JPS5918452A - Electromagnetic ultrasonic measuring apparatus - Google Patents
Electromagnetic ultrasonic measuring apparatusInfo
- Publication number
- JPS5918452A JPS5918452A JP57127675A JP12767582A JPS5918452A JP S5918452 A JPS5918452 A JP S5918452A JP 57127675 A JP57127675 A JP 57127675A JP 12767582 A JP12767582 A JP 12767582A JP S5918452 A JPS5918452 A JP S5918452A
- Authority
- JP
- Japan
- Prior art keywords
- coil
- electromagnetic ultrasonic
- magnetic pole
- transmitting
- ultrasonic measuring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/22—Details, e.g. general constructional or apparatus details
- G01N29/24—Probes
- G01N29/2412—Probes using the magnetostrictive properties of the material to be examined, e.g. electromagnetic acoustic transducers [EMAT]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/02—Indexing codes associated with the analysed material
- G01N2291/028—Material parameters
- G01N2291/02854—Length, thickness
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/04—Wave modes and trajectories
- G01N2291/042—Wave modes
- G01N2291/0421—Longitudinal waves
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
Abstract
Description
【発明の詳細な説明】 本発明は電磁超音波計測装置に関する。[Detailed description of the invention] The present invention relates to an electromagnetic ultrasonic measuring device.
非破壊検査の方法の一つに超音波を利用する方法があり
、広く使用されているが、被検材の表面が滑らかである
ことが必要であったり、高温の被検材には応用できない
等の欠点がある。電磁超音波計測装置は、これらの欠点
がないものとして広く研究され、実用に供されつつあり
、例えば、non destructive test
ing VOL、5 A 3 june1972 P1
54〜159 [EIectromagneto−ac
ousticnon−destsctive tes
ting in the 5oviet[Jnio
nJにも具体的に紹介されている。One method of non-destructive testing is the use of ultrasound, which is widely used, but it requires the surface of the material to be tested to be smooth and cannot be applied to high-temperature materials. There are drawbacks such as. Electromagnetic ultrasonic measurement devices have been widely researched as being free of these drawbacks and are being put into practical use, for example, non-destructive test
ing VOL, 5 A 3 june1972 P1
54-159 [EI electromagneto-ac
ousticnon-destsctive tes
ting in the 5oviet[Jnio
It is also specifically introduced in nJ.
電磁超音波計測装置によって高感度に被検材内部のきす
を検出し、或は被検材の厚み全計測するには、原理的に
明らかなように、被検材表面に作用する磁界を強くする
か、送信コイルに加える信号を強化するかのいずれか、
或は両方を強化するかしか方法はない。これらのうち、
送信コイルに加える信号全強化することは安全の面から
も限界があり、磁界全強化することが有効となるが、従
来、断面E型の鉄心を使用して被検材の表面に磁界全作
用させるものとされているため、その強化にも限界があ
った。In order to use an electromagnetic ultrasonic measuring device to detect scratches inside a material to be inspected with high sensitivity or to measure the entire thickness of the material to be inspected, it is clear in principle that the magnetic field acting on the surface of the material to be inspected must be strong. either by increasing the signal applied to the transmitter coil, or by strengthening the signal applied to the transmitter coil.
Or the only way is to strengthen both. Of these,
There is a safety limit to fully strengthening the signal applied to the transmitting coil, and it is effective to fully strengthen the magnetic field. Because it was said to be a force to be used, there was a limit to how much it could be strengthened.
すなわち、電磁超音波計測装置では、h1゛測の目的に
合わせて横波、縦波が選択的に使用されるわけである。That is, in the electromagnetic ultrasonic measuring device, transverse waves and longitudinal waves are selectively used depending on the purpose of h1 measurement.
この場合、比較的高温にある被検材に対しても有効な縦
波を利用しようとするときは、被検材の表面に平行に作
用している磁界が必要であるが、断面がE型の鉄心を使
用していると、被検材が単に継鉄として作用するにすぎ
ず、その表面に平行な磁界を効果的に得ることができな
いのである。In this case, when attempting to utilize longitudinal waves that are effective even on the test material at a relatively high temperature, a magnetic field acting parallel to the surface of the test material is required, but the cross section is E-shaped. If an iron core is used, the test material simply acts as a yoke, and a magnetic field parallel to its surface cannot be effectively obtained.
