JPH0130888B2 - - Google Patents

Info

Publication number
JPH0130888B2
JPH0130888B2 JP57189935A JP18993582A JPH0130888B2 JP H0130888 B2 JPH0130888 B2 JP H0130888B2 JP 57189935 A JP57189935 A JP 57189935A JP 18993582 A JP18993582 A JP 18993582A JP H0130888 B2 JPH0130888 B2 JP H0130888B2
Authority
JP
Japan
Prior art keywords
ore
furnace
vertical furnace
tuyere
reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57189935A
Other languages
Japanese (ja)
Other versions
JPS5980704A (en
Inventor
Toshihiro Inatani
Hisao Hamada
Mitsuo Kadoto
Nobuo Tsuchitani
Shiko Takada
Eiji Katayama
Tsutomu Fujita
Shunji Hamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP57189935A priority Critical patent/JPS5980704A/en
Publication of JPS5980704A publication Critical patent/JPS5980704A/en
Publication of JPH0130888B2 publication Critical patent/JPH0130888B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0006Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state
    • C21B13/0013Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state introduction of iron oxide into a bath of molten iron containing a carbon reductant
    • C21B13/002Reduction of iron ores by passing through a heated column of carbon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/60Process control or energy utilisation in the manufacture of iron or steel
    • C21B2100/66Heat exchange

Description

【発明の詳細な説明】 この発明は、粉、粒状鉱石のたて型炉溶融還元
方法に関し、とくに溶融還元により該炉で発生す
る還元性の排ガスを粉、粒状鉱石の予備還元に、
有利適切に活用すること、および該予備還元を経
た部分還元鉱のたて型炉内における溶融還元をと
くに効果的に成就させることについての開発成果
を開示するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for melting and reducing powder and granular ores in a vertical furnace, and in particular, to a method for pre-reducing powder and granular ores by using reducing exhaust gas generated in the furnace by melting and reduction.
The present invention discloses the development results regarding the advantageous and appropriate use of the partially reduced ore, and the especially effective achievement of the melting reduction in the vertical furnace of the partially reduced ore that has undergone the preliminary reduction.

近年、鉄鉱石をはじめ各種の金属酸化物より主
として成る原料鉱石は、塊状鉱石よりはむしろ、
粉、粒状鉱石の方が多くなりつつあり、今後もま
すますその比率は増加傾向にあるとみられる。
粉、粒状鉱石による製錬方法としては、流動層を
用いて粉、粒状鉱石を予備還元しこの予備還元鉱
を電炉、転炉、その他の溶解炉で溶融還元する方
式が一般的である。
In recent years, raw material ores mainly composed of various metal oxides, including iron ore, have become more common than lump ores.
Powder and granular ore are becoming more common, and their proportion is expected to continue to increase in the future.
A common method for smelting powder or granular ore is to pre-reduce the powder or granular ore using a fluidized bed, and then melt and reduce the pre-reduced ore in an electric furnace, converter, or other melting furnace.

この場合予備還元鉱にバインダーの添加で塊成
化をしその塊成物を溶解炉で溶融還元する方式が
多い。しかしこのような方式によれば塊成化のた
めの資材、処理費、処理エネルギーなどを必要と
するばかりでなく、塊成化をしたのち焼成を必要
とする場合にはその際に焼成炉から排出されるガ
ス中のNOX、SOXおよびダストなどを処理するた
めの費用が多大に上ぼるところにも難点を伴う。
In this case, there are many methods in which the pre-reduced ore is agglomerated by adding a binder and the agglomerated product is melted and reduced in a melting furnace. However, this method not only requires materials for agglomeration, processing costs, processing energy, etc., but also requires a large amount of energy from the kiln when firing is required after agglomeration. Another drawback is that the cost for treating NOx , SOx , dust, etc. in the emitted gas increases considerably.

