JPH05214414A - Method for reducing ore or metal oxide at high speed - Google Patents

Method for reducing ore or metal oxide at high speed

Info

Publication number
JPH05214414A
JPH05214414A JP5425692A JP5425692A JPH05214414A JP H05214414 A JPH05214414 A JP H05214414A JP 5425692 A JP5425692 A JP 5425692A JP 5425692 A JP5425692 A JP 5425692A JP H05214414 A JPH05214414 A JP H05214414A
Authority
JP
Japan
Prior art keywords
ore
carbon
reaction space
reduction
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5425692A
Other languages
Japanese (ja)
Other versions
JP2990925B2 (en
Inventor
Shigeki Sasahara
茂樹 笹原
Shoken Shimizu
正賢 清水
Kentaro Nozawa
健太郎 野沢
Tsunao Kamijo
綱雄 上條
Kazuya Miyagawa
一也 宮川
Isao Kobayashi
勲 小林
Shinichi Inaba
晉一 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP4054256A priority Critical patent/JP2990925B2/en
Publication of JPH05214414A publication Critical patent/JPH05214414A/en
Application granted granted Critical
Publication of JP2990925B2 publication Critical patent/JP2990925B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide a high speed reduction method capable of performing stable operation while preventing the local temp. lowering in the reaction space by executing high speed reduction from ore and metal oxide to molten metal in gas flow in a reaction space. CONSTITUTION:By preforming the high temp. reaction space or while forming the space in a solid packing layer in a furnace, the ore or metal oxide particles coated with carbon on the whole surface or a part, are continuously supplied into the reaction space to form the stream of the particles and in this stream, the particles are reduced while smelting to make molten metal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、各種鉱石または金属酸
化物を高速に溶融還元して溶融金属を取り出す方法に関
し、殊に反応空間内における温度低下を防止しつつ高速
に溶融還元を達成することのできる方法に関するもので
ある。尚本発明で対象とする鉱石または金属酸化物にお
ける金属は、炭素によって還元され得るものであり、F
eを始めとして、Mn,Cr,Ni,Si,Cu等が挙
げられる。以下では高炉によって鉄鉱石から銑鉄を製造
する技術即ち高炉操業を主体にして説明を進めるが、も
とより本発明はこの様な高炉方式還元技術に制限される
ものではなく、粒子を供給する装置を備えた還元設備を
使用するものは全て本発明の適用技術対象となる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for smelt-reducing various ores or metal oxides at a high speed to take out a molten metal, and particularly to achieve a smelt-reduction at a high speed while preventing a temperature drop in a reaction space. It's about how you can do it. The metal in the ore or metal oxide targeted by the present invention is one that can be reduced by carbon.
Starting with e, Mn, Cr, Ni, Si, Cu and the like can be mentioned. In the following, the description will be made mainly on the technology of producing pig iron from iron ore by a blast furnace, that is, the blast furnace operation, but the present invention is not limited to such a blast furnace system reduction technology, and is provided with a device for supplying particles. Any equipment that uses a reduction facility is subject to the application technology of the present invention.

【0002】[0002]

【従来の技術】近年の高炉操業においては、安価な鉄源
の有効利用や溶銑の成分調整を目的として、粉鉱石やス
ケール等の酸化鉄を高炉羽口から吹込む技術の開発が進
められている。例えば特開平1-168802号には、溶銑中の
Siの低減を目的として、微粉炭中にミルスケールとフ
ラックスを混合したものを羽口から吹込む技術が提案さ
れている。また高炉羽口から熱割れ性および難還元性の
粉鉱石を炉内に吹込む技術(特開昭62-224606 号)や、
高炉のシャフト部における鉱石とコークスの装入比率を
一定に維持し、且つ羽口から吹込まれる粉状鉄源や微粉
炭の量を目標出銑量に応じて調整する技術(特開昭64-3
6713号)等も提案されている。
2. Description of the Related Art In recent years, in the operation of a blast furnace, the development of technology for blowing iron oxide such as powdered ore and scale from the tuyere of the blast furnace has been promoted for the purpose of effectively utilizing an inexpensive iron source and adjusting the composition of the hot metal. There is. For example, Japanese Patent Application Laid-Open No. 1-168802 proposes a technique of blowing a mixture of mill scale and flux in pulverized coal through tuyeres for the purpose of reducing Si in the hot metal. In addition, there is a technology to blow powdery ore that is thermally crackable and difficult to reduce into the furnace from the tuyere of the blast furnace (JP-A-62-224606),
A technique for maintaining a constant charge ratio of ore and coke in the shaft portion of a blast furnace and adjusting the amount of a powdered iron source or pulverized coal blown from a tuyere according to the target amount of tapping (JP-A-64) -3
No. 6713) is also proposed.

