JPS5918452B2 - Method for producing molten metal from powdered ore - Google Patents

Method for producing molten metal from powdered ore

Info

Publication number
JPS5918452B2
JPS5918452B2 JP56063294A JP6329481A JPS5918452B2 JP S5918452 B2 JPS5918452 B2 JP S5918452B2 JP 56063294 A JP56063294 A JP 56063294A JP 6329481 A JP6329481 A JP 6329481A JP S5918452 B2 JPS5918452 B2 JP S5918452B2
Authority
JP
Japan
Prior art keywords
ore
furnace
particles
reduced
fluidized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56063294A
Other languages
Japanese (ja)
Other versions
JPS57198205A (en
Inventor
尚夫 浜田
暢男 槌谷
稔宏 稲谷
英司 片山
寿光 小板橋
侠児 岡部
三男 角戸
至康 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP56063294A priority Critical patent/JPS5918452B2/en
Priority to ZA822684A priority patent/ZA822684B/en
Priority to AU82854/82A priority patent/AU534503B2/en
Priority to EP82302056A priority patent/EP0063924B2/en
Priority to DE8282302056T priority patent/DE3273996D1/en
Priority to PH27194A priority patent/PH21317A/en
Publication of JPS57198205A publication Critical patent/JPS57198205A/en
Publication of JPS5918452B2 publication Critical patent/JPS5918452B2/en
Priority to PH35514A priority patent/PH26062A/en
Priority to US07/127,600 priority patent/US4874427A/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/14Multi-stage processes processes carried out in different vessels or furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0006Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state
    • C21B13/0013Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state introduction of iron oxide into a bath of molten iron containing a carbon reductant
    • C21B13/002Reduction of iron ores by passing through a heated column of carbon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/60Process control or energy utilisation in the manufacture of iron or steel
    • C21B2100/66Heat exchange
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/134Reduction of greenhouse gas [GHG] emissions by avoiding CO2, e.g. using hydrogen

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】 本発明は金属酸化物を含有する粉状もしくは小粒状鉱石
を予備還元後溶融還元して溶融金属を製造する方法に関
するものであり、特に本発明は溶融還元の際発生する還
元性ガスを用いて鉱石を予備還元後溶融還元して溶融金
属を製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing molten metal by preliminary reduction and melt reduction of powdery or small granular ore containing metal oxides. The present invention relates to a method for producing molten metal by pre-reducing ore using a reducing gas and then melting and reducing the ore.

近年酸化鉄または各種の金属酸化物を含有する鉱石原料
は塊状鉱石が減少し、粉状もしくは小粒状鉱石が多くな
っており、今後ますます粉粒状鉱石の比率が増加して行
く傾向にある。
In recent years, ore raw materials containing iron oxide or various metal oxides have decreased in the form of lumpy ores and have become more powdery or small-grained ores, and the proportion of powdery ores will continue to increase in the future.

粉粒状鉱石を直接使用する製錬法としては流動層を用い
て粉粒状鉱石を予備還元し、この予備還元鉱を電炉、転
炉その他溶解炉で溶融還元する方法が一般的である。
As a smelting method that directly uses granular ore, a common method is to pre-reduce the granular ore using a fluidized bed, and then melt and reduce the pre-reduced ore in an electric furnace, converter, or other melting furnace.

この場合予備還元鉱にバインダーを添加して塊成化して
塊状物となし、この塊状物を溶解炉で溶融還元する方式
が多く、かかる方式によれは塊成化のための資料、処理
費、処理エネルギーを余分に必要とするばかりでなく、
塊成化したのち焼成を必要とする場合には焼成塊状物と
する際に焼成炉から排出されるガス中のNOx。
In this case, there are many methods in which a binder is added to the pre-reduced ore to agglomerate it into agglomerates, and the agglomerates are melted and reduced in a melting furnace. Not only does it require extra processing energy;
If firing is required after agglomeration, NOx is present in the gas discharged from the firing furnace when the fired lumps are produced.

SOXおよびダスト等を処理するための費用も多大であ
るという欠点がある。
There is a drawback that the cost for treating SOX, dust, etc. is also large.

また上記方式の他に、アーク炉やプラズマあるいは純酸
素を利用する炉を用いて予備還元鉱を粉粒状のまま溶融
還元する方式も提案されているが、アーク炉を用いる方
式によれば電力消費量が莫大であるばかりでなく立地条
件にも制約があり、プラズマを利用する炉を用いる方式
は工業的規模には適用が困難であり、純酸素を利用する
炉を用いる方式によれば高温雰囲気を得ることは容易で
あるが、酸素を予熱することができないため、入熱量が
小さいこと、還元雰囲気の維持が難しいことなど技術的
に解決を要する問題が残されていると同時に純酸素製造
設備を準備する必要があり、また立地的な問題点もある
In addition to the above-mentioned method, a method has also been proposed in which pre-reduced ore is melted and reduced in powder form using an arc furnace, a furnace that uses plasma or pure oxygen, but the method using an arc furnace consumes less electricity. Not only is the quantity enormous, but there are also restrictions on location, making it difficult to apply a method that uses a furnace that uses plasma on an industrial scale, and a method that uses a furnace that uses pure oxygen requires a high-temperature atmosphere. However, since it is not possible to preheat oxygen, there are still technical problems that need to be solved, such as a small amount of heat input and difficulty in maintaining a reducing atmosphere. There are also locational issues.

このように従来技術にあっては技術的および経済的に解
決を要する多くの課題が残されている。
As described above, many problems remain in the prior art that require technical and economical solutions.