また上記方式の他に、アーク炉やプラズマまた
は純酸素を利用する炉を用いて、予備還元鉱を塊
成ないしは焼成を行わずに溶融還元する方式も企
てられてはいるが、アーク炉を用いる方式によれ
ば電力消費が莫大であるばかりでなく立地条件に
も制約があり、またプラズマを利用する炉を用い
る方式も電力消費が甚しく現在のところ工業的規
模での適用が困難であり、さらに純酸素を利用す
る炉を用いる方式によれば高温雰囲気を得ること
は容易であつても還元雰囲気の維持が難しくまた
酸素使用量が嵩むなど、何れも技術的に解決を要
する問題をはらんでいる。
In addition to the above-mentioned method, methods have also been proposed in which the pre-reduced ore is melted and reduced without agglomeration or calcination using an arc furnace or a furnace that uses plasma or pure oxygen. The method used not only consumes a huge amount of power, but also has restrictions on location.Also, the method using a furnace that uses plasma consumes so much power that it is currently difficult to apply on an industrial scale. Furthermore, although it is easy to obtain a high-temperature atmosphere using a furnace that uses pure oxygen, it is difficult to maintain a reducing atmosphere and the amount of oxygen used increases, all of which have problems that require technical solutions. Random.

ところで微砕鉱石を予備還元した後、この予備
還元鉱を、石炭・酸素バーナーによる加熱により
溶融還元することは、古く特公昭34−2103号公報
に開示され、またとくに予備還元鉱の還元率を特
定するとともにその炭素含有量を高めて酸素導入
のみで溶融還元する改良方法についても発明者の
一部がさきに、特公昭56−44925号公報にて提案
をしたがこれらは予備還元鉱を溶融還元するのに
燃料および還元剤として前者で粉状石炭また後者
は還元鉄付着炭素を使用しその燃焼のために助燃
剤として常温の酸素を用いている。
By the way, the method of pre-reducing finely crushed ore and then melting and reducing the pre-reduced ore by heating with a coal/oxygen burner was disclosed long ago in Japanese Patent Publication No. 34-2103. Some of the inventors previously proposed in Japanese Patent Publication No. 56-44925 an improved method of identifying the carbon content, increasing its carbon content, and melting and reducing it only by introducing oxygen. The former uses pulverized coal as fuel and reducing agent, and the latter uses reduced iron-adhered carbon, and oxygen at room temperature is used as a combustion aid for combustion.

これに対し発明者らはさらに進んで、炭素質固
体還元剤の充てん層をたて型炉内部で不断に形成
する一方、該炉の下部胴壁に上下2段にわたり配
設したそれぞれ複数の羽口群を通して、該炉から
排出される還元性の排ガスを用いて粉、粒状鉱石
を予備還元した部分還元鉱をば、必要によりフラ
ツクスを加えて高温の空気または酸素富化空気を
もつてする気流搬送下にたて型炉内に吹込んで、
上記部分還元鉱を溶融還元することに関し特公昭
59−18452号公報所載の発明をさきに提案した。
In response to this, the inventors went further and continuously formed a packed layer of carbonaceous solid reducing agent inside a vertical furnace. Partially reduced ore obtained by pre-reducing powder and granular ore using the reducing exhaust gas discharged from the furnace is passed through the mouth group, and a flux is added as necessary, and an air flow with high-temperature air or oxygen-enriched air is carried out. Blow into the vertical furnace while being transported,
Regarding the melting and reduction of the above partially reduced ore,
The invention disclosed in Publication No. 59-18452 was proposed earlier.

これについては、工業的規模における開発研究
をさらに重ねつつあるが、この段階で上記の部分
還元鉱の気流搬送による吹込み実験において、さ
らに進んで検討を加えたところ、羽口群の設置段
数を3段とすることにより、部分還元鉱が、難還
元性または難溶解性であるような場合も含めて、
より円滑なたて型炉における溶融還元を有利に成
就し得ることを究明した。
Regarding this, we are continuing to conduct further research and development on an industrial scale, but at this stage, we conducted a further study in the above-mentioned blowing experiment using airflow conveyance of partially reduced ore, and found that the number of stages of tuyeres installed was By using three stages, even when the partially reduced ore is difficult to reduce or dissolve,
It has been found that smoother smelting reduction can be achieved advantageously in a vertical furnace.