【0003】一方、粉鉱石と微粉炭の混合吹込みが、炉
芯温度の維持や炉内通気性の確保に有利であるという報
告(「鉄と鋼」,Vol 77,No.1,p1609 )や、粉鉱石と微
粉炭の超複合吹込みと称し、粉鉱石と微粉炭を同時に吹
込むことによって、レースウェイ内での粉鉱石のガス還
元が促進されるとする報告(「材料とプロセス」,Vol.
4,1991,p1920)等もなされている。
On the other hand, it is reported that the mixed injection of fine ore and pulverized coal is advantageous for maintaining the core temperature and ensuring the air permeability in the furnace ("Iron and Steel", Vol 77, No. 1, p1609). It is called super composite injection of powdered ore and pulverized coal, and it is reported that simultaneous injection of powdered ore and pulverized coal promotes gas reduction of powdered ore in the raceway (“Materials and Process”). , Vol.
4,1991, p1920) and so on.

【0004】[0004]

【発明が解決しようとする課題】高炉羽口から粉鉱石を
吹込むと、羽口前方に形成されるレースウェイ領域(反
応空間)奥部で、粉鉱石の主成分である酸化鉄が溶融
し、コークスとの間で下記(1) 式の吸熱反応が進行す
る。 FeO+C=Fe+CO−37880kcal/kmol …(1) しかしながら、多量の粉鉱石を吹込んだ場合には、上記
(1) 式の反応の進行によって、レースウェイ外周部(炉
芯コークス層との境界部)で局部的な温度低下が発生し
てスラグが凝固し、その結果通気抵抗が増大してしま
い、炉芯部へのガス流通性が悪くなるという現象を引起
こす。
When powdered ore is blown from the tuyere of the blast furnace, iron oxide, which is the main component of the powdered ore, melts in the inner part of the raceway region (reaction space) formed in front of the tuyere. , An endothermic reaction of the following formula (1) progresses between the coke and the coke. FeO + C = Fe + CO-37880kcal / kmol (1) However, when a large amount of powdered ore is blown in,
As the reaction of equation (1) progresses, a local temperature drop occurs at the outer periphery of the raceway (boundary with the furnace core coke layer), slag solidifies, and as a result, ventilation resistance increases, which This causes a phenomenon that the gas flowability to the core part is deteriorated.

【0005】本発明はこうした技術的課題を解決する為
になされたものであって、その目的は、反応空間内にお
ける気流中で粉鉱石や金属酸化物粒子から溶融金属への
高速還元を図り、反応空間内での局部的な温度低下を防
止しつつ安定した操業を行なうことのできる高速還元方
法を提供することにある。
The present invention has been made to solve these technical problems, and its purpose is to achieve a rapid reduction of powdered ore or metal oxide particles to molten metal in an air stream in a reaction space, It is an object of the present invention to provide a high-speed reduction method capable of performing stable operation while preventing a local temperature drop in the reaction space.

【0006】[0006]

【課題を解決するための手段】上記目的を達成し得た本
発明の高速還元方法とは、炉内の固体充填層内に高温の
反応空間を予め形成しておくかまたはこれを形成しつ
つ、全面若しくは一部に炭素が被覆された鉱石または金
属酸化物の粒子を、前記反応空間内へ連続的に供給して
該粒子の流れを形成し、この流れの中で前記粒子を溶融
させつつこれを還元せしめて溶融金属となす点に要旨を
有するものである。
The rapid reduction method of the present invention which has achieved the above object is to provide a high-temperature reaction space in advance in a solid packed bed in a furnace or while forming the reaction space. Ore or metal oxide particles coated with carbon on the entire surface or a part thereof are continuously supplied into the reaction space to form a stream of the particles, and the particles are melted in the stream. The point is that this is reduced to form molten metal.

【0007】[0007]

【作用】図1は本発明に係る高速還元法を概念的に説明
する為の図である。尚図1における固体充填層は、高炉
におけるコークス層を想定したものであるが、本発明に
おいては固体充填層はコークス層の場合だけに限らず、
他の材料で構成しても良い。即ち、本発明における該充
填層は主に(1) 反応空間の形成、(2) 粉鉱石等への伝
熱、(3) ガスの排出、(4) 溶融金属やスラグの滴下とい
う4つの機能を備えたものである。
1 is a diagram for conceptually explaining the rapid reduction method according to the present invention. The solid packed layer in FIG. 1 is assumed to be a coke layer in a blast furnace, but in the present invention, the solid packed layer is not limited to the case of the coke layer,
It may be made of other materials. That is, the packed bed in the present invention mainly has four functions: (1) formation of reaction space, (2) heat transfer to powdered ore, etc., (3) gas discharge, and (4) molten metal or slag dripping. It is equipped with.

【0008】上記(1) の機能は供給された粉鉱石等の粒
子がその流れの中で最終的に還元されるに必要な反応空
間を包囲形成するものであり、また(2) の機能はこの反
応空間中の粉鉱石の還元を促進するために必要な高温を
維持し、かつ同鉱石にその輻射により直接高熱を伝える
ための伝熱媒体の役割を担う。(3) の機能は反応空間内
に供給されたガスおよびその中で発生する排ガスを系外
に放出するための通気機能であり、更に(4) の機能は還
元,液化した生成金属を滴下させて反応空間より取り出
す通液機能である。
The above-mentioned function (1) surrounds and forms the reaction space required for the particles of the supplied powdered ore or the like to be finally reduced in the flow, and the function (2) is It plays the role of a heat transfer medium for maintaining the high temperature necessary for promoting the reduction of the fine ore in the reaction space and for directly transmitting high heat to the ore by its radiation. The function (3) is a ventilation function for releasing the gas supplied into the reaction space and the exhaust gas generated in the reaction space to the outside of the system, and the function (4) is for dropping the reduced and liquefied metal product. It is a liquid passing function that is taken out from the reaction space.

