965480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4054256A Expired - Lifetime JP2990925B2 (en) 1992-02-04 1992-02-04 Method for rapid reduction of ore or metal oxide

Country Status (1)

Country Link
JP (1) JP2990925B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09310126A (en) * 1996-05-16 1997-12-02 Daido Steel Co Ltd Production for obtaining metal from metallic oxide
JP4206419B2 (en) * 2006-09-15 2009-01-14 友宏 秋山 Ore processing method, ore processing equipment, iron making method, and iron and steel making method
JP7130898B2 (en) 2019-03-28 2022-09-06 株式会社神戸製鋼所 Blast furnace operation method

Also Published As

Publication number Publication date
JPH05214414A (en) 1993-08-24

Similar Documents

Publication Publication Date Title
JP3058039B2 (en) Converter steelmaking method
JP4790109B2 (en) Direct smelting method
JP2008255494A (en) Direct smelting method for producing metal from metal oxide
CA2873706A1 (en) Method and device for introducing fine particulate material into the fluidized bed of a fluidized bed reduction unit
CN111455121A (en) Method for producing high-purity cast pig iron by hydrogen-based smelting reduction
JP3136155B2 (en) Preheating and pre-reduction of metal oxide ores
JP2990925B2 (en) Method for rapid reduction of ore or metal oxide
JPH0256407B2 (en)
JPS5918452B2 (en) Method for producing molten metal from powdered ore
JP3814046B2 (en) How to operate a vertical furnace
MXPA97007698A (en) Procedure to make arra
JP2018003075A (en) Method for reducing-melting iron oxide-containing iron raw material
JP4047422B2 (en) How to operate a vertical furnace
JPS6256537A (en) Manufacture of molten metal from powdery ore containing metal oxide
CA1119001A (en) Process of directly reducing iron oxide-containing materials
JPH0524961B2 (en)
JPH0130888B2 (en)
JP4005683B2 (en) Vertical furnace operation method for treating powdered waste
JPS5918453B2 (en) Method for producing molten metal from powdered ore containing metal oxides
JPS6131166B2 (en)
JPS5856721B2 (en) Low-Si operation method for blast furnace in pulverized coal injection
JP2002275517A (en) Method for operating movable heath type furnace
JPH032922B2 (en)
JPS6248749B2 (en)
JPS62230922A (en) Operating method for vertical type melt reduction furnace

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121015

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121015

Year of fee payment: 13