すなわちこの発明は、粉、粒状鉱石の予備還元
鉱を、炭素系固体還元剤の充填層が形成されたた
て型炉の胴壁下部でそれぞれ3段にわたり配設し
た羽口を通して必要により加えたフラツクスとと
もに加熱下の反応性ガス気流によりたて型炉内に
吹込装入して溶融還元し、こゝにたて型炉で溶融
還元により発生する還元性の排ガスを粉、粒状鉱
石の予備還元に利用することで、上掲した従来方
式の粉、粒状鉱石の製錬方法における問題点の適
切な克服を成就したものである。
That is, in this invention, pre-reduced ore such as powder or granular ore is added as necessary through tuyeres arranged in three stages at the lower part of the trunk wall of a vertical furnace in which a packed bed of carbon-based solid reducing agent is formed. The flux is blown into a vertical furnace using a heated reactive gas stream to melt and reduce the ore, and the reducing exhaust gas generated by the melting and reduction in the vertical furnace is used to pre-reduce the powder and granular ore. By using this method, it has been possible to appropriately overcome the problems in the conventional methods of smelting powder and granular ores mentioned above.

この発明において予熱下の反応性ガス気流にて
搬送し、羽口群からたて型炉内に吹込み装入を行
う装入物は、羽口先端部周辺でたて型炉内部に形
成された炭素系固体還元剤の充てん層の高熱領域
中を滴下する間に溶融還元され炉床に蓄溜するの
で適時にたて型炉から取り出せばよい。
In this invention, the charge, which is transported by a preheated reactive gas stream and blown into the vertical furnace from the tuyere group, is formed inside the vertical furnace around the tip of the tuyere. While the carbon-based solid reducing agent is dropped into the high-temperature region of the packed layer, it is melted and reduced and accumulated in the hearth, so it can be removed from the vertical furnace in a timely manner.

この発明において、炭素系固体還元剤としてと
くに好ましくは粒径25〜75mm程度の塊コークスを
可とするが、石炭塊やチヤーなどもまた利用で
き、何れもたて型炉内にその頂部から連続供給し
て、充てん層を不断に形成させる。
In this invention, lump coke with a particle size of about 25 to 75 mm is particularly preferably used as the carbon-based solid reducing agent, but coal lumps and coals can also be used, and any of them can be continuously fed into the vertical furnace from the top. supply to continuously form a packed layer.

次に予備還元炉にて、たて型炉から放出される
還元性の排ガスと好ましくは対向接触させる流動
層還元に供するを可とする粉、粒状鉱石は、粒径
0.5〜4mmのMBR鉱石、フイリピン産クロム鉱
石、オーストラリア産マンガン鉱石などをそのま
ままたときに必要ならば常法に従う造粒を経たも
のも用い得る。
Next, in a preliminary reduction furnace, the powder or granular ore that can be subjected to fluidized bed reduction, which is preferably brought into face-to-face contact with the reducing exhaust gas emitted from the vertical furnace, is
MBR ore of 0.5 to 4 mm, chromium ore from the Philippines, manganese ore from Australia, etc. can be used as they are, or if necessary, granulated according to a conventional method.

部分還元鉱は必要により、石灰石、けい石ドロ
マイトさらには蛇絞石などのフラツクスを鉱石の
種別性状に応じて混合するなりまた、上記造粒過
程にて粉、粒状鉱石とフラツクスとの混合粒子と
して予備還元を行うかしてから、予熱下の反応性
ガス気流によりたて型炉内に吹込み装入をし、溶
融還元を行わせる。
Partially reduced ore may be mixed with fluxes such as limestone, silica dolomite, or serpentine according to the type and properties of the ore, or may be mixed with powder, granular ore, and fluxes in the above granulation process. After performing preliminary reduction, the reactant gas is blown into a vertical furnace using a preheated reactive gas stream, and melting and reduction is performed.