【0009】従って、かかる各機能を満たすものであれ
ば、固体充填層を構成する材料の種類を問わないが、例
えばコークスの他に石炭,MgO,Al23 ,Zr2
3,ドロマイト,Mg−C等も反応空間の雰囲気温度
(後述する)に十分に耐えるものが好ましいといえる。
なお材料の形状にも特段の定めはないが塊状のものを使
用する場合は上記(3),(4) の機能から40〜100mm程
度の粒度に調整されたものが望ましい。
Therefore, as long as each of the above functions is satisfied, the type of the material forming the solid packing layer is not limited, but, for example, in addition to coke, coal, MgO, Al 2 O 3 , Zr 2
It can be said that it is preferable that O 3 , dolomite, Mg—C, and the like can sufficiently withstand the atmospheric temperature (described later) of the reaction space.
The shape of the material is not particularly limited, but when using a lump-shaped material, it is preferable to adjust the particle size to about 40 to 100 mm in view of the functions of (3) and (4) above.

【0010】ところでコークスをこの充填層として用い
た場合は前記の機能を安定して達成し、材料費が安価な
割りには耐用寿命が長いという利点に加え、その部分的
な燃焼により反応空間に熱を補給すると同時に同空間を
還元雰囲気に維持して粉鉱石に被覆された炭素の焼失を
抑制し、被覆炭素による高速還元を容易ならしめる他、
部分的に未還元のまま落下した溶融酸化物が存在した場
合でも滴下過程でコークスと接触することにより、さら
に還元反応が進行する等プロセス全体の溶融還元効率が
高く維持されるメリットがあるので特に好ましい材料で
ある。
By the way, when coke is used as the packed bed, the above-mentioned functions are stably achieved, and in addition to the advantage that the service life is long despite the low material cost, the partial combustion thereof causes the reaction space to enter the reaction space. At the same time as supplying heat, maintaining the same space in a reducing atmosphere to suppress the burning of the carbon coated on the powdered ore and facilitate the rapid reduction by the coated carbon.
Even if there is molten oxide that has fallen partially unreduced, contact with coke during the dropping process has the advantage that the reduction reaction progresses further and the melt reduction efficiency of the entire process is kept high. It is the preferred material.

【0011】また反応空間は、高炉におけるレースウェ
イを想定したものであるが、該反応空間は吹込みによっ
て継続的に形成されるもの、或は予め形成したもののい
ずれをも含む趣旨である。粉鉱石の供給の仕方に関して
も特に制限はなく、高炉の羽口からの吹込みのように炉
の側壁から中芯に向って粒子の流れを形成させる方法で
も良いが、高炉以外の比較的炉高が低い還元炉に適用す
る場合は側壁からの供給にこだわらず、供給装置を炉上
部に設置し、上方または斜上方から下方または斜下方に
向けて供給し、粒子の自重による落下を利用した流れを
形成させるようにしてもかまわない。
The reaction space is assumed to be a raceway in a blast furnace, but it is meant that the reaction space includes either a continuously formed by blowing or a preformed one. There is no particular limitation on the method of supplying the powdered ore, and a method of forming a flow of particles from the side wall of the furnace toward the core like blowing from the tuyere of the blast furnace may be used. When applying to a reduction furnace with a low height, the supply device was installed at the upper part of the furnace regardless of the supply from the side wall, and the supply was performed from above or obliquely above to below or obliquely below, and the drop due to the weight of the particles was used. It does not matter if the flow is formed.

【0012】反応空間の雰囲気温度は粉鉱石の予熱およ
び溶融還元反応を短時間に行なわせるためには高温であ
るほど良いと言えるが、固体充填層や還元炉本体への熱
負荷等を考慮すれば1300℃以上、好ましくは150
0℃以上の条件で十分に本発明の目的を達成できる。更
に本発明においては、炭素を被覆して供給する原料は、
鉱石だけに限らず、金属酸化物(例えば予備還元された
もの)をも含む趣旨であるが、以下では鉱石の場合を代
表的に取り上げて説明を進める。
It can be said that the ambient temperature of the reaction space is preferably as high as possible in order to carry out the preheating and smelting reduction reaction of the powder ore in a short time, but considering the heat load on the solid packed bed and the main body of the reduction furnace, etc. For example, 1300 ℃ or higher, preferably 150
The object of the present invention can be sufficiently achieved under the condition of 0 ° C or higher. Further, in the present invention, the raw material coated with carbon and supplied is
Not only the ore is meant to include not only ores but also metal oxides (for example, pre-reduced ones), but in the following, the case of ores will be taken up as a typical example for the explanation.

