JPS5980704A - Melt reduction method of powder and granular ore by vertical type furnace - Google Patents
Melt reduction method of powder and granular ore by vertical type furnaceInfo
- Publication number
- JPS5980704A JPS5980704A JP57189935A JP18993582A JPS5980704A JP S5980704 A JPS5980704 A JP S5980704A JP 57189935 A JP57189935 A JP 57189935A JP 18993582 A JP18993582 A JP 18993582A JP S5980704 A JPS5980704 A JP S5980704A
- Authority
- JP
- Japan
- Prior art keywords
- furnace
- ore
- reduction
- powder
- blown
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B13/00—Making spongy iron or liquid steel, by direct processes
- C21B13/0006—Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state
- C21B13/0013—Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state introduction of iron oxide into a bath of molten iron containing a carbon reductant
- C21B13/002—Reduction of iron ores by passing through a heated column of carbon
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B2100/00—Handling of exhaust gases produced during the manufacture of iron or steel
- C21B2100/60—Process control or energy utilisation in the manufacture of iron or steel
- C21B2100/66—Heat exchange
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacture Of Iron (AREA)
- Vertical, Hearth, Or Arc Furnaces (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は、粉9粒状鉱石のたで型炉溶融還元方法に関
し、とくに溶融還元により電炉で発生する還元性の排ガ
スを粉1粒状鉱石の予備還元に、有利適切に活用するこ
と、および該予備還元を経た部分還元鉱のたて型炉内に
おける溶融還元をとくに効果的に成就させることについ
ての開発成果を開示するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for smelting and reducing ore in the form of powder and nine granules in an oven type furnace, and in particular, it is advantageous and appropriate to use reducing exhaust gas generated in an electric furnace by melting reduction for the preliminary reduction of one ore in the form of powder and one granule. The present invention discloses the development results for particularly effectively accomplishing the smelting reduction of partially reduced ore that has undergone preliminary reduction in a vertical furnace.
近年、鉄鉱石をはじめ各種の金属酸化物より主として成
る原料鉱石は、塊状鉱石よりはむしろ、粉2粒状鉱石の
方が多くなりつつあり、今後もますますその比率は増加
傾向にあるとみられる。粉。In recent years, the raw material ores mainly composed of various metal oxides, including iron ore, have become more powdery and granular ores rather than lumpy ores, and the proportion is expected to continue to increase in the future. powder.
粒状鉱石による製錬方法としては、流動層を用いて粉9
粒状鉱石を予備還元しこの予備還元鉱を電炉、転炉、そ
の池の溶解炉で溶融還元する方式が一般的である。As a smelting method using granular ore, a fluidized bed is used to smelt powder 9.
A common method is to pre-reduce granular ore and melt and reduce the pre-reduced ore in an electric furnace, converter, or melting furnace in a pond.
この場合予備還元鉱にバインダーの添加で塊成化をしそ
の塊成物を溶解炉で溶融還元する方式が多い。しかしこ
のような方式によれば塊成化のための資材、処理費、処
理エネルギーなどを必要とするばかりでなく、塊成化を
したのち焼成を必要とする場合にはその際に焼成炉から
排出されるガス中のNOx、SOxおよびダストなどを
処理するための費用が多大に上ぼるところにも難点を伴
う。In this case, there are many methods in which the pre-reduced ore is agglomerated by adding a binder and the agglomerated product is melted and reduced in a melting furnace. However, this method not only requires materials for agglomeration, processing costs, processing energy, etc., but also requires a large amount of energy from the kiln when firing is required after agglomeration. Another drawback is that the cost for treating NOx, SOx, dust, etc. in the emitted gas increases considerably.
また上記方式の池に、アーク炉やプラズマまたは純酸素
を利用する炉を用いて、予備還元鉱を塊成ないしは焼成
を行わずに溶融還元する方式も企てられてはいるが、ア
ーク炉を用いる方式によれば電力消費が莫大であるばか
りでなく立地条件にも制約があり、またプラズマを利用
する炉を用いる方式も電力消費が甚しく現在のところ工
業的規模での適用が困難であり、さらに純酸素を利用す
る炉を用いる方式によれば高温雰囲気を得ることは容易
であっても還元雰囲気の維持が難しくまた酸素使用量が
嵩むなど、何れも技術的に解決を要する問題をはらんで
いる。In addition, a method has been proposed in which the pre-reduced ore is melted and reduced without agglomeration or calcination using an arc furnace or a furnace that uses plasma or pure oxygen in the pond of the above method. The method used not only consumes a huge amount of power, but also has restrictions on location.Also, the method using a furnace that uses plasma consumes so much power that it is currently difficult to apply on an industrial scale. Furthermore, although it is easy to obtain a high-temperature atmosphere using a furnace that uses pure oxygen, it is difficult to maintain a reducing atmosphere and the amount of oxygen used increases, all of which have problems that require technical solutions. Random.