本発明cI、被検材を中にして励磁コイル全巻回した構
造とすることにより、原理的に励磁コイルによる起磁力
A・IIIが全て被検材に平行に作用するものとし、そ
の結果、被検材表面に平行に作用する磁界成分全増大さ
せ、縦波を利用した電磁超音波計測を効果的に行うこと
を提案するものである。In the present invention cI, by adopting a structure in which the excitation coil is fully wound with the test material inside, in principle, all the magnetomotive forces A and III by the excitation coil act in parallel to the test material, and as a result, the We propose to effectively perform electromagnetic ultrasonic measurement using longitudinal waves by increasing the total magnetic field component that acts parallel to the surface of the specimen.
第1図、第2図に本発明に係る電磁超音波計測装置の基
本釣力構成全斜視図及び断面斜視図で示す。尚、図にお
いて同一部材には同一の参照符号が付されている。FIG. 1 and FIG. 2 are a complete perspective view and a sectional perspective view of the basic fishing force configuration of the electromagnetic ultrasonic measuring device according to the present invention. In addition, the same reference numerals are attached to the same members in the figures.
同図忙おいて、2個の直流コイル11.12は各々が独
立して被検材1を包囲する如く巻回されており、2個の
直流コイル11.12から発生する直流磁束(図中点線
で示す)は加え合されるように励磁される。ここで夫々
のコイルは直列接続でも、並列接続でも良い。2個の直
流励磁コイル11.12の間の空間に被検材1と対向し
て送受信コイル13が配置されている。送受信コイル1
3は、これ全回−場所に配置することができるのは勿論
、送信コイルと受信コイルとを被検材1全はさんで配置
する方式いわゆる透過形とじうろことは醒うまでもない
。In the figure, the two DC coils 11.12 are each independently wound so as to surround the specimen 1, and the DC magnetic flux generated from the two DC coils 11.12 (in the figure (shown with dotted lines) are excited in such a way that they add together. Here, each coil may be connected in series or in parallel. A transmitting/receiving coil 13 is arranged in a space between two DC excitation coils 11 and 12, facing the specimen 1. Transmitting/receiving coil 1
Needless to say, the method of No. 3 is a so-called transmission type water scale in which the transmitting coil and the receiving coil are placed across the entire specimen 1, which can be placed at all times.
第3図に2個の直流励磁コイルの励磁電流の流れる方向
を図中矢印で示す。In FIG. 3, arrows indicate the directions in which the excitation currents of the two DC excitation coils flow.
上記構成において、2つの直流コイル11゜12によ多
発生する直流磁束はその大半が被検材1の内部を通り、
しかもその方向は被検材10表面と平行となる。即ち、
コイル11.12の作る磁束はほとんど全て縦波電磁超
音波全送受信するのに必要な被検材1の表面と平行な成
分の磁場全形成する。直流励磁コイル11.12の励磁
i′全増大すればほぼ比例的に磁場強度は増大し、この
磁場強度は10000 Gauss 以上の値を得る
ことは容易である。その結果、本実施例によれば縦波電
磁超音波の検出信号レベルは従来法による平均的な磁場
強度(約30000auss )に比較し約11倍[
= (10,000/3,000 )21)の感度向上
が図れ、その効果は非常に大きい。In the above configuration, most of the DC magnetic flux generated by the two DC coils 11 and 12 passes through the inside of the test material 1,
Moreover, the direction is parallel to the surface of the material 10 to be inspected. That is,
Almost all of the magnetic flux generated by the coils 11 and 12 forms a magnetic field whose components are parallel to the surface of the test material 1, which is necessary for transmitting and receiving all longitudinal electromagnetic ultrasonic waves. If the total excitation i' of the DC excitation coils 11, 12 is increased, the magnetic field strength increases almost proportionally, and it is easy to obtain a value of 10,000 Gauss or more for this magnetic field strength. As a result, according to this embodiment, the detected signal level of longitudinal electromagnetic ultrasound is approximately 11 times higher than the average magnetic field strength (approximately 30,000 auss) according to the conventional method.
The sensitivity can be improved by = (10,000/3,000)21), and the effect is very large.
又、本構成によれば送受信コイル13は直流励磁コイル
間の空間内であれば被検材の表面、側面、層面どの位置
にでも配置でき、単一の送受信コイルのみならず、複数
の送受信コイルを所定の間隔で対向配置することも可能
である。In addition, according to this configuration, the transmitting/receiving coil 13 can be placed anywhere on the surface, side surface, or layer surface of the material to be inspected as long as it is within the space between the DC excitation coils, and it is possible to arrange not only a single transmitting/receiving coil but also multiple transmitting/receiving coils. It is also possible to arrange them facing each other at a predetermined interval.