本発明は、粉粒状鉱を予備還元し、炭素系固体還元剤の
充填層が形成され、下部に高温空気を吹込む上下2段に
設けられた羽目を有する竪型溶融還元炉内に予備還元鉱
を高温のまま前記空気と共に吹込み電炉内で溶融還元し
て溶融金属を製造する方法において、前記予備還元のた
めに、溶融還元炉内で発生する還元性ガスを使用する金
属酸化物を含有する粉粒状鉱石からの溶融金属製造方法
を際供することを目的とするものであり、特許請求の範
囲記載の方法によって前記目的を達成することができる
The present invention involves pre-reducing granular ore in a vertical smelting reduction furnace that has two stages, upper and lower, in which a packed bed of carbon-based solid reducing agent is formed and high-temperature air is blown into the lower part. In a method of manufacturing molten metal by blowing ore together with the air at a high temperature and melting and reducing it in an electric furnace, the metal oxide containing a reducing gas generated in the melting and reducing furnace is used for the preliminary reduction. The object of the present invention is to provide a method for producing molten metal from powdery ore, and the above object can be achieved by the method described in the claims.

次に本発明の詳細な説明する。Next, the present invention will be explained in detail.

本発明によれば、溶融還元炉内に炭素系固体還元剤より
構成される充填層を有し、この充填層に羽口から予熱空
気あるいは予熱空気に加えて酸素を吹込みその際上記羽
目から予備還元された粉粒状鉱とフラックスを、あるい
は粉粒状鉱と粉状フラックスとの混合予備還元粒子を気
流搬送して羽口から併せて吹込み装入し、これら装入物
を羽目先端部周辺に生起する高熱領域内で溶融し、上記
充填層を溶融物が滴下する間に溶融物が還元されて溶融
金属ならびに溶滓と共に溶融還元炉の炉床に蓄溜され、
適時に電炉から出湯される。
According to the present invention, a smelting reduction furnace has a packed bed made of a carbon-based solid reducing agent, and preheated air or oxygen in addition to the preheated air is blown into the packed bed from the tuyeres, and at the same time, the above-mentioned Pre-reduced granular ore and flux, or mixed pre-reduced particles of granular ore and powder flux, are conveyed by air current and blown together through the tuyere, and these charges are placed around the tip of the siding. The molten metal is melted in a high heat region generated by the molten metal, and while the molten metal drips through the packed bed, the molten metal is reduced and accumulated in the hearth of the smelting reduction furnace together with the molten metal and slag,
Hot water is discharged from the electric furnace in a timely manner.

なお上記予備還元された装入物は溶融還元炉より排出さ
れる還元性ガスを用いて予備還元されてなるものである
The pre-reduced charge is pre-reduced using the reducing gas discharged from the melting reduction furnace.

前記フラックスは溶融還元の際催溶剤、または脱硫剤機
能を発揮させることを目的とするものであり、フラック
スとしては石灰石、珪石、ドロマイト、蛇紋岩等を鉱石
の性状に対応して使用する。
The purpose of the flux is to exhibit the function of a solvent promoter or a desulfurizing agent during melt reduction, and as the flux, limestone, silica, dolomite, serpentine, etc. are used depending on the properties of the ore.

例えば鉱石がクロム鉱石の如く難溶性のものであるとき
には、予め粉状鉱石と粉状のフラックスとを混合した後
流動造粒方式によって造粒して混合粒子となし、この混
合粒子を流動乾燥炉内へ移送して電炉内で流動乾燥した
後、さらに流動焼成炉に移送して焼成し、さらに流動予
備還元炉に移送して電炉内で予備還元した後、予備還元
鉱と7ラツクスとよりなる易溶性予備還元粒子を溶融還
元炉内で溶融還元することもできる。
For example, when the ore is poorly soluble such as chromium ore, the powdered ore and powdered flux are mixed in advance and then granulated using a fluidized granulation method to form mixed particles. After being transferred to a fluidized furnace and fluidized to dry in an electric furnace, it is further transferred to a fluidized firing furnace and fired, and further transferred to a fluidized pre-reduction furnace and pre-reduced in an electric furnace, and then it is made up of pre-reduced ore and 7 lacs. The easily soluble pre-reduced particles can also be melted and reduced in a melting reduction furnace.

ところで粉状鉱石を予備還元した後、この予備還元鉱を
溶融還元する方法が特公昭34−2103号および特開
昭53−142313号によって知られており、予備還
元鉱を溶融還元するに必要な燃料および還元剤として前
者の方法によれば粉状石炭が、後者の方法によれば還元
鉄付着炭素が使用されている。
By the way, a method of pre-reducing powdery ore and then melting and reducing the pre-reduced ore is known from Japanese Patent Publication No. 34-2103 and Japanese Patent Application Laid-open No. 53-142313. The former method uses powdered coal as the fuel and reducing agent, and the latter method uses reduced iron-adhered carbon.

しかし本発明によれば竪型の溶融還元炉に装入充填され
る炭素系固体還元剤は好ましくは塊コースであり、さら
に前記2つの公知の方法によれば常温の酸素が燃料を燃
焼させるための助燃剤として用いられているが、本発明
によれば高温に予熱された空気を主として用い、補助的
に酸素を用いることもできるので本発明は、燃料および
還元剤の種類、ならびに助燃剤の種類の2点において上
記公知の方法とは異なっている。
However, according to the present invention, the carbon-based solid reducing agent charged into the vertical melting reduction furnace is preferably in the form of lumps, and furthermore, according to the above two known methods, oxygen at room temperature burns the fuel. However, according to the present invention, air preheated to a high temperature is mainly used, and oxygen can also be used as an auxiliary. This method differs from the above-mentioned known method in two respects.

次に本発明を実施する1つの態様を示す系統を第1図に
ついて説明する。
Next, a system showing one embodiment of the present invention will be described with reference to FIG.

粉状もしくは小粒状の金属酸化物が供給装置1より予備
還元炉2に供給される。
A powder or small particle metal oxide is supplied from a supply device 1 to a preliminary reduction furnace 2 .

一方竪型の溶融還元炉3内で発生し、発生気体排出機構
4を経て排出される高温発生気体の一部または全部が前
記予備還元炉2の発生気体導入機構5より還元炉2内に
導入され、仝炉内で装入された金属酸化物を流動方式に
より乾燥、加熱、予備還元する。
On the other hand, part or all of the high temperature generated gas generated in the vertical smelting reduction furnace 3 and discharged through the generated gas discharge mechanism 4 is introduced into the reduction furnace 2 from the generated gas introduction mechanism 5 of the preliminary reduction furnace 2. Then, the metal oxide charged in the furnace is dried, heated, and pre-reduced using a fluidized method.