加熱下の反応性ガス気流は、上記たて型炉への
吹込みにより、上記予備還元炉内で発生する還元
性の排ガスとの熱交換による顕熱回収で、300〜
800℃の範囲の温度に予熱するか、またはさらに
必要ならば1300℃程度までの温度に通常のガス加
熱炉によつて加熱して用いる。何れにしても反応
性ガスは、たとえば空気のような酸素含有ガス、
もしくは酸素富化空気(酸素含有量50%程度以
下)その他酸素−アルゴン混合気のような上記温
度域にて送風配管に問題を生じることのない酸化
性ガスが利用できる。
The reactive gas stream under heating is blown into the vertical furnace, and the sensible heat is recovered by heat exchange with the reducing exhaust gas generated in the pre-reduction furnace.
It is used by preheating to a temperature in the range of 800°C, or if necessary further heating to a temperature of about 1300°C in a conventional gas heating furnace. In any case, the reactive gas may be, for example, an oxygen-containing gas such as air,
Alternatively, oxygen-enriched air (oxygen content of about 50% or less) or other oxidizing gases that do not cause problems in the ventilation piping in the above temperature range, such as an oxygen-argon mixture, can be used.

この発明では、予備還元鉱の予熱下の反応性ガ
ス気流によるたて型炉内への吹込み装入を少くと
も上段側の羽口群で行い、羽口群を上下3段にわ
たつて配設することにより溶融還元反応を安定に
持続させることができる。
In this invention, the pre-reduced ore is blown and charged into the vertical furnace by a reactive gas stream under preheating at least through the upper tuyere group, and the tuyere groups are arranged in three upper and lower stages. By providing this, the melt-reduction reaction can be maintained stably.

部分還元鉱としては、粉、粒状鉱石のたて型炉
の排ガスで予備還元したものとし、好ましくは流
動層還元によるものが実施上好適である。
The partially reduced ore is one that has been pre-reduced with the exhaust gas of a vertical furnace of powder or granular ore, preferably one that has been reduced by fluidized bed reduction.

第1図にこの発明の実施に適合する、溶融還元
系統を模式に示し、1は粉、粒状鉱石の供給装
置、2は予備還元炉、3は溶融還元に供したたて
型炉であり、4は該炉3の頂部から炭素系固体還
元剤たとえば塊コークスの装入を司り、該炉の内
部に充てん層を形成するための、還元剤供給装
置、また5,5′,5″はこの例でたて型炉3の胴
周下部で上下3段にそれぞれ複数あて配設した羽
口群である。
FIG. 1 schematically shows a smelting reduction system suitable for carrying out the present invention, in which 1 is a supply device for powder and granular ore, 2 is a preliminary reduction furnace, and 3 is a vertical furnace used for smelting reduction. 4 is a reducing agent supply device for charging a carbon-based solid reducing agent, such as lump coke, from the top of the furnace 3 and forming a packed layer inside the furnace; 5, 5', and 5'' are for this. For example, a plurality of tuyere groups are arranged in three upper and lower stages at the lower part of the circumference of the vertical furnace 3.

この羽口群5,5′,5″を通してたとえば空気
を加熱下に吹込むことによりたて型炉3内の充て
ん層に着火し、かくしてたて型炉3内で発生する
還元性の排ガスを、排気口6からその一部を分岐
管6′より予備還元炉2の底部に導き予備還元炉
2内に装入された粉、粒状鉱石を乾燥、加熱し予
備還元させる。かくして予備還元された部分還元
鉱は排鉱口7より破線で示す給鉱管7′を通り、
とくに上段寄りの羽口群5、またはさらに5′を
経て予熱空気と共にたて型炉3内に吹き込み装入
をする。この際給鉱管7′内における部分還元鉱
の移送を容易にするため、分岐管6′内排ガスの
一部を昇圧機8により加圧してこれにより搬送を
助成させることが有利である。
For example, by blowing air under heating through these tuyere groups 5, 5', 5'', the packed layer in the vertical furnace 3 is ignited, and thus the reducing exhaust gas generated in the vertical furnace 3 is ignited. A part of the ore is led from the exhaust port 6 to the bottom of the pre-reducing furnace 2 through a branch pipe 6', and the powder and granular ore charged in the pre-reducing furnace 2 are dried, heated and pre-reduced. The partially reduced ore passes through the ore feed pipe 7' shown by the broken line from the ore outlet 7,
In particular, it is blown into the vertical furnace 3 together with preheated air through the upper tuyere group 5 or further through 5'. At this time, in order to facilitate the transfer of the partially reduced ore within the feed pipe 7', it is advantageous to pressurize a portion of the exhaust gas within the branch pipe 6' with the booster 8, thereby aiding the transfer.