次に、第1図の構成において磁場発生効率を改善するた
めに鉄心を設けることが当然考えられる。Next, it is natural to consider providing an iron core in the configuration shown in FIG. 1 in order to improve the efficiency of magnetic field generation.
この場合の断面斜視図全第4図に示す。同図において鉄
心14は直流励磁コイル11.12i包囲する様に構成
されている。A perspective cross-sectional view of this case is shown in FIG. 4. In the figure, the iron core 14 is configured to surround the DC excitation coils 11 and 12i.
なお、常電導コイルによる電磁石の代りに超伝導マグネ
ットヲ用い扛ば、磁場強度を大きくとることが可能とな
るので更に計測感度の向上が図れることは勿論である。Note that, of course, if a superconducting magnet is used instead of an electromagnet made of a normal conducting coil, the magnetic field strength can be increased, and therefore the measurement sensitivity can be further improved.
第5図の構成は励磁コイルを一つにした例であり、実質
的に前述の構成と変るところはない。第6図は被検材1
がパイプであシ、バイブの肉厚を測定しようとする例で
ある。The configuration shown in FIG. 5 is an example in which the excitation coil is integrated into one, and is substantially the same as the above-described configuration. Figure 6 shows test material 1
This is an example of trying to measure the wall thickness of a vibrator using a pipe.
第4図〜第6図の例において、鉄心14は、後述する本
発明の実施例第7図、第8図のように、コイル全両側か
らはさみ込む形のように二分割とすることが実際的であ
る。In the examples shown in FIGS. 4 to 6, the iron core 14 is actually divided into two parts, such as being sandwiched from both sides of the coil, as shown in FIGS. 7 and 8 of the embodiment of the present invention, which will be described later. It is true.
第7図、第8図は本発明を第6図の例に適用した具体的
な実施例全一部断面で示す側面図、平面図である。FIGS. 7 and 8 are a side view and a plan view, partially in cross section, showing a specific embodiment in which the present invention is applied to the example shown in FIG. 6.
鉄心14は14a、14bに2分割され、夫々中央に切
欠き部を有する断面コ字状の円筒形に作られ、夫々の内
面にコイル11.12が、保護カバー21a、21bに
よって固着されるとともに、第7図に示すように、コイ
ル11.In対向させた形でボルト22および図示しな
いナツトによって結合される。25a、25bは先端部
が先細り状にされた円筒形磁極であり、夫々鉄心14a
。The iron core 14 is divided into two parts 14a and 14b, each of which has a cylindrical U-shaped cross section with a notch in the center, and coils 11 and 12 are fixed to the inner surface of each part by protective covers 21a and 21b. , as shown in FIG. 7, the coil 11. They are connected by a bolt 22 and a nut (not shown) in such a way that they face each other. 25a and 25b are cylindrical magnetic poles with tapered tips, each of which is connected to the iron core 14a.
.
14bの中央の切欠き部に挿入され、ボルト26によっ
て鉄心14a、bに固着される。27a。It is inserted into a notch in the center of 14b and fixed to iron cores 14a and 14b with bolts 26. 27a.
27bはカバーであり、中心部に穴のあけられた円板で
ある。このカバーは、ボルト26の鉄心側面からの突出
を防ぐため、ボルト26の部分が一部切欠かれる他、後
述する冷却水配管の配置される部分も切欠かれ、鉄心側
面からの突出部ができないように工夫されている。27b is a cover, which is a circular plate with a hole in the center. In order to prevent the bolts 26 from protruding from the side of the core, this cover has a part cut out for the bolt 26, and also has a cutout in the area where the cooling water piping, which will be described later, is arranged, to prevent the bolt 26 from protruding from the side of the core. It has been devised.
磁極25a、25bは、先細り状とされているから、そ
の先端部に磁界全集中させることができ、効果的に被検
材表面と平行な磁場を作シ出すことができる。被検材1
の寸法の変更に対しては、磁極25a、25bを変更す
ることによって対応することができる。更に1磁極25
a、25bの内面を図のように傾きを持ったものとする
ことにより、被検材の導入をスムーズにすることができ
る。Since the magnetic poles 25a and 25b are tapered, the magnetic field can be fully concentrated at the tip thereof, and a magnetic field parallel to the surface of the specimen can be effectively created. Test material 1
Changes in dimensions can be accommodated by changing the magnetic poles 25a and 25b. 1 more magnetic pole 25
By making the inner surfaces of a and 25b sloped as shown in the figure, the material to be tested can be introduced smoothly.
