JPS5918453B2 - Method for producing molten metal from powdered ore containing metal oxides - Google Patents

Method for producing molten metal from powdered ore containing metal oxides

Info

Publication number
JPS5918453B2
JPS5918453B2 JP6811081A JP6811081A JPS5918453B2 JP S5918453 B2 JPS5918453 B2 JP S5918453B2 JP 6811081 A JP6811081 A JP 6811081A JP 6811081 A JP6811081 A JP 6811081A JP S5918453 B2 JPS5918453 B2 JP S5918453B2
Authority
JP
Japan
Prior art keywords
furnace
ore
reduced
gas
reduction furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6811081A
Other languages
Japanese (ja)
Other versions
JPS57185910A (en
Inventor
暢男 槌谷
尚夫 浜田
稔宏 稲谷
至康 高田
寿光 小板橋
英司 片山
三男 角戸
侠児 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP6811081A priority Critical patent/JPS5918453B2/en
Priority to DE8282302056T priority patent/DE3273996D1/en
Priority to EP82302056A priority patent/EP0063924B2/en
Priority to PH27194A priority patent/PH21317A/en
Publication of JPS57185910A publication Critical patent/JPS57185910A/en
Publication of JPS5918453B2 publication Critical patent/JPS5918453B2/en
Priority to PH35514A priority patent/PH26062A/en
Priority to US07/127,600 priority patent/US4874427A/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0006Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state
    • C21B13/0013Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state introduction of iron oxide into a bath of molten iron containing a carbon reductant
    • C21B13/002Reduction of iron ores by passing through a heated column of carbon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/14Multi-stage processes processes carried out in different vessels or furnaces

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Iron (AREA)

Description

【発明の詳細な説明】 鉄鉱石および金属酸化物の製錬法として各種の方法が実
用化しているが、今後予想される資源、エネルギーおよ
び環境などからの制約に対処するために新しい製錬法の
開発が望まれている。
[Detailed Description of the Invention] Various methods have been put into practical use as smelting methods for iron ore and metal oxides, but new smelting methods have been developed to cope with constraints from resources, energy, the environment, etc. expected in the future. development is desired.

酸化鉄または各種の金属酸化物を含有する鉱石の形状は
、塊状のものが減少し、粉状のものが増加する傾向にあ
る。
The shape of ores containing iron oxide or various metal oxides tends to be less lumpy and more powdery.

特に低品位鉱石の品位を向上させるために浮選、磁選な
どの選鉱が行われ、今後ますます粉鉄の比率が増加する
ことが予想されている。
Particularly in order to improve the quality of low-grade ore, ore beneficiation such as flotation and magnetic separation is performed, and it is expected that the proportion of powdered iron will increase in the future.

現在、稼動中の多くの製錬炉は原料として塊鉱石、また
は事前処理による塊成化鉱石を必要としており、粉状鉱
石はペレット、焼結鉱、ブリケットなどに塊成化されて
使用される。
Currently, many smelting furnaces in operation require lump ore or pre-processed agglomerated ore as raw material, and powder ore is agglomerated into pellets, sinter, briquettes, etc. .

塊成化には溶剤、結合剤などの余分の原料、および燃料
や動力などの余分なエネルギーを必要とする。
Agglomeration requires extra raw materials such as solvents and binders, and extra energy such as fuel and power.

さらに、熱間塊成化のために焼成炉を用いる場合には通
常NOx、SOxおよびダストの発生を伴ない、これら
がそのまま放散されれば大気汚染の原因となるので、そ
の防止設備建設が行われるが、これには多大の費用が必
要となる。
Furthermore, when a firing furnace is used for hot agglomeration, NOx, SOx, and dust are normally generated, and if these are emitted as they are, they can cause air pollution, so facilities must be constructed to prevent them. However, this requires a large amount of cost.

他方、粉状鉱石を直接使用できる技術として、流動層を
用いる焙焼または還元技術が一部で実用化している。
On the other hand, as a technology that can directly use powdered ore, roasting or reduction technology using a fluidized bed has been put into practical use in some areas.

しかし、生成した粉状の予備還元鉱を電炉、転炉その他
の溶解炉に使用する場合には、バインダーを添加し、ブ
リケットなどに塊成化する場合が多い。
However, when the generated powdery prereduced ore is used in an electric furnace, converter, or other melting furnace, a binder is often added and agglomerated into briquettes or the like.