たて型炉3内に吹込む予熱空気は300〜1300℃
にすることが好ましく、ここに必要ならガス加熱
炉を用いまたのぞましくはたて型炉3または予備
還元炉2の排ガスの顕熱を回収するような熱交換
器に上記排ガスを導いて空気を予熱するようにす
れば、操業コストが極めて安価となる。なおたて
型炉3内に部分還元鉱を予熱空気によつて吹込み
を行うのに上段の羽口群5またはさらに5′を用
い、その溶融還元製錬を有利に行わせるため図示
しないがフラツクスをも羽口群5またはさらに
5′から同時吹込みをし、下段の羽口群5″は予熱
空気のみの吹込みとすることがのぞましい。
The preheated air blown into the vertical furnace 3 is 300 to 1300℃
Preferably, if necessary, a gas heating furnace is used, and preferably the exhaust gas is guided to a heat exchanger that recovers the sensible heat of the exhaust gas from the vertical furnace 3 or the preliminary reduction furnace 2. If the air is preheated, operating costs will be extremely low. Note that the upper tuyere group 5 or further 5' is used to blow the partially reduced ore into the vertical furnace 3 using preheated air, although not shown in order to advantageously perform the smelting and reduction smelting. It is preferable that flux be simultaneously blown in from the tuyere group 5 or further 5', and only preheated air be blown into the lower tuyere group 5''.

こうしてたて型炉3内に形成された充てん層が
羽口先端近傍で高炉の羽口先におけると同様なレ
ースウエイを生成して高温領域が形成され、この
領域内に予熱空気と共に吹込まれる部分還元鉱は
直ちに加熱され、容易に溶融し、たて型炉3の下
部に向け滴下する間に還元されて溶融金属と溶融
スラグが生成して製錬が行われる。炉床部に蓄積
した溶融金属を出湯口10より適時炉外に取出
す。溶融スラグについても同様とする。
The packed layer thus formed in the vertical furnace 3 generates a raceway near the tip of the tuyere similar to that at the tip of the tuyere of a blast furnace, forming a high-temperature region, into which a portion is blown together with preheated air. The reduced ore is immediately heated, easily melted, and reduced while dripping toward the lower part of the vertical furnace 3 to produce molten metal and molten slag, thereby performing smelting. The molten metal accumulated in the hearth is taken out of the furnace from the tap 10 at a timely manner. The same applies to molten slag.

なお充てん層の高温領域を形成するレースウエ
イ部周辺は塊状の炭素系還元剤の燃焼雰囲気下に
酸素含有量が低く、すなわち酸素分圧が低くなつ
ているので、たて型炉3内のレースウエイ部で溶
融される部分還元鉱の還元は極めて好適に行われ
る。
Note that the area around the raceway that forms the high temperature region of the packed layer has a low oxygen content under the combustion atmosphere of the lumpy carbon-based reducing agent, that is, the oxygen partial pressure is low. The reduction of the partially reduced ore melted in the way portion is carried out extremely favorably.

この発明において炭素系固体還元剤として塊コ
ークスが好適であるが塊状のチヤーや石炭をもつ
て代え、またそれらを併用することもできる。
In this invention, lump coke is preferred as the carbon-based solid reducing agent, but lump coke or coal may be used instead, or they may be used in combination.