【0013】本発明者らのこれまでの研究によれば、前
記図1に示す様に、高温雰囲気の気流中で浮遊状態にあ
る粉鉱石は、まずその表面のあちこちでFe2O3 からFe
1-xOへの還元が進みつつ溶融状態になり、引き続き、被
覆された炭素との接触によって高速に還元が進行する。
更に、Fe1-XOから金属鉄まで還元された表面上の溶融鉄
は中心部に次々と凝集し、中心部が溶融鉄で構成されそ
の表面が酸化鉄で覆われた状態になることが分った。
According to the research conducted by the inventors of the present invention, as shown in FIG. 1, the powdered ore suspended in the air stream of the high temperature atmosphere first has Fe 2 O 3 and Fe on its surface.
As the reduction to 1-x O progresses, it becomes a molten state, and subsequently, the reduction proceeds at high speed by contact with the coated carbon.
Furthermore, molten iron on the surface reduced from Fe 1-X O to metallic iron may aggregate in the center one after another, and the center may be composed of molten iron and the surface may be covered with iron oxide. I understand.

【0014】上記現象が発生するメカニズムは次の様に
考察できた。図2は粒子の表面部分で還元されて生成し
た溶融鉄が中心部へ移行して酸化鉄に被覆された状態を
形成するに至るまでを段階的に示した模式図であり、図
2(a) は溶融鉄が溶融酸化鉄(スラグ)表面に存在する
状態(段階1)、図2(b) は溶融鉄が溶融酸化鉄中に埋
没浸入していく状態(段階2)、図2(c) は溶融鉄が酸
化鉄中に取り込まれた状態(段階3)を夫々示す。段階
1から段階3に至るまでのエネルギー状態(エネルギー
の差ΔF)を、溶融鉄の表面張力(γM )、酸化鉄の表
面張力(γS)、および溶融鉄−酸化鉄間の界面張力(γ
M-S )の関係で示すと、下記(2) 式の様になる。 ΔF=γS +γM-S −γM …(2)
The mechanism by which the above phenomenon occurs can be considered as follows. FIG. 2 is a schematic diagram showing in stages the molten iron produced by being reduced on the surface of the particles and moving to the central part to form a state of being covered with iron oxide. ) Is a state in which molten iron is present on the surface of molten iron oxide (slag) (step 1), and FIG. 2 (b) is a state in which molten iron is embedded and infiltrated into molten iron oxide (step 2), FIG. 2 (c). ) Indicates the state where molten iron is incorporated into iron oxide (stage 3). The energy state (energy difference ΔF) from step 1 to step 3 is determined by the surface tension of molten iron (γ M ), the surface tension of iron oxide (γ S ), and the interfacial tension between molten iron and iron oxide ( γ
The relation of ( MS ) is as shown in the following equation (2). ΔF = γ S + γ MS −γ M (2)

【0015】ここでγS ≒500 ダイン/cm,γM-S ≒30
0 ダイン/cm,γM ≒1200ダイン/cmであることが分か
っているので、エネルギーの差ΔFは明らかに負の値と
なる。従って、溶融鉄粒子が溶融酸化鉄に覆われた段階
3の状態が最も安定であることが分かる。また段階3で
は、酸化鉄内に取り込まれた溶融鉄は集合して球状化し
更に安定な状態となる。尚段階2は溶融鉄表面への溶融
酸化鉄の流動と見ることもでき、これは表面張力による
移動(いわゆるマランゴニ効果)であり、移動速度は非
常に大きい。
Where γ S ≈500 dynes / cm, γ MS ≈30
Since it is known that 0 dyne / cm and γ M ≈1200 dyne / cm, the energy difference ΔF is obviously a negative value. Therefore, it is understood that the state of stage 3 in which the molten iron particles are covered with the molten iron oxide is the most stable. Further, in the stage 3, the molten iron taken into the iron oxide is aggregated and spheroidized into a more stable state. The stage 2 can be regarded as the flow of the molten iron oxide to the surface of the molten iron, which is the movement due to the surface tension (so-called Marangoni effect), and the moving speed is very high.