アーク炉やプラズマを利用して粉状のまま使用する方法
も提案されているが、電力消費量が莫大で、我が国のよ
うに電力コストの高い地域では、国際競走力に劣る方法
である。
Methods have also been proposed in which the powder is used in powder form using an arc furnace or plasma, but this method consumes a huge amount of electricity and is inferior to international competitiveness in regions like Japan where electricity costs are high.

還元および溶融に必要な熱量の供給方法として、電気や
純酸素を用いずに、主に空気を用いてコークスを燃焼さ
せ、その燃焼熱を利用する方法があり、鉄、ニッケル、
銅などの製錬用溶鉱炉はこの方法を用いている。
As a method of supplying the amount of heat necessary for reduction and melting, there is a method that mainly uses air to burn coke without using electricity or pure oxygen, and uses the combustion heat.
Blast furnaces for smelting copper and other materials use this method.

特に、製鉄用溶鉱炉は操業技術の進歩と炉の大型化によ
って製錬炉としては非常に効率が良いことで知られてい
る。
In particular, iron-making blast furnaces are known to be extremely efficient as smelting furnaces due to advances in operating technology and larger furnaces.

しかし、製鉄用溶鉱炉は高いシャフト炉であり、炉内の
通気性を確保するために、前述のような塊鉱石または塊
成化鉱石が必要であるとともに、塊状鉱石とコークスを
炉内に層状に堆積させるので、強度の高いコークスを必
要とする。
However, the blast furnace for steelmaking is a high shaft furnace, and in order to ensure ventilation inside the furnace, lump ore or agglomerated ore as mentioned above is required, and the lump ore and coke are layered in the furnace. Since the coke is deposited, high strength coke is required.

強度の高いコークスを製造するためには、原料炭として
資源的に将来不足が予想され、価格が高い強粘結炭を必
要とするか、あるいは弱粘結炭、一般炭を用いる場合に
は改質バインダーなどを必要とし、製造コストの上昇に
つながるなどの問題がある。
In order to produce high-strength coke, it is necessary to use strong coking coal, which is expected to be in short supply in the future and is expensive, or to use modified coking coal when using weakly coking coal or steam coal. This method requires a high-quality binder, leading to an increase in manufacturing costs.

ところで、特公昭34−2103号あるいは特開昭54
−142313号によれば、粉鉱石を予備還元した粉状
予備還元鉱を粉状のままで溶融還元する方法が提案され
ており、前者の方法によれば、燃料を燃焼させる助燃剤
は85%以上の酸素を含む気体であり、後者の方法のそ
れは純酸素である。
By the way, Japanese Patent Publication No. 34-2103 or Japanese Patent Application Publication No. 54
According to No. 142313, a method is proposed in which powdery pre-reduced ore obtained by pre-reducing fine ore is melted and reduced in its powder form, and according to the former method, the combustion improver for burning fuel is 85% The latter method uses pure oxygen.

また溶融還元炉の湯溜部を高温度に維持するために、前
者の方法によれば石炭と酸素の反応によりCO2/co
比が1の、Feに対しては酸化性に作用するガスを発生
させることによって、後者の方法によれば予備還元鉱に
付着した炭素を純酸素により燃焼させることによって高
温度を維持させている。
In addition, in order to maintain the sump of the smelting reduction furnace at a high temperature, according to the former method, CO2/co
By generating a gas that has an oxidizing effect on Fe with a ratio of 1, the latter method maintains a high temperature by burning the carbon attached to the pre-reduced ore with pure oxygen. .

さらにまた前者の方法によれば、ガスが酸化性であるた
め酸化鉄が未還元の状態でスラグ化されて炉外に排出さ
れ易く、後者によれば燃焼炉内の温度不均一と酸素分圧
不均一が起り易いため、溶解炉の操業条件設定が難しい
という欠点がある。
Furthermore, according to the former method, since the gas is oxidizing, the iron oxide is easily turned into slag in an unreduced state and discharged outside the furnace. Since non-uniformity tends to occur, there is a drawback that it is difficult to set the operating conditions of the melting furnace.

本発明は従来性われ、あるいは提案されている金属酸化
物を含有する粉状鉱石からの溶融金属製造法の有する諸
欠点を除去、改善した製造法を提供することを目的とす
るものであり、特許請求の範囲記載の方法を提供するこ
とによって前記目的を達成することができる。
The object of the present invention is to provide a manufacturing method that eliminates and improves the various drawbacks of conventional or proposed methods of manufacturing molten metal from powdered ore containing metal oxides, This object can be achieved by providing the method according to the claims.