かくして予備還元された予備還元鉱は予備還元鉱排出装
置6より排出されて鎖線で示す誘導管7ならびに羽口8
,8′を経て、予熱空気と共に竪型炉3内に吹き込まれ
る。
The pre-reduced ore thus pre-reduced is discharged from the pre-reduced ore discharge device 6 and passes through the guide pipe 7 and tuyere 8 shown by chain lines.
, 8', and is blown into the vertical furnace 3 together with the preheated air.

この際誘導管7内の予備還元鉱の移送を容易にするため
、竪型炉3から排出される発生気体の一部を昇圧機9を
用いて昇圧して搬送気体として用いることは有利である
At this time, in order to facilitate the transfer of the preliminary reduced ore in the guide pipe 7, it is advantageous to pressurize a part of the generated gas discharged from the vertical furnace 3 using a booster 9 and use it as a carrier gas. .

また竪型炉3内に吹込まれる高熱空気(以下高熱空気を
熱風と称す)はガス加熱炉10によって800〜130
0℃に加熱昇温される。
In addition, the high-temperature air (hereinafter referred to as hot air) blown into the vertical furnace 3 has a temperature of 800 to 130% by the gas heating furnace 10.
The temperature is raised to 0°C.

また、熱風と共に酸素ガスを吹込むこともできる。Moreover, oxygen gas can also be blown in together with hot air.

また竪型炉3内に予備還元鉱と共に溶融還元製錬を有利
に行わせるためフラックスをも羽目を経て熱風により吹
込むことができる。
In addition, flux can also be blown into the vertical furnace 3 with hot air to advantageously perform smelting and reduction together with the pre-reduced ore.

竪型炉3内には炭素系固体還元剤供給装置11を経て前
記還元剤が装入され、仝炉3内には還元剤充填層が形成
され、また炉3内の羽口先端近傍には熱風により高炉の
羽口先端近傍と同様にレースウェイが生成して2000
〜2500℃の高温領域が形成されており、この領域内
に熱風あるいは付加される酸素と共に吹込まれる予備還
元鉱は直ちに加熱され、容易に溶融する。
The reducing agent is charged into the vertical furnace 3 through a carbon-based solid reducing agent supply device 11, and a reducing agent packed layer is formed inside the furnace 3, and near the tip of the tuyere inside the furnace 3, A raceway was formed by the hot air, similar to the area near the tip of the blast furnace tuyere, and the 2000
A high temperature region of ~2500° C. is formed, and the prereduced ore blown into this region with hot air or added oxygen is immediately heated and easily melted.

そして炉3の下部を滴下する間に還元されて溶融金属と
溶融スラグが生成して製錬が行わ札炉床部に蓄溜されて
、出湯口12より適時炉外に出湯される。
While dripping down the lower part of the furnace 3, it is reduced to produce molten metal and molten slag, which are smelted and stored in the hearth, and are tapped out of the furnace from the tapping port 12 at a timely manner.

なお前記高温領域を形成するレースウェイ部周辺は塊状
の炭素系還元剤よりなる充填層であり、またレースウェ
イ部周辺の気体は酸素含有量が低く、すなわち酸素分圧
が低くなっているので、炉3内のレースウェイ部で溶融
される予備還元鉱の還元は極めて好適に行われる。
Note that the area around the raceway portion that forms the high temperature region is a packed layer made of lumpy carbon-based reducing agent, and the gas around the raceway portion has a low oxygen content, that is, a low oxygen partial pressure. The reduction of the pre-reduced ore melted in the raceway section in the furnace 3 is carried out very favorably.

本発明によれば炭素系固体還元剤として塊状コークスの
ほかに、塊状のチャーあるいは石炭をもそれぞれ、また
は併用することができる。
According to the present invention, in addition to lump coke, lump char or coal can be used individually or in combination as the carbon-based solid reducing agent.

また竪型炉3の高さは通常の高炉に比し低くすることが
でき、予備還元鉱は羽口から炉3内に供給されるので、
高炉による如き強度の大きい還元剤は必要とせず、した
がって高価な粘結炭を必要としないことは経済的にも有
利である。
In addition, the height of the vertical furnace 3 can be made lower than that of a normal blast furnace, and the pre-reduced ore is supplied into the furnace 3 from the tuyere.
It is economically advantageous that a strong reducing agent such as that used in a blast furnace is not required, and therefore expensive coking coal is not required.

本発明によれば予備還元鉱はレースウェイ部において熱
風中の酸素により一旦酸化され、その反応熱によっても
加熱され溶融するので、還元率が高く、かつ高温の予備
還元鉱を使用することは溶融が容易となる点において有
利である。
According to the present invention, the pre-reduced ore is once oxidized by oxygen in the hot air in the raceway section, and is heated and melted by the heat of reaction. This is advantageous in that it is easy to do so.

予備還元率は鉱石の種類その他により変化するが、40
〜80%の範囲内のとき最も良い結果を得ることができ
る。
The preliminary reduction rate varies depending on the type of ore and other factors, but it is 40%
The best results can be obtained within the range of ~80%.

本発明によれば、羽口を経て熱風と共に炉内に吹込まれ
る予熱予備還元鉱が羽口先端近傍で溶融して、還元され
るためには大きな熱量が必要であり、たとえ羽口先端近
傍で溶融しても、炉下部において熱の補給が不足すると
溶融物の還元が十分には生起せず、炉床の冷え込みによ
り操業ができなくなるのを防止するため、羽口を上下2
段に設ける必要がある。
According to the present invention, a large amount of heat is required for the preheated pre-reduced ore, which is blown into the furnace together with hot air through the tuyere, to be melted and reduced near the tip of the tuyere. Even if the tuyere is melted, if there is insufficient heat supply in the lower part of the furnace, reduction of the molten material will not occur sufficiently, and in order to prevent operation from becoming impossible due to cooling of the hearth,
It is necessary to provide it in stages.