ところで微砕鉱石を予備還元した後、この予備還元鉱を
、石炭・酸素バーナーによる加熱により溶融還元するこ
とは、古く特公昭34−2103号公報に開示され、ま
たとくに予備還元鉱の還元率・を特定するとともにその
炭素含有量を高めて酸素導入のみで溶融還元する改良方
法についても発明者の一部がさきに、特公昭5 ’6−
44925号公報にて提案をしたがこれらは予備還元鉱
を溶融還元するのに燃料および還元剤として前者で粉状
石炭また後者は還元鉄付着炭素を使用しその燃焼のため
に助燃剤として常温の酸素を用いている。By the way, after pre-reducing finely crushed ore, melting and reducing the pre-reduced ore by heating with a coal/oxygen burner was disclosed long ago in Japanese Patent Publication No. 34-2103. Some of the inventors have previously proposed an improved method for identifying and reducing the carbon content by melting and reducing it only by introducing oxygen.
The proposal was made in Publication No. 44925, but the former uses powdered coal as a fuel and reducing agent to melt and reduce the pre-reduced ore, and the latter uses reduced iron-adhered carbon, and uses room temperature as a combustion aid for combustion. It uses oxygen.
これに対し発明者らはさらに進んで、炭素質固体還元剤
の充てん層をたて型炉内部で不断に形成する一方、電炉
の下部胴壁に上下2段にわたり配設したそれぞれ複数の
羽口群を通して、電炉から排出される還元性の排ガスを
用いて粉2粒状鉱石を予備還元した部分還元鉱をは、必
要によりフラックスを加えて800〜1800°Cの高
温の空気または酸素富化空気をもってする気流搬送下に
たて型炉内に吹込んで、上記部分還元鉱を溶融還元する
ことに関し特願昭56−63294号の発明をさきに提
案した。In response to this, the inventors went further and continuously formed a packed layer of carbonaceous solid reducing agent inside the vertical furnace, while at the same time forming a plurality of tuyeres in two stages, upper and lower, on the lower body wall of the electric furnace. Partially reduced ore, which is obtained by pre-reducing powder ore and granular ore using reducing exhaust gas discharged from an electric furnace, is heated with high-temperature air at 800 to 1800°C or oxygen-enriched air, adding flux if necessary. The invention of Japanese Patent Application No. 56-63294 was previously proposed for melting and reducing the above partially reduced ore by blowing it into a vertical furnace under air flow conveyance.
これについては、工業的規模における開発研究をさらに
重ねつつあるが、この段階で上記の部分還元鉱の気流搬
送による吹込み実験におし%て、該気流の吹込み流量を
増すことにより、より低温の酸素含有気体または酸化性
気体を用pzでも、たて型炉排ガス量の増加で、予備還
元炉にお番する所要熱量が十分に充足され得ること、こ
\に送風温度の低下により、蓄熱型熱風炉の如き大規模
施設の附帯を必要とせずしてたて型炉または予備還元炉
排ガスとの熱交換によるような顕熱回収利用の如き簡便
手段で代替し得るので、熱風炉燃料も不要となし得るこ
と、さらには、たて型炉の排ガスの増加分はそのは!全
量が、副生ガスとして昇り途に有利に活用され得ること
などの有用性が知見され、従ってたて型炉へ吹込む反応
性ガス温度域番まむしろ800°C程度まで低温側に拡
張すること力(好ましいことに着目し、進んで検討を加
えたところ、羽口群の設置段数を8段以上の多段とする
ことにより、部分還元鉱が、難還元性または離溶解性で
あるような場合も含めて、より円滑なたて型炉における
溶融還元を有利に成就し得ることを究明した。Regarding this, further development research is being carried out on an industrial scale, but at this stage we are conducting the above-mentioned blowing experiment using airflow conveyance of partially reduced ore, and by increasing the blowing flow rate of the airflow, Even when low-temperature oxygen-containing gas or oxidizing gas is used in the PZ, the required amount of heat for the preliminary reduction furnace can be sufficiently satisfied by increasing the amount of exhaust gas from the vertical furnace. Hot blast stove fuel can be replaced by simple means such as sensible heat recovery and utilization through heat exchange with vertical furnace or pre-reduction furnace exhaust gas without requiring the addition of large-scale facilities such as regenerative hot blast stoves. What's more, the increase in exhaust gas from vertical furnaces can be eliminated! It has been found that the entire amount can be used advantageously as a by-product gas on the way up, and therefore the temperature range of the reactive gas injected into the vertical furnace is expanded to the lower temperature side, to about 800°C. (I focused on the favorable situation and proceeded to consider it.) By setting the number of tuyere groups to 8 or more, it is possible to prevent partially reduced ore from being reducible or dissolvable. It has been found that smoother smelting reduction can be achieved advantageously in a vertical furnace, including in cases where