【0016】以上のことから、溶融した粉鉱石は還元反
応が進行しても表面が常に金属酸化物に覆われた状態で
あり、還元ガスや固体炭素との接触によって、還元反応
の急速な進行が期待される。一方従来技術で示した様
に、羽口から粉鉱石と微粉炭を同時に吹込むことで還元
が促進されるという報告もなされているが、これは微粉
炭吹込みによって、COやH2 の発生位置が羽口側に寄
ったためと推定される。これに対し本発明では、粉鉱石
に炭素を被覆した炭素被覆粉鉱石を供給することとして
いるので、粉鉱石と微粉炭を同時に吹込む技術に比べて
更に効率良く粉鉱石の高速還元に成功し得たのである。
また高速還元が達成されることによって、金属酸化物の
還元反応(吸熱反応)がレースウェイ内で分散して行な
われるので、従来の様にレースウェイの奥部に到達して
から還元反応が行なわれていたときに比べて局部的な温
度低下も防止できる。尚粉鉱石を炭素で被覆する方法に
ついては、特に限定するものではないが、例えば石炭の
乾留によって発生したガスや、重質油の分解によって生
じたガス等を粉鉱石に接触させる方法(流動層を利用し
た方法)を採用することができる。またこの方法を採用
する場合は、粉鉱石とガスを接触させるときの温度は4
00〜800℃程度が適当である。
From the above, the surface of the molten powdered ore is always covered with the metal oxide even if the reduction reaction proceeds, and the reduction reaction rapidly progresses by contact with the reducing gas or solid carbon. There is expected. On the other hand, as shown in the prior art, it is also reported that the reduction is promoted by simultaneously blowing the fine ore and the pulverized coal from the tuyere, but this is due to the generation of CO and H 2 by the pulverized coal injection. It is presumed that the position was closer to the tuyere side. On the other hand, in the present invention, since the carbon-coated powdered ore in which carbon is coated on the powdered ore is supplied, the rapid reduction of the powdered ore has been achieved more efficiently than the technique of simultaneously blowing the powdered ore and the pulverized coal. I got it.
In addition, since the reduction reaction (endothermic reaction) of the metal oxide is carried out in a distributed manner within the raceway due to the achievement of high-speed reduction, the reduction reaction takes place after reaching the inner part of the raceway as in the conventional case. It is also possible to prevent local temperature drop compared to when it was open. The method of coating the powder ore with carbon is not particularly limited, but for example, a method of contacting gas generated by carbonization of coal, gas generated by decomposition of heavy oil, etc. with powdered ore (fluidized bed Method) can be adopted. When using this method, the temperature at which the powdered ore and the gas are contacted is 4
About 100 to 800 ° C is suitable.

【0017】本発明においては、適正量の炭素を粉鉱石
に被覆することによって、レースウェイ内の空間を飛遊
している間に炭素被覆鉱石が加熱され、溶融酸化鉄が固
体の炭素と接触して前記(1) 式の反応が急速に進行し、
粉鉱石が金属鉄まで還元される。尚被覆炭素の一部は羽
口前で燃焼してガス化するが、炭素被覆量を調整するこ
とによって、粉鉱石を確実に還元できる。
In the present invention, by coating an appropriate amount of carbon on the powdered ore, the carbon-coated ore is heated while flying in the space inside the raceway, and the molten iron oxide comes into contact with the solid carbon. Then, the reaction of the above formula (1) proceeds rapidly,
Fine ore is reduced to metallic iron. Although a part of the coated carbon is burned and gasified in front of the tuyere, the powdered ore can be surely reduced by adjusting the carbon coating amount.

【0018】本発明は、炭素被覆鉱石(若しくは炭素被
覆金属酸化物)を、炉内へ供給することを構成要旨とす
るものであり、図1に示した様に炭素被覆鉱石だけを高
速供給することがあるのは勿論であるが、その他下記に
示す様な供給態様も本発明の技術的範囲に含まれるもの
である。 (1) 炭素被覆鉱石と微粉炭を、混合しつつ、または予め
混合しておいて供給する。 (2) 炭素被覆鉱石と炭素を被覆しない鉱石とを、別々に
または予め混合しておいて供給する。
The present invention is characterized in that carbon-coated ore (or carbon-coated metal oxide) is supplied into the furnace. As shown in FIG. 1, only carbon-coated ore is supplied at high speed. Of course, in some cases, the following supply modes as described below are also included in the technical scope of the present invention. (1) The carbon-coated ore and pulverized coal are supplied while being mixed or premixed. (2) A carbon-coated ore and an ore not coated with carbon are supplied separately or in a premixed state.

【0019】また上記(1),(2) に示した方法に加え、反
応空間内の温度調節を目的として、酸素や水蒸気を同時
に供給する様にしてもよい。更に溶融したメタルやスラ
グの滴下を円滑に行なう為に、フラックス(CaO,M
nO,MgO等)を混合または別個に供給してもよい。
In addition to the methods shown in (1) and (2) above, oxygen and water vapor may be supplied simultaneously for the purpose of adjusting the temperature in the reaction space. In order to smoothly add molten metal and slag, flux (CaO, M
nO, MgO, etc.) may be mixed or supplied separately.