この場合には予備還元鉱は主として上段に位置する羽口
8より供給し、上段の羽口先端近傍で予備還元鉱を溶融
し、下段の羽目8′によって炉下部を高温に加熱し、上
段羽口8先端近傍から滴下する溶融物を還元するために
必要な熱量を供給する。
In this case, the pre-reduced ore is mainly supplied from the tuyere 8 located in the upper stage, the pre-reduced ore is melted near the tip of the upper tuyere, the lower part of the furnace is heated to a high temperature by the lower tuyere 8', and The amount of heat necessary to reduce the melt dripping from the vicinity of the tip of the mouth 8 is supplied.

次に本発明による他の実施態様の1つの系統を示す第2
図について説明する。
Next, a second system showing one family of other embodiments according to the present invention.
The diagram will be explained.

第2図において、予備還元鉱を溶融還元する竪型炉3は
第1図に示すそれと同様の竪型炉を用いることができ、
第1図に示す系統と相違するところは、第1図において
は、粉状鉱石を予備還元炉2において流動還元した予備
還元鉱を予備還元生成物排出装置6より排出させ、生成
物誘導管7を経て羽口8より熱風と共に炉3内に供給す
るが、第2図においては、流動造粒装置20を用いて粉
粒状の鉱石とフラックスを流動造粒して混合物粒子を造
り、次にこの混合物粒子乾燥炉21を用いて流動乾燥し
て乾燥混合物粒子となし次に焼成炉22を用いて乾燥混
合物粒子を流動焼成して焼成混合物粒子となし、次に予
備還元炉24を用いて、焼成混合物粒子を予備還元した
後、予備還元混合物粒子を羽口8および必要により羽口
8′より溶融還元炉3内に装入する。
In FIG. 2, the vertical furnace 3 for melting and reducing the pre-reduced ore can be a vertical furnace similar to that shown in FIG.
What is different from the system shown in FIG. 1 is that in FIG. In FIG. 2, powdered ore and flux are fluidized to form mixture particles using a fluidized granulator 20, and then the mixture particles are The mixture particles are fluidized and dried using the drying furnace 21 to form dry mixture particles.Then, the dry mixture particles are fluidized and fired using the calcination furnace 22 to form fired mixture particles, and then the pre-reduction furnace 24 is used to perform calcination. After pre-reducing the mixture particles, the pre-reduced mixture particles are charged into the melting reduction furnace 3 through the tuyere 8 and, if necessary, the tuyere 8'.

次に前記各工程順にさらに詳しく説明する。Next, each step will be explained in more detail.

粉状または小粒状鉱石と粉状フラックスをそれぞれ貯槽
17,18より造粒装置20内に装入し噴霧装置19か
ら水を供給しつつ流動方式によって造粒して、鉱石と7
ラツクスとの混合物粒子(以下混合物粒子を単に粒子と
称す)を造る。
Powdered or small granular ore and powdered flux are charged into a granulating device 20 from storage tanks 17 and 18, respectively, and granulated by a fluidization method while supplying water from a spraying device 19.
Mixture particles (hereinafter the mixture particles are simply referred to as particles) with Lux are prepared.

この粒子の大きさは、後工程である乾燥、焼成、予備還
元ならびに各工程間の移送を考慮して3m11L以下に
することが好ましい。
The size of the particles is preferably 3 m11 L or less in consideration of the subsequent steps of drying, calcination, preliminary reduction, and transportation between each step.

次に前記中粒子を乾燥炉21内において流動乾燥する。Next, the medium particles are fluidized and dried in a drying oven 21.

この際の乾燥温度は200℃以下であるので、次工程の
焼成炉22から排出される排ガスを利用することができ
る。
Since the drying temperature at this time is 200° C. or lower, the exhaust gas discharged from the firing furnace 22 in the next step can be used.

次に乾燥粒子を焼成炉22内に移送し、流動焼成する。Next, the dry particles are transferred into a firing furnace 22 and subjected to fluidized firing.

焼成温度は900℃以下が良く、900℃より高いと粒
子同志が焼結を起し結合して、焼成炉22からの流動排
出が困難になるばかりでなく、粒子の流動化が停止する
に至る。
The firing temperature is preferably 900°C or lower; if it is higher than 900°C, the particles will sinter and bond with each other, which will not only make fluid discharge from the firing furnace 22 difficult, but also cause the fluidization of the particles to stop. .

焼成炉の加熱源は溶融還元炉3の発生気体排出機構4か
ら排出される発生ガスの一部を、空気吹込み管23より
吹込まれる空気によって焼成炉22内で燃焼させて生ず
る反応熱である。
The heat source of the firing furnace is the reaction heat generated by burning a part of the generated gas discharged from the generated gas discharge mechanism 4 of the smelting reduction furnace 3 in the firing furnace 22 with air blown in from the air blowing pipe 23. be.

次に焼成された粒子を予備還元炉24内に移送し、一方
仝炉24内に溶融還元炉3の発生気体排出機構4から排
出される発生ガスの一部を、予備還元炉24の下部から
仝炉内に吹き込んで粒子を流動還元する。
Next, the fired particles are transferred into the preliminary reduction furnace 24, and a part of the generated gas discharged from the generated gas discharge mechanism 4 of the smelting reduction furnace 3 is transferred into the furnace 24 from the lower part of the preliminary reduction furnace 24. Blow into the furnace to fluidize and reduce the particles.

前記溶融還元炉3からの発生ガスはC09CO2,I(
2,H2O。
The gas generated from the melting reduction furnace 3 is C09CO2,I(
2, H2O.

N2などよりなり、なかでも還元性のC09H2の含有
比率が多く、かつ600〜1500℃の温度である。
It is made of N2, etc., has a high content of reducing C09H2, and has a temperature of 600 to 1500°C.