すなわちこの発明は、粉1粒状鉱石の予備還元鉱を、炭
素系固体還元剤の充填層が形成されたたて型炉の胴壁下
部でそれぞれ複数多段にわたり配設した羽口を通して必
要により加えたフラックスとともに加熱下の反応性ガス
気流によりたて型炉内に吹込装入して溶融還元し、こ−
にたて型炉で溶融還元により発生する還元性の排ガスを
粉1粒状鉱石の予備還元に利用することで、止揚した従
来方式の粉2粒状鉱石の製錬方法における問題点の適切
な克服を成就したものである。That is, in this invention, the pre-reduced ore of one powder ore is added as necessary through tuyeres arranged in multiple stages at the lower part of the barrel wall of a vertical furnace in which a packed bed of carbon-based solid reducing agent is formed. The flux is blown into a vertical furnace using a heated reactive gas stream and melted and reduced.
By using the reducing exhaust gas generated by smelting reduction in a vertical furnace for preliminary reduction of one-grain ore powder, we can appropriately overcome the problems in the conventional method of smelting two-grain ore powder. It has been accomplished.
この発明において予熱下の反応性ガス気流にて搬送し、
羽口群からたて型炉内に吹込み装入を行う装入物は、羽
口先端部周辺でたて型炉内部に形成された炭素系固体還
元剤の充てん層の高熱領域中を滴下する間に溶融還元さ
れ炉床に蓄溜するので適時にたて型炉から取り出せばよ
い。In this invention, conveying by a reactive gas stream under preheating,
The charge that is blown into the vertical furnace from the tuyere group drips into the high-temperature region of the packed layer of carbon-based solid reducing agent formed inside the vertical furnace around the tip of the tuyere. During this process, it is melted down and accumulated in the hearth, so it can be removed from the vertical furnace at the appropriate time.
この発明において、炭素系固体還元剤としてとくに好ま
しくは粒径25〜75酩程度の塊コークスを可とするが
、石炭塊やチャーなどもまた利用でき、何れもたて型炉
内にその頂部から連続供給して、充てん層を不断に形成
させる。In this invention, lump coke with a particle size of about 25 to 75 mm is particularly preferably used as the carbon-based solid reducing agent, but coal lumps, char, etc. can also be used. It is continuously supplied to continuously form a filled layer.
次に予備還元炉にて、たで型炉から放出される還元性の
排ガスと好ましくは対向接触させる流動層還元に供する
を町とする粉2粒状鉱石は、粒径0.5〜4翳のMBR
鉱石、フィリピン産クロム鉱石、オーストラリア産マン
ガン鉱石などをそのまままたときに必要ならば常法に従
う造粒を経たものも用い得る。Next, in a pre-reduction furnace, the powdery two-granular ore is subjected to fluidized bed reduction, preferably in face-to-face contact with the reducing exhaust gas emitted from the furnace. M.B.R.
Ores such as chromium ore from the Philippines and manganese ore from Australia can be used as they are, or if necessary, those that have been granulated according to conventional methods can be used.
部分還元鉱は必要により、石灰石、けい石ドロマイトさ
らには蛇紋岩などのフラックスを鉱石の種別細状に応じ
て混合するなりまた、上記造粒過程にて粉2粒状鉱石と
7ラツクスとの混合粒子として予備還元を行うかしてか
ら、予熱下の反応性ガス気流によりたて型炉内に吹込み
装入をし、溶融還元を行わせる。Partially reduced ore may be mixed with flux such as limestone, silica dolomite, or serpentine depending on the type and shape of the ore, or mixed particles of 2 powder ore and 7 lux in the above granulation process. After pre-reduction is performed as follows, the reactant gas is blown into a vertical furnace with a preheated reactive gas stream and melted and reduced.