次に本発明の詳細な説明する。Next, the present invention will be explained in detail.

本発明によれば、粉状の炭素系固体還元剤を予備処理炉
に供給して、竪型還元炉で発生する高温気体の一部を前
記予備処理炉に導入して前記還元剤を流動乾燥、加熱す
る予備処理を行なう。
According to the present invention, a powdery carbon-based solid reducing agent is supplied to a pretreatment furnace, and a part of the high temperature gas generated in the vertical reduction furnace is introduced into the pretreatment furnace to fluidize the reducing agent. , perform pretreatment by heating.

一方、粉状鉱石を予備還元炉に装入し、竪型還元炉およ
び予備処理炉においてそれぞれ発生する気体の一部を導
入して流動還元を行なう。
On the other hand, powdered ore is charged into a pre-reduction furnace, and part of the gas generated in the vertical reduction furnace and the pre-treatment furnace is introduced to carry out fluidized reduction.

さらにまた、酸素を含む高温気体を竪型還元炉下部に設
けた複数の羽目を経て前記竪型還元炉内に供給する。
Furthermore, high-temperature gas containing oxygen is supplied into the vertical reduction furnace through a plurality of channels provided at the lower part of the vertical reduction furnace.

そして、予備還元炉で予備還元された予備還元生成物と
予備処理炉で加熱された予備処理生成物と必要によりフ
ラックスとを竪型還元炉内に供給して、予備処理生成物
を流動状態で燃焼させ、この燃焼により発生する熱およ
び還元性ガスによって予備還元生成物を溶融還元して溶
融金属と溶融スラグとなし、炉床部より適時に炉外に出
湯する。
Then, the pre-reduced product pre-reduced in the pre-reduction furnace, the pre-treated product heated in the pre-treatment furnace, and flux if necessary are supplied into the vertical reduction furnace, and the pre-treated product is kept in a fluid state. The preliminary reduction products are melted and reduced by the heat and reducing gas generated by the combustion to form molten metal and molten slag, which are then discharged from the hearth to the outside of the furnace in a timely manner.

次に本発明を図面について説明する。Next, the present invention will be explained with reference to the drawings.

炭素系固体還元剤供給装置1より予備処理炉2に粉状の
炭素系還元剤を供給し、竪型還元炉3において発生する
発生気体の一部または全部を発生気体排出装置4と発生
気体導入装置5を経て予備処理炉2に導入し、予備処理
炉2内で前記還元剤を流動乾燥、加熱して、必要な程度
まで加熱あるいは乾留する予備処理を行なう。
Powdered carbon-based reducing agent is supplied from the carbon-based solid reducing agent supply device 1 to the pretreatment furnace 2, and part or all of the generated gas generated in the vertical reduction furnace 3 is introduced into the generated gas discharge device 4. The reducing agent is introduced into a pretreatment furnace 2 through a device 5, and is fluidized and heated in the pretreatment furnace 2 to perform a pretreatment of heating or carbonization to a required degree.

例えば粉状石炭を用いる場合には、予備処理炉2で予備
処理することにより、前記石炭は乾留されて粉状のコー
クスあるいはチャーとなって前記炉2から排出される。
For example, when using powdered coal, the coal is carbonized by being pretreated in the pretreatment furnace 2 and discharged from the furnace 2 as powdered coke or char.

ところで粉状の炭素系還元剤は必ずしも予備処理炉2を
用いて処理せずに直接竪型還元炉3に供給しても良いが
、予備還元炉3その他の施設において、炭化水素を含有
する乾留ガスあるいはタールを必要としたり、粉状の炭
素系固体還元剤の竪型還元炉3内での燃焼を容易ならし
めるために、前記還元剤を予熱する必要がある場合には
、前記還元剤を予備処理炉2を用いて予備処理すること
は特に有利である。
Incidentally, the powdered carbon-based reducing agent may be directly supplied to the vertical reduction furnace 3 without being treated using the pre-treatment furnace 2, but in the pre-reduction furnace 3 and other facilities, the carbon-based reducing agent containing hydrocarbons may be If gas or tar is required, or if the reducing agent needs to be preheated in order to facilitate combustion of the powdered carbon-based solid reducing agent in the vertical reduction furnace 3, the reducing agent may be preheated. Pretreatment using a pretreatment furnace 2 is particularly advantageous.