かくして予備還元された粒子は予備還元率が高いは払
また高温に維持されたまま溶融還元炉3内に装入される
ほど炉3内で溶融し易くなる。
Thus, the pre-reduced particles have a high pre-reduction rate.
Moreover, the more the material is charged into the melting reduction furnace 3 while being maintained at a high temperature, the more easily it melts in the furnace 3.

前記予備還元率は鉱石の種類により異なるが、大体40
〜80%の範囲内にすることが好適である。
The preliminary reduction rate varies depending on the type of ore, but is approximately 40%.
It is preferable to keep it within the range of ~80%.

予備還元炉24より排出される粒子は供給装置25と主
として羽口8を経て溶融還元炉3内に装入される。
Particles discharged from the preliminary reduction furnace 24 are charged into the melting reduction furnace 3 via the supply device 25 and mainly the tuyere 8 .

前記供給装置25はN2あるいは溶融還元炉から排出さ
れる発生ガスを用いて気流搬送する機構とすることもで
きる。
The supply device 25 can also be a mechanism that uses N2 or generated gas discharged from a smelting reduction furnace to convey airflow.

なお溶融還元炉3内の溶融還元は第1図の系統図につい
て述べたのと同様であるが、炉3内の製錬反応をより順
調にするため、必要により炉3内にフラックスを追添加
することもできる。
Note that the smelting reduction in the smelting reduction furnace 3 is the same as described for the system diagram in Figure 1, but in order to make the smelting reaction in the furnace 3 more smooth, flux may be added to the furnace 3 as necessary. You can also.

ところで流動造粒装置で造粒される粒子の大きさは、3
11t11L以下であると、各工程間の移送に気体搬送
方式を用いることもでき、また各工程における流動化に
要するガス量が少なくてすみ、また溶融還元炉内の反応
が速やかに進行するので有利である。
By the way, the size of particles granulated by a fluidized granulator is 3
If it is less than 11t11L, it is possible to use a gas conveyance method for transfer between each process, the amount of gas required for fluidization in each process is small, and the reaction in the melting reduction furnace proceeds quickly, which is advantageous. It is.

以上第2図の系統方式によれば、下記の如き諸利点を生
ずる。
According to the system system shown in FIG. 2, the following advantages are produced.

1)難溶性の例えばクロム鉱を製錬する場合クロム粉鉄
と7ラツクス粉とが密に混合された予備還元粒子を溶融
還元炉内に装入すると、溶融し易くなって反応が速やか
に進行する。
1) When smelting poorly soluble chromium ore, for example, if pre-reduced particles in which chromium powder iron and 7 lux powder are intimately mixed are charged into a smelting reduction furnace, it will melt easily and the reaction will proceed quickly. do.

2)溶融還元炉の発生ガスを予備還元、焼成、乾燥、造
粒の各工程で順次使用することができる。
2) The gas generated from the melting reduction furnace can be sequentially used in each step of preliminary reduction, calcination, drying, and granulation.

次に本発明を実施例について説明する。Next, the present invention will be explained with reference to examples.

実施例 1 第1図に示す系統方式により本発明を試験炉で実施した
Example 1 The present invention was implemented in a test reactor using the system system shown in FIG.

その結果を下記する。1)鉄鉱石の銘柄:MBR鉱石 粒径:277211L以下 供給量: 1650kg/ hr 2)炭素系固体還元剤の種類:コークス 粒径:25〜75朋 供給量:660朽/hr 3)竪型炉への送風量: 1500 Nm3/hr送風
温度:900°C 送風羽口:上下各4本計8本 (上段4本に予備還元生成物を供給) 予備還元率ニア1% 4)銑鉄生産量:1100@/hr 5)スクグ排出量:220@/hr 実施例 2 第2図に示す系統方式により本発明を試験炉で実施した
The results are shown below. 1) Brand of iron ore: MBR Ore particle size: 277211L or less Supply amount: 1650 kg/hr 2) Type of carbon-based solid reducing agent: Coke particle size: 25-75 Ho supply amount: 660 rot/hr 3) Vertical furnace Air flow rate: 1500 Nm3/hr Air blowing temperature: 900°C Air blowing tuyere: 8 each, 4 upper and lower (preliminary reduction product is supplied to the upper 4) Preliminary reduction rate near 1% 4) Pig iron production volume: 1100@/hr 5) Skug discharge amount: 220@/hr Example 2 The present invention was implemented in a test furnace using the system shown in FIG.

その結果を下記する。■)造粒機での造粒 0鉄鉱石 MBRore粒径−1mm供給量580kg
/hrOフラックス石灰石粒径−100メ゛ルユ供給量
280kV′hr珪 石粒蚤100メ゛ha供給量80
h/F1rOベントナイト 2%添加 0造粒後の粒子−2龍 2)乾燥、焼成 乾燥温度 150℃ 焼成温度 900℃3)予備還元 還元温度 900℃ 還元率 65% 4)溶融還元炉 0銑鉄生産量 1080@/hr Oスラグ排出量 350 kg/ hr実施例 3 第1図に示す系統方式により本発明を試験炉で実施した
The results are shown below. ■) Granulation 0 iron ore with granulator MBRore particle size -1mm supply amount 580kg
/hrO flux limestone particle size - 100 mha supply amount 280 kV'hr silica stone grain flea 100 mha supply amount 80
h/F1rO bentonite 2% addition 0 particles after granulation - 2 dragons 2) Drying and firing Drying temperature 150°C Calcining temperature 900°C 3) Pre-reduction Reduction temperature 900°C Reduction rate 65% 4) Melting reduction furnace 0 pig iron production 1080@/hr O slag discharge amount 350 kg/hr Example 3 The present invention was implemented in a test furnace using the system shown in FIG.