たて型炉3は通常の高炉に比しはるかに低くす
ることができるので操業に至便なほかとくに部分
還元鉱をたて型炉3の胴壁下部の羽口5,5′か
ら炉内に吹込み供給するので高炉におけるように
強度の大きい還元剤は全く必要なく、したがつて
高価な強粘結炭でなくとも弱粘結炭や非粘結炭で
も充分利用でき経済的にも有利である。
The vertical furnace 3 can be built at a much lower temperature than a normal blast furnace, making it convenient for operation. In particular, the partially reduced ore can be introduced into the furnace through the tuyeres 5, 5' at the bottom of the trunk wall of the vertical furnace 3. Because it is fed by injection, there is no need for a strong reducing agent like in blast furnaces, and therefore weak or non-caking coal can be used instead of expensive highly caking coal, making it economically advantageous. be.

また部分還元鉱はレースウエイ部において、加
熱空気中の酸素との間の反応熱によつても加熱さ
れるほか予備還元炉2内の環境温度下にその保有
熱がたて型炉3内に持込まれるので有利である。
In addition, the partially reduced ore is heated in the raceway section by the heat of reaction between it and oxygen in the heated air, and the retained heat is transferred to the vertical furnace 3 under the environmental temperature in the preliminary reduction furnace 2. It is advantageous because it is brought in.

なお予備還元率は鉱石の種類その他に一定しな
いが30〜80%の範囲内のとき最も良い結果を得る
ことができる。
Although the preliminary reduction rate is not constant depending on the type of ore and other factors, the best results can be obtained when it is within the range of 30 to 80%.

この発明において羽口群5,5′,5″を上下3
段に配設したのはこれらの羽口群または羽口5も
しくはさらに5′を経て、予熱空気と共に炉内に
吹込まれる部分還元炉が羽口先端近傍で溶融還元
されるために必要な熱量がもしも不足すると、た
とえ羽口先端近傍で溶融したとしても、炉底部に
向う途中で熱の補給が不充分になつて還元が阻害
されるような炉床の冷え込みにより、円滑に操業
できなくなるおそれをなくするためで、この意味
で部分還元鉱を主として上段側の羽口群5または
さらに羽口群5′より供給し、下段側の羽口群
5″によつて炉床部を高温に加熱して、ここに滴
下する溶融物の還元に必要な熱量を確保すること
がのぞましいわけである。
In this invention, the tuyere groups 5, 5', 5'' are
The partial reduction furnace, which is blown into the furnace together with preheated air through these tuyere groups or tuyere 5 or further tuyere 5', is arranged in stages to generate the amount of heat necessary for melting and reduction near the tip of the tuyere. If it is insufficient, even if it melts near the tip of the tuyere, there is a risk that the hearth will not be able to operate smoothly due to insufficient heat supply on the way to the bottom of the hearth, which will inhibit reduction. In this sense, the partially reduced ore is mainly supplied from the upper tuyere group 5 or further from the tuyere group 5', and the hearth is heated to a high temperature by the lower tuyere group 5''. Therefore, it is desirable to secure the amount of heat necessary for reducing the melt dropped here.

実施例 1 第1図に示した系統方式に従う試験炉で実施し
た。その結果を下記する。
Example 1 The experiment was carried out in a test reactor according to the system system shown in FIG. The results are shown below.

(1) クロム鉱石の銘柄:フイリピン産クロム鉱石 粒径:0.4mm 供給量:402Kg/hr (2) 炭素系固体還元剤の種類、コークス 粒径:20〜40mm 供給量:601Kg/hr (3) たて型炉への送風量:1440Nm3/hr 送風温度:950℃ 送風羽口:上中下各4本計12本(上中段8本に
部分還元鉱を供給) 予備還元率:37% (4) フエロクロム生産量:230Kg/hr 組成:Cr54.9% C6.7% Si5.9% (5) スラグ排出量:333Kg/hr 実施例 2 実施例1と同様な試験結果を下記する。
(1) Brand of chromium ore: Philippine chromium ore Particle size: 0.4mm Supply amount: 402Kg/hr (2) Type of carbon-based solid reducing agent, coke Particle size: 20-40mm Supply amount: 601Kg/hr (3) Air flow rate to vertical furnace: 1440Nm 3 /hr Air blowing temperature: 950℃ Air blowing tuyere: 12 in total (4 each in the upper, middle and lower rows) (Partially reduced ore is supplied to the upper and middle 8 pipes) Preliminary reduction rate: 37% ( 4) Ferrochrome production amount: 230Kg/hr Composition: Cr54.9% C6.7% Si5.9% (5) Slag discharge amount: 333Kg/hr Example 2 The same test results as Example 1 are shown below.