一方、粉状の金属酸化物を含有する鉱石を鉱石供給装置
6より予備還元炉1に供給し、竪型還元炉3からの発生
気体の一部または全部、およびまたは予備処理炉2から
の発生気体の一部または全部を発生気体導入装置8,9
を経て炉7に供給し、炉1内で前記粉状鉱石を流動乾燥
、加熱して必要程度にまで予備還元する。
On the other hand, ore containing powdered metal oxides is supplied from the ore supply device 6 to the pre-reduction furnace 1, and part or all of the gas generated from the vertical reduction furnace 3 and/or the gas generated from the pre-treatment furnace 2 is supplied. Gas introduction device 8, 9 that generates part or all of the gas
The powdered ore is fluidized and heated in the furnace 1 to be pre-reduced to a required level.

竪型還元炉3からの発生気体はN2.CO2CO2,N
2.N20などによりなり、なかでも還元性のC09H
2の含有量が多く、かつ竪型炉3から900〜1500
’Cの高温で排出され、一方予備処理炉2からの発生気
体は石炭を原料とする場合にはN2.CO2CO2,N
2゜)(20,CnHm(CnHmは炭化水素を表わす
)などにより、なかでも還元性のC09H2あるいはC
nHmの含有量が多く、かつ予備処理炉2の発生気体排
出装置2aから300〜800℃の温度で排出される。
The gas generated from the vertical reduction furnace 3 is N2. CO2CO2,N
2. N20, among others, reducing C09H
2 content is high, and from vertical furnace 3 900 to 1500
On the other hand, the gas generated from the pretreatment furnace 2 is discharged at a high temperature of N2. CO2CO2,N
2゜) (20, CnHm (CnHm represents hydrocarbon), among others, reducing C09H2 or C
It has a high content of nHm, and is discharged from the generated gas discharge device 2a of the pretreatment furnace 2 at a temperature of 300 to 800°C.

したがって予備還元炉7内において粉状鉱石は前記還元
ガスによって流動予備還元される。
Therefore, in the preliminary reduction furnace 7, the powdered ore is subjected to fluid preliminary reduction by the reducing gas.

予備還元された予備還元生成物は排出装置10によって
予備還元炉7から高温状態で排出され、誘導装置11を
経て必要により途中でフラックスを添加して予備還元生
成物供給装置12,13および14のなかから選ばれる
倒れか1つ、2つまたは3つの装置に搬送さ札次いで竪
型還元炉3内に装入される。
The pre-reduced product is discharged from the pre-reduction furnace 7 in a high temperature state by the discharge device 10, passes through the induction device 11, and if necessary, flux is added to the pre-reduced product supply devices 12, 13 and 14. The wastes are transported to one, two or three devices selected from among them, and then charged into the vertical reduction furnace 3.

なお供給装置13および14へは気体搬送されるが、搬
送用気体としては竪型還元炉3の発生気体を用い、場合
によっては前記搬送用気体を昇圧装置15を用いて昇圧
させることは予備還元生成物の気体搬送を容易にするの
で有利である。
Although the gas is transported to the supply devices 13 and 14, the gas generated in the vertical reduction furnace 3 is used as the transport gas, and in some cases, the pressure of the transport gas may be increased using the pressure booster 15 as a preliminary reduction. This is advantageous because it facilitates gaseous transport of the product.

一方、予備処理炉2において予備処理された予備処理生
成物は排出装置16から排出され、誘導装置17を経て
、場合により昇圧装置17aで昇圧された竪型還元炉発
生気体炭素系固体還元剤供給装置18 、19 、20
のうちから選ばれる何れか少なくとも1つの装置かち竪
型還元炉3内に供給され、同炉3内において、供給装置
21から供給される酸素を含む高温気体と反応して燃焼
するか、あるいは竪型還元炉3に供給されて溶融状態に
なった予備還元炉生成物中の金属酸化物と接触して金属
酸化物を還元して金属を生成させる。
On the other hand, the pretreated product pretreated in the pretreatment furnace 2 is discharged from the discharge device 16, passes through the induction device 17, and is optionally pressurized by the pressure booster 17a to supply the gaseous carbon-based solid reducing agent generated in the vertical reduction furnace. Devices 18, 19, 20
At least one device selected from the following is supplied into the vertical reduction furnace 3, and is burned in the furnace 3 by reacting with high temperature gas containing oxygen supplied from the supply device 21, or The metal oxide is brought into contact with the metal oxide in the pre-reduction furnace product that is supplied to the mold reduction furnace 3 and turned into a molten state, and the metal oxide is reduced to produce metal.