加熱下の反応性ガス気流は、上記たて型炉への吹込みに
より、上記予備還元炉内で発生する還元性の排ガスとの
熱交換による顕熱回収で、800〜800°Cの範囲の
温度に予熱するか、またはさらに必要ならば1800°
C程度までの湿度に通常のガス加熱炉によって加熱して
用いる。何れにしても反応性ガスは、たとえば空気のよ
うな酸素含有ガス、もしくは酸素富化空気(酸素含有量
50%程度以下)その他酸素−アルゴン混合気のような
上記温度域にて送風配管に問題を生じることのない酸化
性ガスが利用できる。The reactive gas stream under heating is blown into the vertical furnace, and recovers sensible heat by heat exchange with the reducing exhaust gas generated in the pre-reduction furnace. Preheat to temperature or further 1800° if required
It is used by heating it in a normal gas heating furnace to a humidity of about C. In any case, reactive gases, such as oxygen-containing gases such as air, oxygen-enriched air (oxygen content of less than 50%), and other oxygen-argon mixtures, pose problems for ventilation piping in the above temperature range. Oxidizing gases that do not produce oxidizing gases can be used.
この発明では、予備還元鉱の予熱下の反応性ガス気流に
よるたて型炉内への吹込み装入を少くとも上段側の羽目
群で行い、羽目群を上下多段にわたって配設することに
より溶融還元反応を安定に持続させることができる。In this invention, pre-reduced ore is blown into the vertical furnace using a reactive gas stream while preheating is performed at least in the upper row group, and the row groups are arranged in multiple upper and lower stages to melt the ore. The reduction reaction can be maintained stably.
部分還元鉱としては、粉9粒状鉱石のたて型炉の排ガス
で予備還元したものとし、好ましくは流動層還元による
ものが実施上好適である。The partially reduced ore is one that has been pre-reduced with the exhaust gas of a vertical furnace of powdered nine-granule ore, and preferably one that has been reduced in a fluidized bed is suitable for practical use.
第1図にこの発明の実施に適合する、溶融還元系統を模
式に示し、1は粉1粒状鉱石の供給装置、2は予備還元
炉、8は溶融還元に供したたて型炉であり、4は電炉3
の頂部から炭素質固体還元剤たとえば塊コークスの装入
を司り、電炉の内部に充てん層を形成するための、還元
剤供給装置、また5 、 5’ 、 5’はこの例でた
て型炉8の81周下部で上下8段にそれぞれ複数あて配
設した羽口群である。FIG. 1 schematically shows a smelting reduction system suitable for carrying out the present invention, in which 1 is a supply device for powder and granular ore, 2 is a preliminary reduction furnace, and 8 is a vertical furnace used for smelting reduction. 4 is electric furnace 3
5, 5', and 5' are vertical furnaces in this example. This is a group of tuyere in which multiple tuyeres are arranged in eight upper and lower stages at the bottom of the 81st circumference of 8.
この羽目群5 s 5’ 、5’を通してたとえば空気
を加熱下に吹込むことによりたで型炉8内の充てん層に
着火し、かくしてたて型炉3中で発生する還元性の排ガ
スを、排気口6からその一部を分岐管6′より予備還元
炉2の底部に導き予備還元炉2内に装入された粉2粒状
鉱石を乾燥、加熱し予備還元させる。かくして予備還元
された部分還元鉱は排鉱ロアより破線で示す給鉱If7
′を通り、とくに上段寄りの羽目群5、またはさらに5
′を経て予熱空気と共にたで型炉8内に吹き込み装入を
する。この際給鉱管7′内における部分還元鉱の移送を
容易にするため、分岐管6′内排ガスの一部を昇圧機8
により加圧してこれにより搬送を助成させることが有利
である。By blowing, for example, air under heating through this panel group 5s 5', 5', the packed layer in the vertical furnace 8 is ignited, and the reducing exhaust gas generated in the vertical furnace 3 is removed. A part of the ore is led from the exhaust port 6 to the bottom of the pre-reducing furnace 2 through a branch pipe 6', and the powder and two granular ores charged into the pre-reducing furnace 2 are dried, heated and pre-reduced. The partially reduced ore thus preliminarily reduced is fed from the ore discharge lower to the feed ore If7 shown by the broken line.
′, especially the upper row of feathers group 5, or further 5
', and is blown into the mold furnace 8 together with preheated air. At this time, in order to facilitate the transfer of the partially reduced ore in the feed pipe 7', a part of the exhaust gas in the branch pipe 6' is transferred to the booster 8.