【0020】炭素被覆鉱石と微粉炭を混合しつつ高速供
給する場合は、微粉炭を供給する独立したランスを別途
配置する様な装置構成を採用することによっても達成さ
れるが、その他二重管構造のランスによって炭素被覆鉱
石と微粉炭を同心的に同時供給する様にしてもよい。こ
の場合は微粉炭供給は外側からとするのが良い。また炭
素被覆鉱石と微粉炭の供給を、炉の円周方向または高さ
方向に交互若しくは複数本をグループ化した供給管を設
けることによって別々に行なう様にしてもよい。この様
に微粉炭を同時に供給することによって(予め混合する
場合も含む)、送風中の酸素と微粉炭とが反応し、その
燃焼熱が熱源となると同時に鉱石に被覆した炭素が鉱石
の溶融還元以外に消費されることを防止することができ
る。また上記(2) に示した供給方法は、例えば難還元性
の鉱石を炭素で被覆し、通常(比較的還元され易い)鉱
石を炭素被覆しないで供給する場合等である。
In the case of supplying the carbon-coated ore and the pulverized coal at high speed while mixing them, it can be achieved by adopting an apparatus configuration in which an independent lance for supplying the pulverized coal is separately arranged. The carbon-coated ore and pulverized coal may be concentrically and simultaneously supplied by the lance of the structure. In this case, it is preferable to supply pulverized coal from the outside. Further, the carbon-coated ore and the pulverized coal may be separately supplied by providing a supply pipe in which the ore and the pulverized coal are alternately or grouped in the circumferential direction or the height direction of the furnace. By supplying pulverized coal at the same time (including the case of premixing), oxygen in the blast reacts with the pulverized coal and the combustion heat becomes a heat source, and at the same time, the carbon coated on the ore melts and reduces the ore. It is possible to prevent consumption other than the above. Further, the supply method shown in the above (2) is, for example, a case where a hardly reducible ore is coated with carbon and a normal (relatively easily reduced) ore is supplied without carbon coating.

【0021】ところで鉱石への炭素被覆量としては、鉱
石中の金属酸化物が炭素との還元反応によって全量が溶
融金属になるのに必要な炭素量と、燃焼反応等によって
ガス化する炭素量とを合計した量を下回らない様にして
おくことが、反応速度や反応効率等を高める上で最も好
ましい。従って、酸素や水蒸気を同時に供給する場合
は、炭素被覆量は、これらとの反応に消費される量も考
慮する必要がある。尚本発明において、「被覆」とは
「全面被覆」または「一部被覆」の双方の意味を含む趣
旨である。また炭素を被覆する鉱石の粒度は、反応効率
等を考慮すれば1mm以下であることが好ましく、より好
ましくは0.1mm以下である。
By the way, as the carbon coating amount on the ore, the amount of carbon required for the metal oxide in the ore to become a molten metal entirely by the reduction reaction with carbon, and the amount of carbon gasified by the combustion reaction and the like are given. It is most preferable not to fall below the total amount in order to increase the reaction rate and reaction efficiency. Therefore, when oxygen and water vapor are supplied at the same time, the amount of carbon coating needs to take into consideration the amount consumed in the reaction with them. In the present invention, the term “coating” is meant to include both “overall coating” and “partial coating”. The particle size of the ore coated with carbon is preferably 1 mm or less, more preferably 0.1 mm or less, in consideration of reaction efficiency and the like.

【0022】尚本発明方法を高炉操業に適用するに当た
っては、従来通り塊状鉱石とコークスを高炉上方から層
状に装入し、レースウェイから吹込まれた炭素被覆鉱石
を溶融還元すると共に、コークスの燃焼によって生じた
COを高炉上方からの塊状鉱石の還元に利用する。一方
高炉以外の炉に適用する場合は、例えば炉内に鉱石を装
入せずに固体充填層をコークスのみで構成し、高速供給
される鉱石の溶融還元を主体として行なう。この場合
は、コークスの消費によって生じたCOガスの有効利用
が問題となる。このCOガスは、燃料,化学成品用原料
として利用することもできるが、プロセス内でエネルギ
ー効率を上げる為の具体例としては、例えば上記COガ
スを粉鉱石の予備還元用ガスとして利用して予備還元鉱
石を製造し、この予備還元鉱石に炭素を被覆して供給用
の原料とするのが有利である。この様にすれば、溶融還
元に用いられる炉自体の規模を比較的小さくすることが
できると共に、充填するコークスの強度も低くでき、将
来的に見れば現状の高炉法や溶融還元プロセスに代わる
方法となり得るものと期待できる。
In applying the method of the present invention to the operation of a blast furnace, as in the prior art, massive ores and coke are charged in layers from above the blast furnace, the carbon-coated ore blown from the raceway is smelt-reduced, and the coke is burned. The CO produced by is used for the reduction of massive ores from above the blast furnace. On the other hand, when applied to a furnace other than the blast furnace, for example, the ore is not charged into the furnace, the solid packed bed is composed only of coke, and the ore supplied at a high speed is mainly subjected to smelting reduction. In this case, effective use of CO gas generated by consumption of coke becomes a problem. This CO gas can be used as a fuel or a raw material for chemical products, but as a specific example for increasing the energy efficiency in the process, for example, the CO gas is used as a gas for preliminary reduction of powdered ore to be used as a preliminary gas. Advantageously, a reduced ore is produced and this pre-reduced ore is coated with carbon as a feedstock. In this way, the scale of the furnace itself used for smelting reduction can be made comparatively small, and the strength of the coke to be filled can also be lowered. In the future, a method that replaces the current blast furnace method or smelting reduction process. It can be expected that it can become.