前記酸素を含む高温の気体としては熱風炉の如きガス加
熱炉22を用いて加熱した8oo〜1300℃の高温空
気または酸素富化した空気を用いることができる。
As the high-temperature gas containing oxygen, high-temperature air of 80° C. to 1300° C. heated using a gas heating furnace 22 such as a hot blast stove or oxygen-enriched air can be used.

ところで羽口状の予備処理生成物供給装置20の炉3内
の先端の位置より上方の上部領域では酸素を含む高温の
気体によって粉状の炭素系固体還元剤あるいは予備処理
炉で予備処理された粉状の炭素系固体還元剤が燃焼して
高温を発生するため、この高温領域内で予備還元生成物
は加熱されて溶融し、還元されて溶融金属と溶融スラグ
とに分離して、竪型還元炉3の下部に2層状態で蓄溜さ
れ、排出装置23より適時炉外に排出される。
By the way, in the upper region above the tip of the tuyere-shaped pretreated product supply device 20 in the furnace 3, the product is pretreated with a powdery carbon-based solid reducing agent or in a pretreatment furnace with a high temperature gas containing oxygen. As the powdered carbon-based solid reducing agent burns and generates high temperature, the pre-reduction product is heated and melted in this high temperature region, and is reduced and separated into molten metal and molten slag. It is stored in two layers in the lower part of the reduction furnace 3, and is discharged from the furnace from the discharge device 23 at a timely manner.

本発明によれば、予備処理炉2に供給される炭素系固体
還元剤としては粉状のコークス、チャー、石炭の何れか
またはそれらの2種あるいは3種を用いることができ、
また石炭を用いる場合には安価な非粘結性一般炭をも有
利に使用することができ、コークスを用いる場合には塊
状コークスを製造するとき発生する粉コークスを有利に
使用することができる。
According to the present invention, as the carbon-based solid reducing agent supplied to the pretreatment furnace 2, any one of powdered coke, char, and coal, or two or three thereof, can be used.
Furthermore, when coal is used, inexpensive non-caking steam coal can also be advantageously used, and when coke is used, coke breeze generated when producing lump coke can be advantageously used.

竪型還元炉3に供給される粉状鉱石は予備還元されて竪
型還元炉3内の高温領域で速やかに溶融し、還元される
必要があるので、予備還元鉱は竪型還元炉3内で高温に
予熱され、かつ高還元率を有する状態で装入されること
が溶融還元され易くなるので有利である。
Powdered ore supplied to the vertical reduction furnace 3 needs to be pre-reduced and quickly melted and reduced in the high temperature area inside the vertical reduction furnace 3. It is advantageous to preheat the material to a high temperature and charge it in a state with a high reduction rate, since this facilitates melting and reduction.

最適の予熱温度と予備還元率は金属酸化物の種類、なら
びに金属酸化物を含有する鉱石の性状、使用するシステ
ム構成によって当然異なるが、予熱温度と予備還元率が
それぞれ大体400〜1000°C240〜80%のと
き、良い結果を得ることができる。
The optimal preheating temperature and prereduction rate will naturally vary depending on the type of metal oxide, the properties of the ore containing the metal oxide, and the system configuration used, but the preheating temperature and prereduction rate are approximately 400 to 1000°C, respectively. Good results can be obtained at 80%.

本発明によれば、酸素を含む800〜1300°Cの高
温気体が羽口21を介して竪型還元炉3に吹込まれるの
で羽口状の炭素系固体還元剤供給装置20の内端周辺は
2000〜2500℃に達する。
According to the present invention, a high-temperature gas of 800 to 1300°C containing oxygen is blown into the vertical reduction furnace 3 through the tuyere 21, so around the inner end of the tuyere-shaped carbon-based solid reducing agent supply device 20. reaches 2000-2500°C.

この羽口21の形状は製銑高炉羽口の形状と類似のもの
とすることができるが、炉床湯溜部の温度を1400〜
1700℃に維持する必要上、前記湯溜部に高温気体が
直接当るように羽口21の炉内への突入傾斜角度を水平
から下向きに45゜までの範囲内とすることが望ましい
The shape of this tuyere 21 can be similar to the shape of the ironmaking blast furnace tuyere, but the temperature of the hearth sump can be set to 1400~
Since it is necessary to maintain the temperature at 1700°C, it is desirable that the inclination angle of the tuyere 21 at which it enters the furnace is within a range of 45° downward from the horizontal so that the high temperature gas directly hits the sump.