It is advantageous to pressurize and thereby assist the transport.
たて型炉8内に吹込む予熱空気は800〜1800°C
にすることが好ましく、ここに必要ならガス加熱炉を用
いまたのぞましくはたて型炉8または予備還元炉2の排
ガスの顕熱を回収するような熱交換器に上記排ガスを導
いて空気を予熱するようにすれば、操業コストが極めて
安価となる。The preheated air blown into the vertical furnace 8 is 800 to 1800°C.
Preferably, if necessary, a gas heating furnace is used and the exhaust gas is preferably introduced into a heat exchanger that recovers the sensible heat of the exhaust gas from the vertical furnace 8 or the pre-reduction furnace 2. If the air is preheated, operating costs will be extremely low.
なおたて型炉a内に部分還元鉱を予熱空気によって吹込
みを行うのに上段の羽目群5またはさらに5′を用い、
その溶融還元製錬を有利に行わせるため図示しないが7
ラツクスをも羽口群5またはさらに5′から同時吹込み
をし、下段の羽目群5′は予熱空気のみの吹込みとする
ことがのぞましい。In order to blow partially reduced ore into the vertical furnace a using preheated air, the upper panel group 5 or further 5' is used,
Although not shown in the figure, 7
It is preferable that lux is also simultaneously blown in from the tuyere group 5 or further 5', and only preheated air is blown into the lower tuyere group 5'.
こうしてたて型炉8内に形成された充てん層が羽口先端
近傍で高炉の羽口先におけると同様なレースウェイを生
成して高温領域が形成され、この領域内に予熱空気と共
に吹込まれる部分還元鉱は直ちに加熱され、容易に溶融
し、たて型炉3の下部に向は滴下する間に還元されて溶
融金属と溶融スラグが生成して製錬が行われる。炉床部
に蓄溜した溶融金属を出湯口lOより適時炉外に取出す
。The packed layer thus formed in the vertical furnace 8 generates a raceway near the tip of the tuyere similar to that at the tip of the tuyere of a blast furnace, forming a high-temperature region, into which the preheated air is blown. The reduced ore is immediately heated and easily melted, and while dropping into the lower part of the vertical furnace 3, it is reduced to produce molten metal and molten slag, and smelting is performed. The molten metal accumulated in the hearth is taken out of the furnace from the tap lO in a timely manner.
溶融スラグについても同様とする。The same applies to molten slag.
なお充てん層の高温領域を形成するレースウェイ部周辺
は塊状の炭素系還元剤の燃焼雰囲気下に・酸素含有量が
低く、すなわち酸素分圧が低くなっているので、たて型
炉8内のレースウェイ部で溶融される部分還元鉱の還元
は極めて好適に行われる。The area around the raceway that forms the high-temperature region of the packed layer is in the combustion atmosphere of the lumpy carbon-based reducing agent, and the oxygen content is low, that is, the oxygen partial pressure is low. The reduction of the partially reduced ore melted in the raceway section is carried out very favorably.
この発明において炭素系固体還元剤として塊コークスが
好適であるが塊状のチャーや石炭をもって代え、またそ
れらを併用することもできる。In this invention, lump coke is suitable as the carbon-based solid reducing agent, but lump coke or coal may be used instead, or they may be used in combination.
たで型炉8は通常の高炉に比しはるかに低くすることが
できるので操業に至便なほかとくに部分還元鉱をたて型
炉3の胴壁下部の羽口5,5′から炉内に吹込み供給す
るので高炉におけるように強度の大きい還元剤は全く必
要なく、シたがって高価な強粘結炭でなくとも弱粘結炭
や非粘結炭でも充分利用でき経済的にも有利である。The vertical furnace 8 can be built at a much lower temperature than a normal blast furnace, which makes it convenient for operation.In particular, the partially reduced ore can be introduced into the furnace through the tuyere 5, 5' at the bottom of the trunk wall of the vertical furnace 3. Since it is supplied by injection, there is no need for a strong reducing agent as in blast furnaces, and therefore weak or non-caking coal can be used instead of expensive highly caking coal, making it economically advantageous. be.
また部分還元鉱はレースウェイ部において、加熱空気中
の酸素との間の反応熱によっても加熱されるほか予備還
元炉2内の環境温度下にその保有熱がたて型炉8内に持
込まれるので有利である。In addition, the partially reduced ore is heated in the raceway section by the heat of reaction between it and oxygen in the heated air, and the retained heat is brought into the vertical furnace 8 under the environmental temperature in the preliminary reduction furnace 2. Therefore, it is advantageous.