この場合、磁極の内面に保護部材を貼る、等することに
よシ、磁極25、被検材lの衝突があっても、両者金偏
つけないようにすることができる。In this case, by pasting a protective member on the inner surface of the magnetic pole, even if the magnetic pole 25 and the test material 1 collide, it is possible to prevent the metal from being biased between the two.
磁極25a、25bには図示されていないが冷却水を通
すための貫通孔が設けられ、冷却される。Though not shown, the magnetic poles 25a and 25b are provided with through holes through which cooling water passes, thereby cooling the magnetic poles 25a and 25b.
例えば、鉄心14a側について見ると、冷却水は冷却水
導入配管28aから導入され、磁極25a内の貫通孔を
通り磁[125aの先端部で図示しない渡り配管を通っ
て、磁極25aの90° 離れた位置にある貫通孔に導
かれる。このlL過通孔出良冷却水は渡り配管30aに
より、さらに90° 離れた位置にある貫通孔に導かれ
る。この貫通孔を流れた冷却水は磁極2551の先端部
で渡り配管31aによシ更に90°離れた位置にある貫
通孔に導かれる。この貫通孔を出た冷却水は配管28a
と対応した上部位置にある冷却水排出配管(図示せず)
により外部に排出される。即ち、磁極258は90°き
ざみで配置された貫通孔全冷却水が2往復する形で冷却
されるのでおる。鉄心14bについても、同様に、配管
28bから冷却水が導入され、磁極25bの貫通孔と渡
り配管(途中で渡シ配管31k1通る)とを順次通過し
ながら、図示しない配管から排出される。For example, looking at the iron core 14a side, cooling water is introduced from the cooling water introduction pipe 28a, passes through a through hole in the magnetic pole 25a, passes through a crossover pipe (not shown) at the tip of the magnetic pole 25a, and is separated by 90 degrees from the magnetic pole 25a. is guided to the through hole located at the right position. The cooling water coming out of the 1L passage hole is further guided to a through hole located 90° away from the connecting pipe 30a. The cooling water flowing through the through hole is further guided to the through hole located 90 degrees away from the connecting pipe 31a at the tip of the magnetic pole 2551. The cooling water coming out of this through hole is pipe 28a
Cooling water discharge pipe located at the upper position corresponding to (not shown)
is discharged to the outside. That is, the magnetic pole 258 is cooled by the cooling water flowing through the through holes arranged at 90° increments and reciprocating twice. Similarly, for the iron core 14b, cooling water is introduced from the pipe 28b, and is discharged from a pipe (not shown) while successively passing through the through hole of the magnetic pole 25b and the crossing pipe (passing through the crossing pipe 31k1 on the way).
磁極25a、25bは第7図に破線で示すように内部筒
と外部筒の2分割されたものを合せて一体化した形にす
ることができる。このようにするときは、被検材の寸法
変更に対応して磁極25を交換するとき、内部筒、外部
筒全夫々分離して扱うことができるから、ボ量を軽減で
き、取扱いが容易となる利点がある。The magnetic poles 25a and 25b can be formed by combining two parts, an inner cylinder and an outer cylinder, into one body, as shown by broken lines in FIG. In this case, when replacing the magnetic pole 25 in response to a change in the dimensions of the material being tested, the inner cylinder and the outer cylinder can be handled separately, reducing the amount of waste and making handling easier. There are some advantages.