(1) マンガン鉱石の銘柄:オーストラリア産マン
ガン鉱石 粒径:1mm以下 供給量:472Kg/hr (2) 炭素系固体還元剤の種類、コークス 粒径:20〜40mm 供給量:402Kg/hr (3) たて型炉への送風量:1510Nm3/hr 送風温度:900℃ 送風羽口:上中下各4本計12本(上中段8本に
部分還元鉱を供給) 予備還元率:54% (4) フエロマンガン生産量:260Kg/hr 組成:Mn75.8% C7.4% Si1.6% (5) スラグ排出量:202Kg/hr この発明によれば高価な電力の使用を要せずま
た必ずしも強粘結炭でなくとも比較的安価な弱粘
結炭や非粘結炭を用いてこれら炭素質固体還元剤
の充てん層を形成したたて型炉で発生する還元性
の排ガスの極く一部をもつて有効に鉱石の予備還
元に利用できるばかりでなく、たて型炉内におけ
る部分還元鉱の溶融還元をとくに円滑かつ安定に
成就し得るので近年益々エネルギーコストの上昇
が危倶される今後の粉、粒状鉱石の製錬方法に期
待されるところが大きい。
(1) Manganese ore brand: Australian manganese ore particle size: 1mm or less Supply amount: 472Kg/hr (2) Type of carbon-based solid reducing agent, coke Particle size: 20-40mm Supply amount: 402Kg/hr (3) Air flow rate to vertical furnace: 1510Nm 3 /hr Air blowing temperature: 900℃ Air blowing tuyere: 12 in total (4 each in the upper, middle and lower rows) (partially reduced ore is supplied to the upper and middle 8 pipes) Preliminary reduction rate: 54% ( 4) Ferromanganese production: 260Kg/hr Composition: Mn75.8% C7.4% Si1.6% (5) Slag discharge: 202Kg/hr This invention does not require the use of expensive electricity and does not necessarily require high power consumption. A very small portion of the reducing exhaust gas generated in a vertical furnace in which a packed layer of carbonaceous solid reducing agent is formed using relatively inexpensive weakly caking coal or non-caking coal, even if it is not caking coal. Not only can it be used effectively for the preliminary reduction of ores, but also the melting and reduction of partially reduced ores in a vertical furnace can be accomplished particularly smoothly and stably, making it possible to reduce energy costs in the future, which is becoming more and more of a concern in recent years. There are great expectations for the smelting method for powder and granular ores.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の系統方式を示す模式図であ
る。
FIG. 1 is a schematic diagram showing the system system of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 炭素系固体還元剤の充てん層をたて型炉内で
不断に形成する一方、このシヤフト炉の胴壁下部
で上下3段にわたり配設したそれぞれ複数の羽口
群を通して加熱下の反応性ガスの吹込みを行い、
少くとも上段側の羽口群にはたて型炉中で発生し
た還元性ガスの少くとも一部を用いて粉、粒状鉱
石を予備還元した部分還元鉱を導入し吹込みガス
気流に帯同させてたて型炉内に吹込み装入し、下
段側の羽口群からの吹込みガス気流により炉床部
の溶融還元環境を安定化することからなる粉、粒
状鉱石のたて型炉溶融還元方法。
1. While a packed layer of carbon-based solid reducing agent is continuously formed in a vertical furnace, heated reactive gas is passed through a plurality of tuyere groups arranged in three upper and lower stages at the lower part of the shaft wall of this shaft furnace. The infusion of
Partially reduced ore obtained by pre-reducing powder or granular ore using at least a part of the reducing gas generated in the vertical furnace is introduced into at least the upper tuyere group and entrained in the blown gas stream. Vertical furnace melting of powder and granular ore, which consists of blowing and charging into the vertical furnace and stabilizing the melting and reduction environment in the hearth by blowing gas airflow from the tuyere group on the lower stage. Reduction method.
JP57189935A 1982-10-28 1982-10-28 Melt reduction method of powder and granular ore by vertical type furnace Granted JPS5980704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57189935A JPS5980704A (en) 1982-10-28 1982-10-28 Melt reduction method of powder and granular ore by vertical type furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57189935A JPS5980704A (en) 1982-10-28 1982-10-28 Melt reduction method of powder and granular ore by vertical type furnace

