JPH0314889B2 - - Google Patents

Info

Publication number
JPH0314889B2
JPH0314889B2 JP58034461A JP3446183A JPH0314889B2 JP H0314889 B2 JPH0314889 B2 JP H0314889B2 JP 58034461 A JP58034461 A JP 58034461A JP 3446183 A JP3446183 A JP 3446183A JP H0314889 B2 JPH0314889 B2 JP H0314889B2
Authority
JP
Japan
Prior art keywords
flux
tuyere
ore
furnace
slag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58034461A
Other languages
Japanese (ja)
Other versions
JPS59162213A (en
Inventor
Shiko Takada
Nobuo Tsuchitani
Hisao Hamada
Toshihiro Inatani
Eiji Katayama
Mitsuo Kadoto
Tsutomu Fujita
Shunji Hamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP58034461A priority Critical patent/JPS59162213A/en
Publication of JPS59162213A publication Critical patent/JPS59162213A/en
Publication of JPH0314889B2 publication Critical patent/JPH0314889B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0006Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state
    • C21B13/0013Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state introduction of iron oxide into a bath of molten iron containing a carbon reductant
    • C21B13/002Reduction of iron ores by passing through a heated column of carbon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/60Process control or energy utilisation in the manufacture of iron or steel
    • C21B2100/66Heat exchange

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)

Description

【発明の詳細な説明】 本発明は炭素系固体還元剤の充填層を内部に内
蔵するとともに上下方向に2段もしくは必要によ
り3段に設けられたそれぞれ複数の羽口を有する
堅型の溶融還元炉を用いて、粉状鉱石を羽口から
吹き込むことにより溶融金属を製造する溶融還元
炉の操業方法において、最少量のフラツクス吹き
込みで粉状鉱石の還元を促進し、かつスラグの排
滓を円滑に維持することのできる、溶融還元炉の
羽口からのフラツクス吹き込み方法に係る溶融還
元炉の操業方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a rigid smelting reduction device which has a packed bed of a carbon-based solid reducing agent built therein and has a plurality of tuyeres arranged vertically in two or, if necessary, three stages. In the operating method of a smelting reduction furnace, which uses a furnace to produce molten metal by blowing powdered ore through the tuyere, the reduction of powdery ore is promoted with the minimum amount of flux injection, and the slag is smoothly discharged. The present invention relates to a method for operating a smelting-reduction furnace, which involves a method of injecting flux from the tuyere of the smelting-reduction furnace to maintain a high temperature.

近年、鉄鉱石をはじめ各種の金属酸化物より成
る原料鉱石は、塊状鉱石よりはむしろ、粉粒鉱石
の方が多くなりつつあり、今後もますますその比
率が増加する傾向にあるとみられる。従来、粉粒
状鉱石による製錬方法としては、流動層を用いて
粉粒状鉱石を予備還元したのち、この予備還元鉱
を電炉、転炉、その他の溶解炉で溶融還元する方
式が一般的である。
In recent years, the raw material ores made of various metal oxides, including iron ore, have become more granular ores than lumpy ores, and the proportion is expected to continue to increase in the future. Conventionally, the common method for smelting using powdery ore is to pre-reduce the powdery ore using a fluidized bed, and then melt and reduce the pre-reduced ore in an electric furnace, converter, or other melting furnace. .

この場合、予備還元鉱にバインダーを添加して
塊成化し、その塊成物を溶解炉で溶融還元する製
錬方式が多い。しかし、このような方式によれ
ば、塊成化のための資材、処理費および処理エネ
ルギーなどを必要とするだけでなく、塊成化した
のち焼成を必要とする場合には、その際に焼成炉
から排出されるガス中のNOX、SOXおよびダスト
などを処理するための費用が多大となるところに
も難点を伴う。
In this case, there are many smelting methods in which a binder is added to the pre-reduced ore to agglomerate it, and the agglomerate is melted and reduced in a melting furnace. However, this method not only requires materials for agglomeration, processing costs, and processing energy, but also requires firing after agglomeration. Another drawback is that the cost of treating NOx , SOx , dust, etc. in the gas discharged from the furnace is considerable.

また上記の方式の他に、アーク炉やプラズマま
たは純酸素を利用する炉を用いて、予備還元鉱を
塊成や焼成を経ずに溶融還元する方式を企てられ
てはいるが、アーク炉を用いる方式によれば電力
消費が莫大であるばかりでなく、立地条件にも制
約があり、またプラズマを利用する炉を用いる方
式も電力消費が甚しく現在のところ工業的規模で
の適用が困難であり、さらに純酸素を利用する炉
を用いる方式によれば、高温雰囲気を得ることは
容易であつても還元雰囲気の維持が難しく、また
酸素使用量が嵩むなど、何れも技術的に解決を要
する問題をはらんでいる。
In addition to the above-mentioned methods, methods have been proposed in which the pre-reduced ore is melted and reduced without agglomeration or calcination using an arc furnace or a furnace that uses plasma or pure oxygen. The method using plasma not only consumes a huge amount of power, but also has restrictions on location, and the method using a furnace that uses plasma consumes so much power that it is currently difficult to apply on an industrial scale. Furthermore, with the method using a furnace that uses pure oxygen, although it is easy to obtain a high-temperature atmosphere, it is difficult to maintain a reducing atmosphere, and the amount of oxygen used increases, all of which cannot be solved technologically. It is fraught with problems.