(9)
40は送受信部収納ブロックであり、偏平な中空材を円
く成形されるとともに、60°き、ざみで後述する送受
部51〜56 (54,55は図示せず)が配置される
ための貫通孔61〜66(64゜65は図示せず)を有
するーブロック40は磁極25a、bの夫々の先端部に
より支持される。ブロック40に設けられた貫通孔61
〜66の被検材1側には非導電性のカバー71〜76
(74゜75は図示せず)が配置され、反対側には送受
信部51〜56が配置される。送受信部は例えば送信コ
イル、受信コイル(図示せず)がモールドされたもの全
主体とするから、この強度を補強するため保護カバー8
1〜86 (84,85は図示せず)が設けられる。送
信コイル、受信コイルと外部回路との依続はケーブル配
管91〜96(94゜95は図示せず)によシ行なわれ
る。ケーブル配管91〜96は後述する冷却水導入配管
同様に磁極25bに設けた貫通孔により外部に導出され
る。(9) Reference numeral 40 denotes a transmitting/receiving unit storage block, which is formed from a flat hollow material into a circular shape, and transmitting/receiving units 51 to 56 (54 and 55 are not shown), which will be described later, are arranged at a 60° angle. The block 40, which has through holes 61 to 66 (64.degree. 65 is not shown), is supported by the tips of the magnetic poles 25a and 25b, respectively. Through hole 61 provided in block 40
Non-conductive covers 71 to 76 are placed on the test material 1 side of ~66.
(74° and 75 are not shown) are arranged, and transmitting/receiving units 51 to 56 are arranged on the opposite side. Since the transmitter/receiver section is made up of a molded transmitter coil and a receiver coil (not shown), for example, a protective cover 8 is provided to reinforce this strength.
1 to 86 (84 and 85 are not shown) are provided. The transmission coil, the reception coil and the external circuit are connected through cable piping 91 to 96 (94.degree. 95 is not shown). The cable pipes 91 to 96 are led out to the outside through through holes provided in the magnetic pole 25b, similar to the cooling water introduction pipes described later.
ブロック40の中空部41には冷却水導入配管42が接
続され、冷却水が導入される。この冷却(10)
水は中空部41からカバー71と送受信ブロック51と
の空間及びカバー72と送受信ブロック52との空間の
夫々に分流し、以下、中空部とカバーと送受信ブロック
との間の空間とを順次流れ、配管42に対向する位置に
設けられた図示しない冷却水排出導管を介して外部に排
出される。導入配管42は磁極25bの貫通孔43全通
過する。A cooling water introduction pipe 42 is connected to the hollow portion 41 of the block 40 to introduce cooling water. This cooling (10) water is divided from the hollow part 41 into the space between the cover 71 and the transmitting/receiving block 51 and the space between the cover 72 and the transmitting/receiving block 52, and hereinafter, the space between the hollow part, the cover, and the transmitting/receiving block and is discharged to the outside via a cooling water discharge conduit (not shown) provided at a position opposite to the piping 42. The introduction pipe 42 passes through the entire through hole 43 of the magnetic pole 25b.
図示しない導出配管も同様である。導水配管42および
ブロック40の中空部41は断面積が小さいので冷却水
に不純物がまざっていたり、内部に藻が発生したりする
様なことがあると、つ−まったり、冷却水の流れがかた
よったりして冷却が不充分になる可能性がある。それ故
、冷却水は蒸留水とし、充分な流速で流れる様にするの
が良い。The same applies to the lead-out piping (not shown). The water guide pipe 42 and the hollow part 41 of the block 40 have a small cross-sectional area, so if the cooling water is contaminated with impurities or algae grows inside, it may become clogged or the flow of the cooling water becomes uneven. This may result in insufficient cooling. Therefore, it is preferable to use distilled water as the cooling water so that it flows at a sufficient flow rate.
第1図は本発明の基礎となる基本構成全概念的に示す斜
視図、第2図は第1図における励磁コイルと送受信コイ
ルとの関係を示す断面斜視図、第3図は第1図の基本概
念全説明する線図、第4図は第1図に鉄心’x 1A−
用した場合の構成全話す断面(11)
斜視図5.255図は励磁コイルを一つにした場合の構
成についての断面斜視図、第6図は被検材全パイプとし
たときの構成全話す断面斜視図、第7図。
平面図であり、夫々互いに■−■、■−■方向に区充す
【l゛ふ合。
1・・・被検材、11 、12−−−−フィル、14a
、14b・・・鉄心、25a、25b・・・磁極、40
・・・送受何部収納ブロック、42,28a、28b・
・・冷却水量(12)
第 1 図
宅 3 図
第 4図
日立市幸町3丁目1番1号株式
会社日立製作所日立研究所内
■[出 願 人 株式会社日立製作所
東京都千代田区丸の内−丁目5
番1号FIG. 1 is a perspective view conceptually showing the basic structure that is the basis of the present invention, FIG. 2 is a cross-sectional perspective view showing the relationship between the excitation coil and the transmitting/receiving coil in FIG. 1, and FIG. A diagram explaining all the basic concepts, Figure 4 is the iron core 'x 1A- in Figure 1.