その結果を下記する。■)クロム鉱石の銘柄:フィリピ
ン産クロム鉱石粒径:0.411m以下 供給量: 420 kg/ hr 2)炭素系固体還元剤の種類:コークス 粒径:20〜40龍 供給量:610ky/hr 3)竪型炉への送風量: 1450 Nm3/hr送風
温度:950℃ 送風羽口:上下各4本計8本 (上段4本に予備還元生成物を供給) 予備還元率:31% 4)フェロクロム生産量:230@/hr組成: Cr
54.6%、C6,9%、Si5.5%5)スラグ排出
量: 350 ky/ hr実施例 4 第1図に示す系統方式により本発明を試験炉で実施した
The results are shown below. ■) Brand of chromium ore: Chrome ore from the Philippines Particle size: 0.411m or less Supply rate: 420 kg/hr 2) Type of carbon-based solid reducing agent: Coke particle size: 20-40 Dragon supply rate: 610ky/hr 3 ) Amount of air blown to the vertical furnace: 1450 Nm3/hr Blow temperature: 950°C Blow tuyeres: 4 each on the top and bottom, 8 in total (preliminary reduction product is supplied to the upper 4 tuyere) Preliminary reduction rate: 31% 4) Ferrochrome Production: 230@/hr Composition: Cr
54.6%, C6.9%, Si 5.5%5) Slag discharge amount: 350 ky/hr Example 4 The present invention was implemented in a test furnace using the system shown in FIG.

その結果を下記する。1)マンガン鉱石:オーストラリ
ア産マンガン鉱石粒径:1間以下 供給量: 490 kg/ hr 2)炭素系固体還元剤の種類:コークス 粒径:20〜40m11L 供給量:420ky/hr 3)竪型炉への送風量: 1520 Nm3/hr送風
温度:900°C 送風羽口:上下各4本計8本 (上段4本に予備還元生成物を供給) 予備還元率:55% 4)フェロマンガン生産量:260ky/hr組成:
Mn 75.2%、 C7,2%、 Si 1.2%5
)スラグ排出量:220@/hr 実施例 5 第1図に示す系統方式により本発明を試験炉で実施した
The results are shown below. 1) Manganese ore: Australian manganese ore particle size: 1 or less Supply rate: 490 kg/hr 2) Type of carbon-based solid reducing agent: Coke particle size: 20-40m11L Supply rate: 420ky/hr 3) Vertical furnace Air flow rate: 1520 Nm3/hr Air blowing temperature: 900°C Air tuyeres: 8 each, 4 on the upper and lower tuyere (preliminary reduction product is supplied to the upper 4) Preliminary reduction rate: 55% 4) Ferromanganese production amount :260ky/hr Composition:
Mn 75.2%, C7.2%, Si 1.2%5
) Slag discharge amount: 220@/hr Example 5 The present invention was implemented in a test furnace using the system shown in FIG.

その結果を下記する。1)ニッケル鉱石の銘柄:ニュー
カレドニア産ニッケル鉱石 粒径:1m11以下 供給量: 2620ky/ hr 2)炭素系固体還元剤の種類:コークス 粒径:30〜50朋 供給量: 93 ohy/hr 3)竪型炉への送風量: 1520 Nm3/hr送風
温度:900°C 送風羽口:上下各4本計8本 (上段4本に予備還元生成物を供給) 予備還元率:64% 4)フェロニッケル生産i : 370 朽/ h r
組成:Ni17.2%、Si4.2%、C2,3%5)
スラグ排出量: 2250ky/ hr実施例 6 第1図に示す系統方式により本発明を試験炉で実施した
The results are shown below. 1) Brand of nickel ore: Nickel ore from New Caledonia Particle size: 1m11 or less Supply amount: 2620ky/hr 2) Type of carbon-based solid reducing agent: Coke particle size: 30-50 Homo Supply amount: 93 ohy/hr 3) Amount of air blown to the vertical furnace: 1520 Nm3/hr Air blowing temperature: 900°C Air tuyere: 4 each on the top and bottom, 8 in total (preliminary reduction product is supplied to the upper 4 tuyere) Preliminary reduction rate: 64% 4) Ferro Nickel production i: 370 rot/hr
Composition: Ni 17.2%, Si 4.2%, C2, 3%5)
Slag discharge amount: 2250 ky/hr Example 6 The present invention was implemented in a test furnace using the system shown in FIG.

その結果を下記する。1)鉄鉱石の銘柄:MBR鉱石 粒径:1mm以下 供給量:450ky/hr 硅 砂:いわき産硅砂 粒径:0.5龍以下 供給量:170朽/hr 2)炭素系固体還元剤の種類:コークス 粒径:25〜5Qmm 供給量:590幻/hr 3)竪型炉への送風量: 1420 Nm”/hr送風
温度:910℃ 送風羽口:上下各4本計8本 (上段4本に予備還元生成物を供給) 鉄鉱石の予備還元率:58% 4)フェロシリコン生産量: 330 kg/ hr組
成:5i21.3%、C0,6% 5)スラグ排出量: 270 @/ hr実施例 7 第1図に示す系統方式により本発明を試験炉で実施した
The results are shown below. 1) Brand of iron ore: MBR Ore particle size: 1 mm or less Supply rate: 450ky/hr Silica sand: Iwaki silica sand particle size: 0.5 dragon or less Supply rate: 170ky/hr 2) Type of carbon-based solid reducing agent : Coke particle size: 25~5Qmm Supply amount: 590 phantom/hr 3) Air flow rate to vertical furnace: 1420 Nm"/hr Air blowing temperature: 910°C Air blowing tuyere: 4 each on the upper and lower sides, 8 in total (4 on the upper row) ) Iron ore preliminary reduction rate: 58% 4) Ferrosilicon production: 330 kg/hr Composition: 5i21.3%, CO0,6% 5) Slag discharge: 270 @/hr Implemented Example 7 The present invention was implemented in a test reactor using the system system shown in FIG.