ところで本発明者らは先に、上記の諸問題を有
利に解決するものとして、特開昭57−198205号に
おいて炭素質固体還元剤の充填層を堅型炉内部で
不断に形成する一方、この堅型炉の下部胴壁に上
下2段にわたり配設したそれぞれ複数の羽口群を
通して、該堅型炉から排出される還元性の排ガス
を用いて粉、粒状鉱石を予備還元した部分還元鉱
を、必要ならばさらにフラツクスを加えて300〜
1300℃の高温の空気または酸素富化空気からなる
熱風をもつてする気流搬送下に堅型炉内に吹込ん
で、上記部分還元鉱を溶融還元する粉、粒状鉱石
の堅型炉溶融還元方法を提案した。
By the way, the present inventors previously attempted to solve the above-mentioned problems advantageously by continuously forming a packed bed of carbonaceous solid reducing agent inside a vertical furnace in Japanese Patent Application Laid-open No. 57-198205. Partially reduced ore is produced by pre-reducing powder and granular ore using the reducing exhaust gas discharged from the vertical furnace through a plurality of tuyere groups arranged in two stages, upper and lower, on the lower body wall of the vertical furnace. , add more flux if necessary to 300~
A method for melting and reducing powder and granular ores in a vertical furnace, in which the above partially reduced ore is melted and reduced by blowing hot air made of high-temperature air or oxygen-enriched air into a vertical furnace under air flow conveying air at a temperature of 1300°C. Proposed.

上記の方法において、予熱下の酸化性ガス気流
にて搬送し、羽口群から堅型溶融還元炉内に吹込
み装入を行う装入物は、羽口先端部周辺で該炉内
部に形成された炭素系固体還元剤の充填層の高熱
領域中を滴下する間に溶融還元されて炉床に蓄溜
し、適宜に炉外に取り出されるしくみとされ、こ
のような堅型溶融還元炉を用いる溶融還元法の開
発により、粉、粒状鉱石の製錬が極めて効果的に
行えるようになつた。
In the above method, the charge, which is transported by a preheated oxidizing gas stream and blown into the vertical melting reduction furnace from the tuyere group, is formed inside the furnace around the tip of the tuyere. While the solid carbon-based reducing agent is dripped into the high-temperature region of the packed bed, it is melted and reduced, accumulated in the hearth, and taken out of the furnace as appropriate. The development of the smelting reduction method used has made it possible to smelt powder and granular ores extremely effectively.

上記堅型溶融還元炉で粉状鉱石を溶融還元する
場合、適当なフラツクスを添加し、炭素系固体還
元剤充填層内でのこれらの鉱石の溶融を容易に
し、還元しやすくすると共に、充填層内で十分に
還元されるための充填層内滞留時間を確保するこ
とと、還元後のスラグが容易に排滓される条件を
確保することが必要である。
When smelting and reducing powdery ores in the above-mentioned rigid smelting reduction furnace, an appropriate flux is added to facilitate the melting of these ores in the carbon-based solid reducing agent packed bed, making it easier to reduce them, and It is necessary to ensure a residence time in the packed bed for sufficient reduction within the slag and to ensure conditions under which the reduced slag can be easily slaged off.

すなわち上記溶融還元法においては、上段羽口
から炉床にかけて形成された炭素系固体還元剤の
充填層において、フラツクスを添加した溶融鉱石
が直接還元され溶融滴下し排滓される過程におい
て、還元率を上げ、添加するフラツクス量を出来
るだけ少なくすること、およびスラグの排滓を常
に円滑に維持する操業方法の開発が必要であつ
た。この場合スラグ比を下げることは直接的に溶
融金属製造の際の所要エネルギーを下げることに
なる。
In other words, in the above-mentioned smelting reduction method, in the packed bed of carbon-based solid reducing agent formed from the upper tuyere to the hearth, the molten ore to which flux has been added is directly reduced, and in the process of melting and dripping and being discharged, the reduction rate increases. It was necessary to increase the amount of flux added and to reduce the amount of added flux as much as possible, and to develop an operating method that would always maintain smooth slag drainage. In this case, lowering the slag ratio directly reduces the energy required to produce molten metal.

しかし、上記溶融還元炉の操業条件を確保する
問題は、実験室での高温シユミレーシヨン実験お
よび小型操業炉での広範な実験から、非常に複雑
な問題であることが分つている。
However, the problem of ensuring the operating conditions of the smelting reduction furnace has been found to be a very complex problem from high temperature simulation experiments in the laboratory and extensive experiments in small operating furnaces.