Figure 5.255 is a cross-sectional perspective view of the configuration when the excitation coil is combined into one, and Figure 6 is the complete configuration when all pipes are used. Cross-sectional perspective view, FIG. 7. This is a plan view, and the sections are divided in the ■-■ and ■-■ directions, respectively. 1...Test material, 11, 12---fill, 14a
, 14b... Iron core, 25a, 25b... Magnetic pole, 40
...Sending and receiving storage block, 42, 28a, 28b.
...Cooling water amount (12) Figure 1 House 3 Figure 4 Hitachi Research Institute, Hitachi, Ltd., 3-1-1 Saiwai-cho, Hitachi City number 1
Claims (1)
励磁コイルと、前記励磁コイルによる磁界が作用してい
る被検材カ表面部分に機械歪を生じさせるための送信コ
イルと前記機械歪が被検社内全伝播して被検材表面にあ
られれたことを検出する受信コイルとよりなり、前記励
磁コイルが被検材に対向する面を除いて継鉄によって囲
−まれるとともK、コイルの前記被検材に対向する面に
は磁極が前記継鉄に支持されて配置され、且、前記送信
コイル又は受1gコイルが前記磁極によって支持される
ことを特徴とする電磁超音波計測装置。 2、第1項において、前記磁極が被検材の寸法に応じて
交換されることを特徴とする電磁超音波計測装置。 3、第1項において、前記磁極、送信コイル又は受信コ
イルの水冷却のための配管が備えられることを特徴とす
る電磁超音波計測装置。 4、 第1項において、前記磁極の、少なくとも一つの
側は被検材の挿入方向に対してテーパー面とされること
全特徴とする電磁超音波計測装置。 5、第1項において、送信コイル及び受信コイルが被検
材の周囲に複数組配置されることを特徴とする電磁超音
波計611]装置。 6、第1項において、送信コイル及び受信コイルの被検
材に対向する而には非導電性の材料の保獲カバーが配置
されることを特徴とする電磁超音波計測装置。[Claims] 1. An excitation coil that is wound with the material to be inspected inside and is fully exposed to direct current voltage, and mechanical strain is produced on the surface of the material to be inspected on which the magnetic field from the excitation coil is acting. The excitation coil consists of a transmitting coil for detecting that the mechanical strain is propagated throughout the interior of the test object and detecting that it has formed on the surface of the test material. Surrounded by iron, a magnetic pole is disposed on the surface of the coil facing the test material and supported by the yoke, and the transmitting coil or receiving coil is supported by the magnetic pole. An electromagnetic ultrasonic measuring device characterized by: 2. The electromagnetic ultrasonic measuring device according to item 1, wherein the magnetic pole is replaced depending on the size of the material to be tested. 3. The electromagnetic ultrasonic measuring device according to item 1, further comprising piping for cooling the magnetic pole, the transmitting coil, or the receiving coil with water. 4. The electromagnetic ultrasonic measuring device according to item 1, wherein at least one side of the magnetic pole has a tapered surface with respect to the insertion direction of the test material. 5. The electromagnetic ultrasonic meter 611] device according to item 1, characterized in that a plurality of sets of transmitting coils and receiving coils are arranged around the specimen. 6. The electromagnetic ultrasonic measuring device according to item 1, characterized in that a retention cover made of a non-conductive material is placed between the transmitting coil and the receiving coil facing the test material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57127675A JPS5918452A (en) | 1982-07-23 | 1982-07-23 | Electromagnetic ultrasonic measuring apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57127675A JPS5918452A (en) | 1982-07-23 | 1982-07-23 | Electromagnetic ultrasonic measuring apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5918452A true JPS5918452A (en) | 1984-01-30 |
JPH0146028B2 JPH0146028B2 (en) | 1989-10-05 |
Family
ID=14965931
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57127675A Granted JPS5918452A (en) | 1982-07-23 | 1982-07-23 | Electromagnetic ultrasonic measuring apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5918452A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5980704A (en) * | 1982-10-28 | 1984-05-10 | Kawasaki Steel Corp | Melt reduction method of powder and granular ore by vertical type furnace |
JPS5980703A (en) * | 1982-10-28 | 1984-05-10 | Kawasaki Steel Corp | Melt reduction method of powder and granular ore by vertical type furnace |