その結果を下記する。■)鉄鉱石の銘柄:キャロルL−
7鉱石 粒径:1mm以下 供給量:610蛇/hr 硼素化合物:酸化硼素 粒径:0.2mm以下 供給量:110朽/hr 2)炭素系固体還元剤の種類:コークス 粒径:20〜40龍 供給量:650ky/hr 3)竪型炉への送風量: 1550 Nm3/hr送風
温度:920°C 送風羽口:上下各4本計8本 (上段4本に予備還元生成物を供給) 鉄鉱石の予備還元率ニア2% 4)フェロボロン生産量二410 kg/ hr組成:
B2.9%、 Si 4.6%、C2,6%5)スラグ
排出量: 450 @/ hr以上本発明によれば高価
な電力あるいは強粘結炭を使用することなく、比較的安
価な弱粘結あるいは非粘結炭を使用し、かつ溶融還元炉
から排出される還元性ガスを有効に鉱石の予備還元に使
用することができるので、益々エネルギーコストの上昇
が危惧される今後の金属酸化物の製錬方法として大きく
期待される。
The results are shown below. ■) Iron ore brand: Carroll L-
7 Ore particle size: 1 mm or less Supply rate: 610 mm/hr Boron compound: Boron oxide particle size: 0.2 mm or less Supply rate: 110 mm/hr 2) Type of carbon-based solid reducing agent: Coke particle size: 20-40 Dragon supply amount: 650ky/hr 3) Air flow rate to vertical furnace: 1550 Nm3/hr Air blowing temperature: 920°C Air blowing tuyere: 4 each on the upper and lower sides, 8 in total (preliminary reduction product is supplied to the upper 4) Preliminary reduction rate of iron ore: 2% 4) Ferroboron production: 2410 kg/hr Composition:
B2.9%, Si 4.6%, C2.6% 5) Slag discharge amount: 450 @/hr or more According to the present invention, a comparatively inexpensive weak coal is produced without using expensive electricity or strong coking coal. Because it uses caking or non-caking coal and the reducing gas discharged from the smelting reduction furnace can be effectively used for preliminary reduction of ore, it is a metal oxide product that is expected to increase energy costs in the future. It holds great promise as a smelting method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1発明の系統方式を示す図、第2図
は本発明の第2発明の系統方式を示す図である。 1・・・・・・鉱石供給装置、2・・・・・・流動予備
還元炉、3・・・・・・溶融還元炉、4・・・・・・発
生気体排出機構、5・・・・・・発生気体導入機構、6
・・・・・・予備還元鉱排出装置、7・・・・・・誘導
管、8 、8’・・・・・羽口、9・・・・・・昇圧機
、10・・・・・・ガス加熱炉、11・・・・・・炭素
系固体還元剤供給装置、12・・・・・・出湯口、20
・・・・・・流動造粒装置、21・・・・・・流動乾燥
炉、22・・・・・・流動焼成炉、24・・・・・・流
動予備還元炉、25・・・・・・供給装置。
FIG. 1 is a diagram showing a system system according to a first aspect of the present invention, and FIG. 2 is a diagram showing a system system according to a second aspect of the present invention. DESCRIPTION OF SYMBOLS 1... Ore supply device, 2... Fluidized preliminary reduction furnace, 3... Melting reduction furnace, 4... Generated gas discharge mechanism, 5... ... Generated gas introduction mechanism, 6
...Preliminary reduced ore discharge device, 7...Guiding pipe, 8, 8'...Tuyere, 9...Booster, 10...・Gas heating furnace, 11... Carbon-based solid reducing agent supply device, 12... Tap water outlet, 20
...Fluidized granulation device, 21...Fluidized drying furnace, 22...Fluidized calcining furnace, 24...Fluidized pre-reduction furnace, 25... ...Feeding device.

Claims (1)

【特許請求の範囲】 1 炭素系固体還元剤の充填層が形成され、下部に高温
空気を吹込む上下2段に設けられたそれぞれ複数の羽口
を有する竪型炉から排出される還元性ガスを用いて粉粒
状鉱石を流動予備還元した予備還元鉱を必要によりフラ
ックスと共に、前記上下2段に設けられた羽口のうち少
なくとも上段の羽口から、高温空気と共に前記竪型炉内
に吹込み溶融還元することを特徴とする金属酸化物を含
有する粉粒状鉱石からの溶融金属製造方法。 2 炭素系固体還元剤の充填層が形成され、下部に高温
空気を吹込む上下2段に設けられたそれぞれ複数の羽口
を有する竪型炉から排出される還元性ガスを用いて、下
記(イ)〜に)の工程中のに)の工程において鉱石と7
ラツクスとの焼成混合物粒子を予備還元して予備還元混
合物粒子となし、この粒子を前記上下2段に設けられた
羽口のうち少なくとも上段の羽口から、高温空気と共に
前記竪型炉内に吹込み溶融還元することを特徴とする金
属酸化物を含有する粉粒状鉱石からの溶融金属製造方法 (イ)粉粒状鉱石と粉状フラックスを下記(0)の工程
で発生する排ガスを用いて流動させつつ水を噴霧しなが
ら流動造粒して鉱石と7ラツクスとの生混合物粒子を造
る工程。 (0) 前記生混合物粒子を移送して、下記e→の工
程で発生する排ガスを用いて流動乾燥混合物粒子を造る
工程。 e→ 前記乾燥混合物粒子を移送して竪型炉で発生する
排ガスの1部を用いて流動焼成させて焼成混合物粒子を
造る工程。 に)前記焼成混合物粒子を前記竪型炉で発生する排出ガ
スの1部を用いて流動予備還元して予備還元混合物粒子
を造る工程。
[Scope of Claims] 1. Reducing gas discharged from a vertical furnace having a plurality of tuyeres each provided in two stages, upper and lower, in which a packed bed of a carbon-based solid reducing agent is formed and high-temperature air is blown into the lower part. The pre-reduced ore obtained by pre-reducing the fluidized ore using the tuyeres is blown into the vertical furnace together with high-temperature air from at least the upper tuyere of the two upper and lower tuyeres, along with flux if necessary. A method for producing molten metal from powdery ore containing metal oxides, the method comprising melting and reducing the ore. 2 Using reducing gas discharged from a vertical furnace having a plurality of tuyeres each provided in two stages, upper and lower, in which a packed bed of carbon-based solid reducing agent is formed and high-temperature air is blown into the lower part, the following ( b) During the process of ~ to), the ore and 7
Particles of the fired mixture with lux are pre-reduced to obtain pre-reduced mixture particles, and these particles are blown into the vertical furnace together with high-temperature air from at least the upper tuyere of the two upper and lower tuyeres. A method for producing molten metal from powdery ore containing metal oxides, which is characterized by carrying out melt-reduction process (a) Fluidizing the powdery ore and powdery flux using the exhaust gas generated in the step (0) below. A process of creating raw mixture particles of ore and 7 lux by fluidized granulation while spraying water. (0) A step of transferring the raw mixture particles and producing fluidized dry mixture particles using the exhaust gas generated in the step e→ below. e→ A step of transporting the dry mixture particles and performing fluidized firing using a part of the exhaust gas generated in the vertical furnace to produce fired mixture particles. B) A step of fluidized pre-reduction of the fired mixture particles using a part of the exhaust gas generated in the vertical furnace to produce pre-reduced mixture particles.
JP56063294A 1981-04-28 1981-04-28 Method for producing molten metal from powdered ore Expired JPS5918452B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP56063294A JPS5918452B2 (en) 1981-04-28 1981-04-28 Method for producing molten metal from powdered ore
ZA822684A ZA822684B (en) 1981-04-28 1982-04-20 Methods for melting and refining a powdery ore containing metal oxides and apparatuses for melt-refining said ore
AU82854/82A AU534503B2 (en) 1981-04-28 1982-04-20 Reduction of powdery oxide ores to metal
EP82302056A EP0063924B2 (en) 1981-04-28 1982-04-22 Methods for melting and refining a powdery ore containing metal oxides and apparatuses for melt-refining said ore
DE8282302056T DE3273996D1 (en) 1981-04-28 1982-04-22 Methods for melting and refining a powdery ore containing metal oxides and apparatuses for melt-refining said ore
PH27194A PH21317A (en) 1981-04-28 1982-04-26 Methods for melting and refining a powdery ore containing metal oxides and apparatuses for melt-refining said ore
PH35514A PH26062A (en) 1981-04-28 1987-06-07 Method for melting and refining a powdery ore containing metal oxides and apparatus for melting said ore
US07/127,600 US4874427A (en) 1981-04-28 1987-12-02 Methods for melting and refining a powdery ore containing metal oxides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56063294A JPS5918452B2 (en) 1981-04-28 1981-04-28 Method for producing molten metal from powdered ore