ところで供給装置20の内端付近を2000〜2500
℃の高温に維持するためには、この付近に過剰の酸素が
羽口21から酸素を含む高温気体として供給される必要
がある。
By the way, around the inner end of the supply device 20 is 2000 to 2500
In order to maintain the temperature at a high temperature of .degree. C., it is necessary to supply excess oxygen to this vicinity from the tuyere 21 as a high temperature gas containing oxygen.

しかしながら、これによって高温が保持されると同時に
、この付近の酸素分圧を上昇させることにもなり、ひい
ては溶融した予備還元鉱の再酸化が生起し、かつ排出さ
れるスラグ中に含まれる酸化鉄の濃度が増加し、還元の
点からは好ましくないことになる。
However, this maintains the high temperature and at the same time increases the oxygen partial pressure in this area, which in turn causes re-oxidation of the molten pre-reduced ore and iron oxide contained in the discharged slag. concentration increases, which is unfavorable from the point of view of reduction.

かかる不利を避けるために酸素を含む高温気体の供給用
羽口21の下方に位置する炭素系固体還元剤供給装置2
0から直接溶融スラグ表面上に粉状還元剤を供給するこ
とにより、供給装置20の内部先端付近が高温でかつ還
元性雰囲気に保持されるようにすることができる。
In order to avoid such disadvantages, the carbon-based solid reducing agent supply device 2 is located below the tuyere 21 for supplying high-temperature gas containing oxygen.
By supplying the powdered reducing agent directly onto the surface of the molten slag from zero, the vicinity of the internal tip of the supply device 20 can be maintained at high temperature and in a reducing atmosphere.

次に本発明を実施例について説明する。Next, the present invention will be explained with reference to examples.

実施例 試験炉を用いて、下記の原料を用いて下記の条件で本発
明を実施した結果を示すと次のようであった。
EXAMPLE The present invention was carried out using a test furnace using the following raw materials under the following conditions, and the results were as follows.

■)粉状鉄鉱石の銘柄:MBR鉱石 粒径:2龍以下 供給量: 2610kf/hr 2)予備処理炉に供給する炭素系固体還元剤の種類ニ一
般炭(F、C: 74.8%) 粒径:3mm以下 供給量: 1110kf/ hr 3)竪型還元炉への送風量:2350 Nm3/ 11
r送風温度:900°C 4)粉鉱石の予備還元率ニア1% 5)銑鉄生産量: 1710kf/ hr6)スラグ排
出量: 364に9/ h。
■) Powdered iron ore brand: MBR Ore particle size: 2 dragons or less Supply rate: 2610 kf/hr 2) Type of carbon-based solid reducing agent supplied to the pretreatment furnace Steam coal (F, C: 74.8% ) Particle size: 3mm or less Supply rate: 1110kf/hr 3) Airflow rate to the vertical reduction furnace: 2350 Nm3/11
r Blowing temperature: 900°C 4) Preliminary reduction rate of fine ore near 1% 5) Pig iron production: 1710kf/hr6) Slag discharge: 364 to 9/hr.

以上本発明によれば、 イ)粉状鉱石を塊成化することなしに用いるので、塊成
化のためのエネルギーならびに経費が不要であり、かつ
塊成化する際発生することのあるNOx、SOxおよび
ダストの対策が不要となり、口)竪型還元炉ならびに予
備処理炉で発生する気体を鉱石の予備還元用ガスとして
用いるので、還元ガス製造設備を別途設ける必要がなく
、/9比較的還元が容易である40〜80%の還元率の
予備還元鉱を支障なく使用することができ、→安価な炭
素系固体還元剤を熱源として用いることができ、なかで
も非粘結性石炭粉を用いると、還元性の極めて大きい炭
化水素含有気体とタールを得ることができ、 ホ)溶融還元炉に吹込まれる気体は王として予熱空気で
あって、高価な酸素は必ずしも必要でなく、 (へ)予備処理、予備還元ならびに溶融還元は何れも流
動状態下で行なわれるため、竪型還元炉への予備還元鉱
の供給場所を限定する必要はなく、かつ溶融ならびに還
元が容易に行なわれる。
As described above, according to the present invention, (a) Since powdered ore is used without agglomerating, energy and expense for agglomeration are unnecessary, and NOx, which may be generated during agglomeration, is eliminated. Measures against SOx and dust are no longer required, and the gas generated in the vertical reduction furnace and pre-treatment furnace is used as a preliminary reduction gas for the ore, so there is no need to separately install reducing gas production equipment, and the reduction rate is relatively low. Pre-reduced ore with a reduction rate of 40-80% can be used without any problems, and an inexpensive carbon-based solid reducing agent can be used as a heat source, and in particular, non-caking coal powder can be used as a heat source. (e) The gas blown into the smelting reduction furnace is primarily preheated air, and expensive oxygen is not necessarily necessary. (e) Since the preliminary treatment, preliminary reduction, and smelting reduction are all performed in a fluidized state, there is no need to limit the supply location of the preliminary reduced ore to the vertical reduction furnace, and melting and reduction are easily performed.