なお予備還元率は鉱石の種類その他に一定しないが80
〜80%の範囲内のとき最も良い結果を得ることができ
る。Although the preliminary return rate is not constant depending on the type of ore etc., it is 80
The best results can be obtained within the range of ~80%.
この発明において羽目群5 、5′、 5’を上下8段
に配設したのはこれらの羽目群または羽口5もしくはさ
らに5′を経て、予熱空気と共に炉内に吹込まれる部分
還元炉が羽口先端近傍で溶融還元されるために必要な熱
量がもしも不足すると、たとえ羽口先端近傍で溶融した
としても、炉底部Gこ向う途中で熱の補給が不充分にな
って還元が阻害されるような炉床の冷え込みにより、円
滑に操業できなくなるおそれをなくするためで、この意
味で部分還元鉱を主として上段側の羽目群5またはさら
に5′より供給し、下段側の羽目群5′によって炉床部
を高温に加熱して、ここに滴下する溶融物の還元に必要
な熱量を確保することがのぞましいわけである。In this invention, the tuyere groups 5, 5', and 5' are arranged in eight upper and lower stages because the partial reduction furnace is blown into the furnace together with preheated air through these tuyere groups or the tuyeres 5 or 5'. If the amount of heat required for melting and reduction near the tuyere tip is insufficient, even if melting occurs near the tuyere tip, there will be insufficient heat replenishment on the way to the bottom of the furnace, inhibiting reduction. This is to eliminate the risk of not being able to operate smoothly due to cooling of the hearth, and in this sense, partially reduced ore is mainly supplied from the upper side group 5 or further 5', and the partially reduced ore is supplied from the lower side group 5'. Therefore, it is desirable to heat the hearth part to a high temperature to ensure the amount of heat necessary for reducing the molten material dripping there.
実施例1
第1図に示した系統方式に従う試験炉で実施した。その
結果を下記する。Example 1 The experiment was carried out in a test reactor according to the system system shown in FIG. The results are shown below.
1)クロム鉱石の銘柄:フィリピン産クロム鉱石粒径:
0.4態
供給量:40219/hr
2)炭素系固体還元剤の種類、コークス粒径:20〜4
011+11
供給量:6oxIc9/hr
8)たて型炉ヘノ送風量: 1440 N111”/h
r送風温度:950”C
送風羽口:上中下各4本計12本
(上中段8本に部分還元鉱を供給)
予備還元率:87%
4)7xoりoム生産量: 230 J9/hr組成:
Gr54.9%C6,7%Si5.9%5ンスラグ排
出量:aaakg/hr
実施例2
実施例1と同様な試験結果を下記する。1) Brand of chromium ore: Particle size of chromium ore from the Philippines:
0.4 state supply amount: 40219/hr 2) Type of carbon-based solid reducing agent, coke particle size: 20-4
011+11 Supply amount: 6oxIc9/hr 8) Vertical furnace air flow rate: 1440 N111”/h
r Blow temperature: 950”C Blow tuyere: 4 each for upper, middle and lower tuyere, 12 in total (partially reduced ore is supplied to 8 upper and middle rows) Preliminary reduction rate: 87% 4) 7xorium production amount: 230 J9/ hr composition:
Gr54.9%C6,7%Si5.9%5 Slag discharge amount: aaakg/hr Example 2 The same test results as Example 1 are shown below.