Publications (2)

Publication Number Publication Date
JPS57198205A JPS57198205A (en) 1982-12-04
JPS5918452B2 true JPS5918452B2 (en) 1984-04-27

Family

ID=13225150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56063294A Expired JPS5918452B2 (en) 1981-04-28 1981-04-28 Method for producing molten metal from powdered ore

Country Status (3)

Country Link
JP (1) JPS5918452B2 (en)
AU (1) AU534503B2 (en)
ZA (1) ZA822684B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59110712A (en) * 1982-12-16 1984-06-26 Kawasaki Steel Corp Reduction of powdery granular ore
JPS59113110A (en) * 1982-12-21 1984-06-29 Kawasaki Steel Corp Transferring method of preliminarily reduced ore in vertical type furnace melt reduction method
JPS59162213A (en) * 1983-03-04 1984-09-13 Kawasaki Steel Corp Operating furnace of melt reduction furnace
JPS59179726A (en) * 1983-03-31 1984-10-12 Kawasaki Steel Corp Preliminary reducing method of hardly reducible ore
JPS60162718A (en) * 1984-02-06 1985-08-24 Nisshin Steel Co Ltd Production of chromium-containing molten iron by vertical furnace
JPS6118633A (en) * 1984-07-02 1986-01-27 Kawasaki Steel Corp Apparatus for transferring and supplying constant quantity of powder
JPH0784624B2 (en) * 1985-09-04 1995-09-13 川崎製鉄株式会社 Method for producing molten metal from powdered ore containing metal oxide

Also Published As

Publication number Publication date
JPS57198205A (en) 1982-12-04
ZA822684B (en) 1983-05-25
AU8285482A (en) 1982-12-23
AU534503B2 (en) 1984-02-02

Similar Documents

Publication Publication Date Title
JPH0360883B2 (en)
US9512496B2 (en) Method and device for introducing fine particle-shaped material into the fluidised bed of a fluidised bed reduction unit
JPH01501401A (en) Equipment for producing ferrous or non-ferrous metals from self-fusing or non-self-fusing, self-reducing ore lumps or ores
JPS5918452B2 (en) Method for producing molten metal from powdered ore
US5810905A (en) Process for making pig iron
CN113278790A (en) Iron-containing material pretreatment and composite injection method and system
JPH0130888B2 (en)
JP2990925B2 (en) Method for rapid reduction of ore or metal oxide
JPS6256537A (en) Manufacture of molten metal from powdery ore containing metal oxide
JPH0639608B2 (en) Iron ore preheating / reducing device
JP2502976B2 (en) Iron ore preliminary reduction device
JPS5918453B2 (en) Method for producing molten metal from powdered ore containing metal oxides
JPS5980705A (en) Melt reduction method of powder and granular ore by vertical type furnace
JPH0394006A (en) Method for blowing powdery body from tuyere in blast furnace
JPS6311610A (en) Prereduction device for iron ore
JPS59159908A (en) Method for preventing clogging in transfer pipe for preliminarily reduced high temperature granular ore
JPS6131166B2 (en)
JPS58177408A (en) Method for blowing powder and granular ore into melt reduction furnace in melt reduction method
JPS59110712A (en) Reduction of powdery granular ore
JPS59110711A (en) Method for cooling furnace wall of shaft type fusion reduction furnace
JPS59113107A (en) Melt reduction device
JPH032922B2 (en)
JPS62228889A (en) Preheater in iron-ore spare reduction facility
JPH0314889B2 (en)
JPS5980703A (en) Melt reduction method of powder and granular ore by vertical type furnace