等多くの優れた特徴のあることが判った。It was found that it has many excellent characteristics.

なお、実施例として鉄鉱石についての例を示したが、ニ
ッケル鉱、マンガン鉱、クロム鉱などを原料としても本
発明を実施することができる。
Although iron ore is shown as an example, the present invention can also be practiced using nickel ore, manganese ore, chromium ore, or the like as a raw material.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明を実施するに用いる装置の縦断面図である。 1・・・・・・炭素系固体還元剤供給装置、2・・・・
・・予備処理炉、2a・・・・・・発生気体排出装置、
3・・・・・・竪型還元炉、4・・・・・・発生気体搬
出装置、5,8,9・・・・・発生気体導入装置、6・
・・・・・鉱石供給装置、7・・・・・・予備還元炉、
10・・・・・・予備還元生成物排出装置、11・・・
・・・誘導装置、12,13,14・・・・・・予備還
元生成物供給装置、15,17a・・・・・・昇圧装置
、18.19,20・・・・・・炭素系固体還元剤供給
装置、21・・・・・・高温気体供給用羽口、22・・
・・・・ガス加熱炉、23・・・・・・溶湯排出装置。
The figure is a longitudinal sectional view of an apparatus used to carry out the invention. 1...Carbon-based solid reducing agent supply device, 2...
... Pretreatment furnace, 2a ... Generated gas discharge device,
3... Vertical reduction furnace, 4... Generated gas removal device, 5, 8, 9... Generated gas introduction device, 6.
...Ore supply device, 7...Preliminary reduction furnace,
10...Preliminary reduction product discharge device, 11...
...Induction device, 12,13,14...Preliminary reduction product supply device, 15,17a...Pressorizing device, 18.19,20...Carbon-based solid Reducing agent supply device, 21...Tuyere for high temperature gas supply, 22...
... Gas heating furnace, 23 ... Molten metal discharge device.

Claims (1)

【特許請求の範囲】 1 金属酸化物を含有する粉状鉱石を予備還元し、次い
でこの予備還元鉱を粉状のまま溶融還元する溶融金属製
造方法において、下部に酸素を含む高温気体を吹込む羽
口を有し、炭素系固体還元剤の流動層が形成される竪型
還元炉からの発生ガスを生体とする還元ガスにより、供
給される粉状鉱石を流動還元する予備還元炉とを用いて
、前記予備還元炉において予備還元された粉状予備還元
鉱をフラックスとの混合形態で前記竪型還元炉内に装入
し、一方前記竪型還元炉に設けられた羽口の位置よりは
低く、かつ炉湯溜部よりは高い位置の炉内に炭素系固体
還元剤を付加添加しつつ、前記羽口より酸素を含む高温
気体を吹込むことを特徴とする金属酸化物を含有する粉
状鉱石からの溶融金属製造法。 2 炭素系固体還元剤は、粉状石炭を前記竪型還元炉の
発生ガスを用いて予備処理炉において乾留されたもので
ある特許請求の範囲第1項記載の方九 3 予備処理炉において発生する発生ガスの一部もしく
は全量を予備還元炉に供給される還元ガスの一部として
使用する特許請求の範囲第1あるいは2項記載の方法。
[Claims] 1. A method for producing molten metal in which a powdered ore containing a metal oxide is pre-reduced and then the pre-reduced ore is melted and reduced in powder form, in which a high-temperature gas containing oxygen is blown into the lower part. A pre-reduction furnace is used in which the supplied powdery ore is fluidized and reduced using a reducing gas that is generated from a vertical reduction furnace that has tuyeres and forms a fluidized bed of carbon-based solid reducing agent. Then, the powdered pre-reduced ore pre-reduced in the pre-reduction furnace is charged into the vertical reduction furnace in the form of a mixture with flux. A metal oxide-containing powder characterized in that a carbon-based solid reducing agent is additionally added into the furnace at a lower position and higher than the furnace sump, and high-temperature gas containing oxygen is blown from the tuyere. A method for producing molten metal from shaped ore. 2. The carbon-based solid reducing agent is obtained by carbonizing powdered coal in a pretreatment furnace using the gas generated in the vertical reduction furnace. 3. The method according to claim 1 or 2, wherein part or all of the generated gas is used as part of the reducing gas supplied to the preliminary reduction furnace.
JP6811081A 1981-04-28 1981-05-08 Method for producing molten metal from powdered ore containing metal oxides Expired JPS5918453B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP6811081A JPS5918453B2 (en) 1981-05-08 1981-05-08 Method for producing molten metal from powdered ore containing metal oxides
DE8282302056T DE3273996D1 (en) 1981-04-28 1982-04-22 Methods for melting and refining a powdery ore containing metal oxides and apparatuses for melt-refining said ore
EP82302056A EP0063924B2 (en) 1981-04-28 1982-04-22 Methods for melting and refining a powdery ore containing metal oxides and apparatuses for melt-refining said ore
PH27194A PH21317A (en) 1981-04-28 1982-04-26 Methods for melting and refining a powdery ore containing metal oxides and apparatuses for melt-refining said ore
PH35514A PH26062A (en) 1981-04-28 1987-06-07 Method for melting and refining a powdery ore containing metal oxides and apparatus for melting said ore
US07/127,600 US4874427A (en) 1981-04-28 1987-12-02 Methods for melting and refining a powdery ore containing metal oxides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6811081A JPS5918453B2 (en) 1981-05-08 1981-05-08 Method for producing molten metal from powdered ore containing metal oxides