【0023】[0023]

【実施例】【Example】

実施例1 高炉羽口から吹込まれた粉鉱石の形態が還元率にどの様
な影響を与えるかを調査するため、小型電気炉を用いて
還元試験を行なった。電気炉の炉芯管内の温度を1550℃
に維持し、そこへ還元ガスと一緒に、無処理鉱石、炭素
被覆処理(炭素量:14重量%)した粉鉱石、および微粉
炭を混合した(炭素量:14重量%)粉鉱石の夫々を落下
させて、高速昇温して還元し、夫々の場合の還元率を調
査した。夫々の場合における、還元性ガスの組成と還元
率の関係を図3に示すが、この結果から次の様に考察で
きた。 (1) 粉鉱石の還元率は、無処理鉱石単味、微粉炭との混
合吹込み、炭素被覆鉱石の順に大きくなる。 (2) 炭素被覆鉱石の還元率は、無処理鉱石単味のときよ
りも、酸化度が大きい場合には3倍、酸化度が小さい場
合には2倍程度大きい。また微粉炭との混合吹込みのと
きに比べても1.5 〜2倍程度大きい。 (3) 微粉炭との混合吹込みの場合(従来法)の還元率
は、ガスの酸化度が大きいときには、無処理鉱石単味の
ときよりも2倍程度大きいが、酸化度が小さくなるに従
ってその差は減少し、純COガス中ではほぼ等しくな
る。 以上の結果から、実炉のレースウェイ内に吹込まれた炭
素被覆鉱石は、気流中で還元反応が急速に進行すると期
待される。
Example 1 In order to investigate how the morphology of powdered ore blown from the tuyere of a blast furnace affects the reduction rate, a reduction test was conducted using a small electric furnace. The temperature inside the core tube of the electric furnace is 1550 ℃
Maintained at the same temperature, and mixed with reducing gas, untreated ore, carbon ore (carbon content: 14% by weight) ore and pulverized coal mixed (carbon content: 14% by weight). After dropping, the temperature was raised at high speed for reduction, and the reduction rate in each case was investigated. The relationship between the composition of the reducing gas and the reduction rate in each case is shown in FIG. 3. From these results, the following considerations were possible. (1) The reduction rate of fine ore increases in the order of untreated ore, mixed injection with pulverized coal, and carbon-coated ore. (2) The reduction rate of carbon-coated ore is about three times higher when the degree of oxidation is high and about twice higher when the degree of oxidation is lower than that of plain untreated ore. In addition, it is about 1.5 to 2 times larger than when mixed with pulverized coal. (3) The reduction rate in the case of mixed injection with pulverized coal (conventional method) is about twice as large as that of untreated ore alone when the oxidation degree of gas is large, but as the oxidation degree becomes smaller The difference decreases and becomes almost equal in pure CO gas. From the above results, it is expected that the carbon-coated ore blown into the raceway of the actual furnace will undergo a rapid reduction reaction in the air flow.

【0024】実施例2 図4は、無処理鉱石または炭素被覆鉱石の夫々を吹込ん
だ場合の高炉下部圧損を比較して示したグラフである。
この結果から明らかな様に、炭素被覆処理した粉鉱石を
吹込むことによって、レースウェイ領域でのスラグ溶解
を容易にし、これによって炉下部の圧損上昇を抑制で
き、高炉の安定操業が可能となった。
Example 2 FIG. 4 is a graph showing a comparison of the pressure loss in the lower part of the blast furnace when injecting untreated ore or carbon-coated ore, respectively.
As is clear from this result, blowing carbon ore-treated powdered ore facilitates melting of slag in the raceway area, which can suppress pressure loss increase in the lower part of the furnace and enable stable operation of the blast furnace. It was

【0025】[0025]

【発明の効果】本発明は以上の様に構成されており、反
応空間内における気流中で鉱石や金属酸化物から溶融金
属へ高速還元することができ、反応空間内の局部的な温
度低下を防止しつつ安定した操業が行なえる様になっ
た。
EFFECTS OF THE INVENTION The present invention is configured as described above, and can rapidly reduce from ores and metal oxides to molten metal in a gas stream in the reaction space, and reduce local temperature drop in the reaction space. It became possible to operate stably while preventing it.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る高速還元法を概念的に説明する為
の図である。
FIG. 1 is a diagram for conceptually explaining a rapid reduction method according to the present invention.

【図2】還元されて生成した溶融鉄が酸化鉄に被覆され
るに至るまでを段階的に示した模式図である。
FIG. 2 is a schematic diagram showing stepwise a process until molten iron produced by reduction is coated with iron oxide.

【図3】粉鉱石の各形態における、還元性ガスの組成と
還元率の関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the reducing gas composition and the reduction rate in each form of powdered ore.