1)マンガン鉱石の銘柄:オーストラリア産マンガン鉱
石粒径:11111以下
供給量: 472kg/hr
2)炭素系固体還元剤の種類、コークス粒径:20〜4
0鴎
供給量: 4021c9/hr
8)たて型炉への送風4171510 Nm’/ hr
送風温度二〇00℃
送風羽口:上中下各4本計12本
(上中段8本に部分還元鉱を供給)
予備還元率=54%
4)フェロマンガン生産量:2601c9/hr組成:
)4n75.8%C7,4%SiX、6%5)スラグ
排出量:22O2Ic/hrこの発明によれば高価な電
力の使用を要せずまた必ずしも強粘結炭でなくとも比較
的安価な弱粘結炭や非粘結炭を用いてこれら炭素質固体
還元剤の充てん層を形成したたて型炉で発生する還元性
の排ガスの極く一部をもって有効に鉱石の予備還元に利
用できるばかりでなく、たて型炉内における部分還元鉱
の溶融還元をとくに円滑かつ安定に成就し得るので近年
益々エネルギーコストの上昇が危惧される今後の粉1粒
状鉱石の製錬方法に期待されるところが大きい。1) Manganese ore brand: Australian manganese ore particle size: 11111 or less Supply amount: 472 kg/hr 2) Type of carbon-based solid reducing agent, coke particle size: 20-4
0 Seagull supply amount: 4021c9/hr 8) Air blowing to vertical furnace 4171510 Nm'/hr
Blow temperature: 2000℃ Blow tuyeres: 4 each for upper, middle and lower tuyere, total 12 (Partially reduced ore is supplied to 8 upper and middle rows) Preliminary reduction rate = 54% 4) Ferromanganese production amount: 2601c9/hr Composition:
) 4n75.8%C7,4%SiX, 6%5) Slag discharge amount: 22O2Ic/hr According to this invention, it is not necessary to use expensive electricity, and it is not necessary to use strong coking coal, but relatively cheap weak coal. Only a small portion of the reducing exhaust gas generated in a vertical furnace in which a packed layer of carbonaceous solid reducing agent is formed using coking coal or non-caking coal can be effectively used for preliminary reduction of ore. Instead, it is possible to achieve particularly smooth and stable smelting reduction of partially reduced ore in a vertical furnace, so there are great expectations for the future method of smelting single-grain ore, which is concerned about rising energy costs in recent years. .
第1図はこの発明の系統方式を示す模式図である。 特許出願人 川崎製鉄株式会社 第7図 第1頁の続き 0発 明 者 藤田勉 千葉市川崎町1番地川崎製鉄株 式会社千葉製鉄所内 0発 明 者 浜田俊二 千葉市川崎町1番地川崎製鉄株 式会社千葉製鉄所内 37− FIG. 1 is a schematic diagram showing the system system of the present invention. Patent applicant: Kawasaki Steel Corporation Figure 7 Continuation of page 1 0 shots clear person Tsutomu Fujita Kawasaki Steel Co., Ltd., 1 Kawasakicho, Chiba City Ceremony company Chiba Works 0 shots by Shunji Hamada Kawasaki Steel Co., Ltd., 1 Kawasakicho, Chiba City Ceremony company Chiba Works 37-
Claims (1)
形成する一方、このシャフト炉の胴壁下部で上下多段に
わたり配設したそれぞれ複数の羽目群を通して加熱下の
反応性ガスの吹込みを行い、少くとも上段側の羽口群に
はたで型炉中で発生した還元性ガスの少くとも1部を用
いて粉2粒状鉱石を予備還元した部分還元鉱を導入し吹
込みガス気流に帯同させてたて型炉内に吹込み装入し、
下段側の羽口群からの吹込みガス気流により炉床部の溶
融還元環境を安定化することからなる粉1粒状鉱石のた
で型炉溶融還元方法。 区 加熱下の反応性ガスの吹込みが、たて型炉の胴壁下
部で上下8段以上にわたって配設したそれぞれ複数の羽
目群を通すものであるl記載の方法。[Scope of Claims] L A packed layer of a carbon-based solid reducing agent is continuously formed in a vertical furnace, while being heated through a plurality of groups of panels arranged in multiple stages in the upper and lower parts of the lower part of the shaft wall of the shaft furnace. Partially reduced ore obtained by pre-reducing two granular ores by injecting a reactive gas of is introduced and charged into the vertical furnace along with the blown gas airflow.