JPS5980705A (en) * | 1982-10-28 | 1984-05-10 | Kawasaki Steel Corp | Melt reduction method of powder and granular ore by vertical type furnace |
JPS63130728A (en) * | 1986-11-21 | 1988-06-02 | Kawasaki Steel Corp | Method for reducing chromium ore pellet and pellet |
US5218868A (en) * | 1990-02-27 | 1993-06-15 | Nkk Corporation | Signal processing method for magnetic-ultrasonic wall thickness measuring apparatus |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5292780A (en) * | 1976-01-30 | 1977-08-04 | Nippon Steel Corp | Ultrasonic measuring apparatus |
JPS52133282A (en) * | 1976-05-01 | 1977-11-08 | Nippon Steel Corp | Electromagnetic induction-type ultrasonic probe |
-
1982
- 1982-07-23 JP JP57127675A patent/JPS5918452A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5292780A (en) * | 1976-01-30 | 1977-08-04 | Nippon Steel Corp | Ultrasonic measuring apparatus |
JPS52133282A (en) * | 1976-05-01 | 1977-11-08 | Nippon Steel Corp | Electromagnetic induction-type ultrasonic probe |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5980704A (en) * | 1982-10-28 | 1984-05-10 | Kawasaki Steel Corp | Melt reduction method of powder and granular ore by vertical type furnace |
JPS5980703A (en) * | 1982-10-28 | 1984-05-10 | Kawasaki Steel Corp | Melt reduction method of powder and granular ore by vertical type furnace |
JPS5980705A (en) * | 1982-10-28 | 1984-05-10 | Kawasaki Steel Corp | Melt reduction method of powder and granular ore by vertical type furnace |
JPH0130888B2 (en) * | 1982-10-28 | 1989-06-22 | Kawasaki Steel Co | |
JPH0242884B2 (en) * | 1982-10-28 | 1990-09-26 | ||
JPS63130728A (en) * | 1986-11-21 | 1988-06-02 | Kawasaki Steel Corp | Method for reducing chromium ore pellet and pellet |
US5218868A (en) * | 1990-02-27 | 1993-06-15 | Nkk Corporation | Signal processing method for magnetic-ultrasonic wall thickness measuring apparatus |
Also Published As
Publication number | Publication date |
---|---|
JPH0146028B2 (en) | 1989-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5129566B2 (en) | Flexible electromagnetic acoustic transducer sensor | |
CN107206424B (en) | Electromagnetic acoustic sensor | |
EP0067065B1 (en) | Electromagnetic-acoustic measuring apparatus | |
RU2364860C2 (en) | Detector for definition of internal and external diametres, for device of magnetic flux dispersion control | |
US4471658A (en) | Electromagnetic acoustic transducer | |
US4181018A (en) | Unitary electromagnetic flowmeter | |
CN108088900B (en) | Multifunctional composite probe for pipeline internal detection | |
JP6818977B2 (en) | Electromagnetic ultrasonic sensor | |
AU1620502A (en) | Measurement of stress in a ferromagnetic material | |
JPS5918452A (en) | Electromagnetic ultrasonic measuring apparatus | |
US4281552A (en) | Electromagnetic flowmeter | |
US4480477A (en) | Electrodynamic instrument transformer head | |
CA1040885A (en) | Magnetoelastic transducer arrangement | |
IE47295B1 (en) | Ultrasonic testing | |
CN116381039A (en) | Pulse eddy current focusing sensor for detecting corrosion defect of ferromagnetic component | |
RU2149367C9 (en) | Device for diagnostics of pipelines | |
EP2541564A1 (en) | Wireless energy transfer | |
Jackiewicz et al. | New methodology of testing the stress dependence of magnetic hysteresis loop of the L17HMF heat resistant steel casting | |
Maruyama et al. | Developments of flat∞ coil for defect searching in the curved surfaces | |
JP3055498U (en) | Water magnetic treatment equipment | |
RU2279671C1 (en) | Arrangement for ultrasound control of articles out of electric conductive materials | |
JPS5995454A (en) | Electromagnetic ultrasonic transducer | |
KR20140019160A (en) | Unit for detecting magnetic leakage flux using electromagnetic induction and non-destructive testing system and method using th same | |
SU1739280A1 (en) | Electromagnetic surface-acoustic-wave transducer | |
RU97114535A (en) | METHOD FOR DETERMINING THE CONTENT OF A FERROMAGNETIC IN A PULP AND A DEVICE FOR ITS IMPLEMENTATION |