【図4】無処理鉱石と炭素被覆鉱石の夫々を吹込んだ場
合の、高炉下部圧損を比較して示したグラフである。
FIG. 4 is a graph showing a comparison of lower blast furnace pressure drops when untreated ore and carbon-coated ore were blown in respectively.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宮川 一也 神戸市東灘区魚崎中町1−3−1−710 (72)発明者 小林 勲 三木市緑が丘町東4−4−5 (72)発明者 稲葉 晉一 加古川市神野町石守513−162 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazuya Miyagawa 1-3-1-710 Uozaki-nakacho, Higashinada-ku, Kobe (72) Inventor Isao Kobayashi 4-4-5, Midorigaoka-cho, Miki-shi (72) Inventor Inaba Shinichi 513-162 Ishimori, Kamino-cho, Kakogawa-shi

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 炉内の固体充填層内に高温の反応空間を
予め形成しておくかまたはこれを形成しつつ、全面若し
くは一部に炭素が被覆された鉱石または金属酸化物の粒
子を、前記反応空間内へ連続的に供給して該粒子の流れ
を形成し、この流れの中で前記粒子を溶融させつつこれ
を還元せしめて溶融金属となすことを特徴とする鉱石ま
たは金属酸化物の高速還元方法。
1. A high-temperature reaction space is previously formed in a solid packed bed in a furnace, or while forming a high-temperature reaction space, particles of ore or metal oxide whose entire surface or a part is coated with carbon, The ore or metal oxide is characterized in that it is continuously supplied into the reaction space to form a stream of the particles, and the particles are melted in the stream to reduce the particles to form a molten metal. Fast reduction method.
JP4054256A 1992-02-04 1992-02-04 Method for rapid reduction of ore or metal oxide Expired - Lifetime JP2990925B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4054256A JP2990925B2 (en) 1992-02-04 1992-02-04 Method for rapid reduction of ore or metal oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4054256A JP2990925B2 (en) 1992-02-04 1992-02-04 Method for rapid reduction of ore or metal oxide

Publications (2)

Publication Number Publication Date
JPH05214414A true JPH05214414A (en) 1993-08-24
JP2990925B2 JP2990925B2 (en) 1999-12-13

Family

ID=12965480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4054256A Expired - Lifetime JP2990925B2 (en) 1992-02-04 1992-02-04 Method for rapid reduction of ore or metal oxide

Country Status (1)

Country Link
JP (1) JP2990925B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100515280B1 (en) * 1996-05-16 2005-11-22 다이도 도꾸슈꼬 가부시끼가이샤 Process for obtaining metal from metal oxide
WO2008032634A1 (en) * 2006-09-15 2008-03-20 Bio Coke Lab. Co. Ltd. Process for preparation of ore, equipment for preparation thereof, ironmaking process and ironmaking/steelmaking process
WO2020196769A1 (en) 2019-03-28 2020-10-01 株式会社神戸製鋼所 Blast furnace operation method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100515280B1 (en) * 1996-05-16 2005-11-22 다이도 도꾸슈꼬 가부시끼가이샤 Process for obtaining metal from metal oxide
WO2008032634A1 (en) * 2006-09-15 2008-03-20 Bio Coke Lab. Co. Ltd. Process for preparation of ore, equipment for preparation thereof, ironmaking process and ironmaking/steelmaking process
AU2007297339B2 (en) * 2006-09-15 2011-08-11 Tomohiro Akiyama Process for preparation of ore, equipment for preparation thereof, ironmaking process and ironmaking/steelmaking process
US8920536B2 (en) 2006-09-15 2014-12-30 Bio Coke Lab. Ltd. Ore treating method, ore treating apparatus, iron manufacturing method, and iron and steel manufacturing method
WO2020196769A1 (en) 2019-03-28 2020-10-01 株式会社神戸製鋼所 Blast furnace operation method

Also Published As

Publication number Publication date
JP2990925B2 (en) 1999-12-13

Similar Documents

Publication Publication Date Title
JP4790109B2 (en) Direct smelting method
JPH07216426A (en) Converter iron manufacture
CN111455121A (en) Method for producing high-purity cast pig iron by hydrogen-based smelting reduction
JP2732522B2 (en) Equipment for producing iron or non-ferrous metals from self-soluble or non-self-soluble, self-reducing ores ores
US4985075A (en) Method for manufacturing chromium-bearing pig iron
JP2990925B2 (en) Method for rapid reduction of ore or metal oxide
JP3814046B2 (en) How to operate a vertical furnace
JPS5918452B2 (en) Method for producing molten metal from powdered ore
JP4085493B2 (en) Manufacturing method of high quality sintered ore
JPS62224619A (en) Method for supplying carbon material to melting reduction furnace
JP2002285213A (en) Method for producing reduced metal from metal- containing material
JP4047422B2 (en) How to operate a vertical furnace
JP4341139B2 (en) Method for producing reduced metal from metal-containing material
CA1119001A (en) Process of directly reducing iron oxide-containing materials
JPS6256537A (en) Manufacture of molten metal from powdery ore containing metal oxide
JPH0524961B2 (en)
JPS5856721B2 (en) Low-Si operation method for blast furnace in pulverized coal injection
KR950012402B1 (en) Fe-mn smelting reduction process and equipment
JPS58177408A (en) Method for blowing powder and granular ore into melt reduction furnace in melt reduction method
JPS6131166B2 (en)
JPS59107011A (en) Operating method of vertical type melt reduction furnace
JPH09263812A (en) Operation of vertical type scrap melting furnace
JPS59110711A (en) Method for cooling furnace wall of shaft type fusion reduction furnace
JP2002275517A (en) Method for operating movable heath type furnace
JPS5918453B2 (en) Method for producing molten metal from powdered ore containing metal oxides

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121015

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121015

Year of fee payment: 13