A method for melting and reducing powder and granular ore in a furnace, which comprises stabilizing the melting and reducing environment in the hearth by blowing gas airflow from a group of tuyeres on the lower stage. 2. The method according to item 1, wherein the heated reactive gas is blown through a plurality of groups of panels arranged in eight or more upper and lower stages at the lower part of the trunk wall of the vertical furnace.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57189935A JPS5980704A (en) | 1982-10-28 | 1982-10-28 | Melt reduction method of powder and granular ore by vertical type furnace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57189935A JPS5980704A (en) | 1982-10-28 | 1982-10-28 | Melt reduction method of powder and granular ore by vertical type furnace |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5980704A true JPS5980704A (en) | 1984-05-10 |
JPH0130888B2 JPH0130888B2 (en) | 1989-06-22 |
Family
ID=16249667
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57189935A Granted JPS5980704A (en) | 1982-10-28 | 1982-10-28 | Melt reduction method of powder and granular ore by vertical type furnace |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5980704A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62224606A (en) * | 1986-03-27 | 1987-10-02 | Nippon Steel Corp | Operating method for blast furnace |
JPS63157807A (en) * | 1986-12-22 | 1988-06-30 | Kawasaki Steel Corp | Operation of smelting reduction furnace with carbonic material packing layer |
JP2008525632A (en) * | 2004-12-23 | 2008-07-17 | シーメンス・ファオアーイー・メタルズ・テクノロジーズ・ゲーエムベーハー・ウント・コ | Process and apparatus for producing metal and / or primary metal products |
CN102503112A (en) * | 2011-11-02 | 2012-06-20 | 山东理工大学 | Method for preparing red mud iron reduction furnace slag cellucotton and iron reduction furnace |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5918452A (en) * | 1982-07-23 | 1984-01-30 | Sumitomo Metal Ind Ltd | Electromagnetic ultrasonic measuring apparatus |
-
1982
- 1982-10-28 JP JP57189935A patent/JPS5980704A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5918452A (en) * | 1982-07-23 | 1984-01-30 | Sumitomo Metal Ind Ltd | Electromagnetic ultrasonic measuring apparatus |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62224606A (en) * | 1986-03-27 | 1987-10-02 | Nippon Steel Corp | Operating method for blast furnace |
JPS63157807A (en) * | 1986-12-22 | 1988-06-30 | Kawasaki Steel Corp | Operation of smelting reduction furnace with carbonic material packing layer |
JP2008525632A (en) * | 2004-12-23 | 2008-07-17 | シーメンス・ファオアーイー・メタルズ・テクノロジーズ・ゲーエムベーハー・ウント・コ | Process and apparatus for producing metal and / or primary metal products |
US8236090B2 (en) | 2004-12-23 | 2012-08-07 | Siemens Vai Metals Technologies Gmbh | Process and apparatus for producing metals and/or primary metal products |
US8361189B2 (en) | 2004-12-23 | 2013-01-29 | Siemens Vai Metals Technologies Gmbh | Process and apparatus for producing metals and/or primary metal products |
CN102503112A (en) * | 2011-11-02 | 2012-06-20 | 山东理工大学 | Method for preparing red mud iron reduction furnace slag cellucotton and iron reduction furnace |
Also Published As
Publication number | Publication date |
---|---|
JPH0130888B2 (en) | 1989-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101445848B (en) | Process and device for continuous steelmaking from ferriferous material | |
CN1036471C (en) | A smelting reduction method with high productivity | |
CN110438277B (en) | Cyclone flash reduction direct steelmaking system and process | |
CN101724726B (en) | Method and device for ironmaking by smelting | |
CN102409124A (en) | Continued ironmaking device based on melting reduction | |
CN105039627A (en) | Coal-based direct reduction-melt separation furnace smelting reduction iron-making process using external heating mode | |
CN1940092A (en) | Fuse reducing iron-smelting process for rotating furnace | |
US5149363A (en) | Process for smelting or melting ferrous or non-ferrous metal from self-reducing agglomerates or metal | |
CN114317852A (en) | 2500m3Low-carbon iron-making method of blast furnace gas carbon cycle | |
CN101956038A (en) | Process method and device for performing lower-carbon ironmaking and steelmaking through melting reduction of iron ore | |
JP2002509194A (en) | Sustainable steelmaking process by effective direct reduction of iron oxide and solid waste | |
WO1999063119A1 (en) | Sustainable steelmaking by intensified direct reduction of iron oxide and solid waste minimisation | |
CN101956035A (en) | Iron-containing material slag bath smelting reduction steelmaking technical method and device | |
CN102127610B (en) | Ironmaking equipment and process for direct smelting reduction of iron ore | |
JPS5980704A (en) | Melt reduction method of powder and granular ore by vertical type furnace | |
CN110205431A (en) | Rotary kiln coal-based direct reduction oxygenation is molten to divide furnace short route molten iron making processes | |
CN110184405A (en) | A kind of method and device thereof using acid carbonaceous metallized pellet production molten iron | |
CN105349725A (en) | Spontaneous combustion reduction method iron-smelting method and smelting device | |
JPS5918452B2 (en) | Method for producing molten metal from powdered ore | |
WO2006135984A1 (en) | Production of iron | |
JP2004176170A (en) | Method for producing molten iron | |
CN114250329A (en) | Iron-making process with external convolution zone | |
Dutta et al. | Smelting Reduction Processes | |
CN101280348A (en) | High-temperature coal gas blast furnace iron-smelting process | |
JPS5980705A (en) | Melt reduction method of powder and granular ore by vertical type furnace |