Publications (2)

Publication Number Publication Date
JPS5980704A JPS5980704A (en) 1984-05-10
JPH0130888B2 true JPH0130888B2 (en) 1989-06-22

Family

ID=16249667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57189935A Granted JPS5980704A (en) 1982-10-28 1982-10-28 Melt reduction method of powder and granular ore by vertical type furnace

Country Status (1)

Country Link
JP (1) JPS5980704A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0726126B2 (en) * 1986-03-27 1995-03-22 新日本製鐵株式会社 Blast furnace operation method
JPH0772288B2 (en) * 1986-12-22 1995-08-02 川崎製鉄株式会社 Operation method of carbon material packed bed type smelting reduction furnace
AT413821B (en) 2004-12-23 2006-06-15 Voest Alpine Ind Anlagen Process and assembly to convert cold iron particles into molten metal by pneumatic transport to crucible
CN102503112B (en) * 2011-11-02 2013-09-11 山东理工大学 Method for preparing red mud iron reduction furnace slag cellucotton and iron reduction furnace

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5918452A (en) * 1982-07-23 1984-01-30 Sumitomo Metal Ind Ltd Electromagnetic ultrasonic measuring apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5918452A (en) * 1982-07-23 1984-01-30 Sumitomo Metal Ind Ltd Electromagnetic ultrasonic measuring apparatus

Also Published As

Publication number Publication date
JPS5980704A (en) 1984-05-10

Similar Documents

Publication Publication Date Title
CN1036471C (en) A smelting reduction method with high productivity
JPH0360883B2 (en)
US5149363A (en) Process for smelting or melting ferrous or non-ferrous metal from self-reducing agglomerates or metal
CN1940092A (en) Fuse reducing iron-smelting process for rotating furnace
CN114317852A (en) 2500m3Low-carbon iron-making method of blast furnace gas carbon cycle
CZ200975A3 (en) Refining technology of metalline zinc-containing waste in revolving furnace
US3966457A (en) Method of operating a blast furnace using coal auxiliary combustible
KR20010074502A (en) Sustainable steelmaking by intensified direct reduction of iron oxide and solid waste minimisation
JP2002509194A (en) Sustainable steelmaking process by effective direct reduction of iron oxide and solid waste
JPH0130888B2 (en)
US5810905A (en) Process for making pig iron
JP2016536468A (en) Steel production in coke dry fire extinguishing system.
CA2659559C (en) A method for the commercial production of iron
JPS5918452B2 (en) Method for producing molten metal from powdered ore
US3832158A (en) Process for producing metal from metal oxide pellets in a cupola type vessel
JPH0242884B2 (en)
JPS5980703A (en) Melt reduction method of powder and granular ore by vertical type furnace
JPS62227022A (en) Preheating and reducing device for iron ore
JPH0726161B2 (en) Method for recovering valuable metals from by-products during stainless steel production
JP2502976B2 (en) Iron ore preliminary reduction device
JPS59110711A (en) Method for cooling furnace wall of shaft type fusion reduction furnace
JPS59110712A (en) Reduction of powdery granular ore
CN116640893A (en) Direct reduction-side blowing furnace smelting-separating iron-making method adopting hydrogen-rich coal-based rotary kiln
CN116426708A (en) Smelting-separating iron-smelting method using coal-based shaft furnace direct reduction-side blowing furnace
JPH01111437A (en) Coal ash-treating oven and operation thereof