Publications (2)

Publication Number Publication Date
JPS57185910A JPS57185910A (en) 1982-11-16
JPS5918453B2 true JPS5918453B2 (en) 1984-04-27

Family

ID=13364264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6811081A Expired JPS5918453B2 (en) 1981-04-28 1981-05-08 Method for producing molten metal from powdered ore containing metal oxides

Country Status (1)

Country Link
JP (1) JPS5918453B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63105367U (en) * 1986-12-25 1988-07-08

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0784624B2 (en) * 1985-09-04 1995-09-13 川崎製鉄株式会社 Method for producing molten metal from powdered ore containing metal oxide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63105367U (en) * 1986-12-25 1988-07-08

Also Published As

Publication number Publication date
JPS57185910A (en) 1982-11-16

Similar Documents

Publication Publication Date Title
CN108374067B (en) A kind of device and method of reduction direct steelmaking at full speed
JPH0360883B2 (en)
JP4191681B2 (en) Hot metal production apparatus with improved operation of fluidized reduction furnace and hot metal production method
WO2013011521A1 (en) A method for direct reduction of oxidized chromite ore fines composite agglomerates in a tunnel kiln using carbonaceous reductant for production of reduced chromite product/ agglomerates applicable in ferrochrome or charge chrome production.
JP2002509194A (en) Sustainable steelmaking process by effective direct reduction of iron oxide and solid waste
US5810905A (en) Process for making pig iron
JPH079015B2 (en) Smelting reduction method for iron ore
JPS5918453B2 (en) Method for producing molten metal from powdered ore containing metal oxides
JPS5918452B2 (en) Method for producing molten metal from powdered ore
JP2000045012A (en) Method for utilizing dust in converter steel making
JPH037723B2 (en)
EP0950117B1 (en) A method for producing metals and metal alloys
JP5825459B1 (en) Manufacturing method and manufacturing equipment of reduced iron
JP2990925B2 (en) Method for rapid reduction of ore or metal oxide
JPS6256537A (en) Manufacture of molten metal from powdery ore containing metal oxide
US4412862A (en) Method for the production of ferrochromium
CN116287518B (en) Low-carbon iron making method and system
JPH0130888B2 (en)
RU2217505C1 (en) Method of processing nickel-bearing iron ore raw material
JPH01162711A (en) Smelting reduction method
JPH11217614A (en) Smelting reduction method of metal
JPS6131166B2 (en)
JPH1129807A (en) Production of molten iron
JPS62228882A (en) Iron ore spare reducing device
CN116640893A (en) Direct reduction-side blowing furnace smelting-separating iron-making method adopting hydrogen-rich coal-based rotary kiln