例えば、フラツクス組成を変化させた場合、そ
の還元性が変化し、それに伴なつてガスフオーミ
ングが変化し、炭素系固体還元剤充填層内におけ
る滞留時間が大きく変化する。
For example, when the flux composition is changed, its reducibility changes, gas forming changes accordingly, and the residence time in the carbon-based solid reducing agent packed bed changes significantly.

また、高温のため、スラグ分のSiO2やMgOや
Al2O3はかなり気化蒸発し、スラグ組成が変化す
る。
In addition, due to the high temperature, SiO 2 and MgO in the slag
Al 2 O 3 is considerably vaporized and the slag composition changes.

さらに、溶融鉱石の還元率の推移に従つて初
期・中期スラグの特性値、特に表面張力や接触
角、粘度等が変化し、滴下挙動を大きく変える
等、複雑な問題がある。
Furthermore, as the reduction rate of the molten ore changes, the characteristic values of the slag in the initial and intermediate stages, especially the surface tension, contact angle, viscosity, etc., change, resulting in a large change in the dripping behavior, which poses complex problems.

本発明者らは、溶融還元法におけるこれらの非
常に複雑な現象の中から、 (1) フラツクスを添加した溶融鉱石が非常に溶け
やすいものであれば、充填層を速く滴下し操業
度は向上するが、還元率が低下すること、 (2) 溶融鉱石が非常に溶けにくいものであれば充
填層をより高温にしなければならず、エネルギ
ー消費が上昇し、かつ生産性が低下すること、 (3) 添加するフラツツクスが多くなればスラグの
顕熱損失が多くなると共に溶融鉱石の還元率が
低下すること、 (4) 高温の炭素系固体還元剤からなる充填層の下
部に滞つた最終スラグが円滑に定常排滓される
為には、この最終スラグの溶融温度が1550℃以
下であること、およびその粘性が1550℃におい
て10ポアズ以下であることが望ましいこと(ス
ラグの粘性が1550℃において10ボアズを超える
と排滓が非常に困難となることが本発明者らに
よつて確かめられている。) (5) 充填層内での溶融鉱石の滴下状態を制御し還
元率を上昇させるフラツクス組成と、スラグの
排滓を円滑にするために添加しなければならな
いフラツクス組成とは、組成が異なること、 の5点を発見した。
Among these extremely complex phenomena in the smelting reduction process, the present inventors found that (1) If the molten ore to which flux has been added is highly soluble, the packed bed can be dripped quickly and the operating efficiency can be improved. (2) If the molten ore is very difficult to melt, the packed bed must be heated to a higher temperature, which increases energy consumption and reduces productivity. 3) If more fluxes are added, the sensible heat loss of the slag will increase and the reduction rate of the molten ore will decrease; (4) The final slag that has accumulated at the bottom of the packed bed consisting of a high-temperature carbon-based solid reducing agent will In order to smoothly and steadily discharge the slag, it is desirable that the melting temperature of this final slag is 1550℃ or less, and that its viscosity is 10 poise or less at 1550℃ (the viscosity of the slag is 10 poise or less at 1550℃). (5) Flux composition that controls the dripping state of molten ore in the packed bed and increases the reduction rate. The following five points were discovered: the composition of the flux is different from that of the flux that must be added to facilitate slag drainage.

本発明者らは以上の発見をもとにさらに実験を
続け、本発明を完成するに至つた。
The present inventors continued experiments based on the above discoveries and completed the present invention.

本発明は、炭素系固体還元剤の充填層を内蔵す
るとともに羽口群を上下方向複数段に設けた堅型
の溶融還元炉中に、熱風と共に粉状鉱石とフラツ
クスとを吹込むことにより溶融金属を製造する溶
融還元炉の操業方法において、上部の羽口から粉
状鉱石と共に還元促進用塩基性フラツクス、例え
ばCaO系フラツクスを吹込み、最下段の羽口から
排滓を円滑にさせる酸性フラツクス、例えば
SiO2系フラツクスを吹込むことを特徴とする溶
融還元炉の操業方法にある。
The present invention melts powdered ore by blowing hot air together with powdered ore and flux into a vertical melting reduction furnace that contains a packed bed of a carbon-based solid reducing agent and has tuyere groups arranged in multiple stages in the vertical direction. In the operating method of a smelting reduction furnace for manufacturing metals, basic flux for promoting reduction, such as CaO-based flux, is injected together with powdered ore from the upper tuyere, and acidic flux is used to smoothly discharge the slag from the lowermost tuyere. ,for example
A method of operating a smelting reduction furnace characterized by injecting SiO 2 -based flux.

本発明は、前記溶融還元炉で粉状鉱石およびフ
ラツクスを均等に上段あるいは上段・中段羽口よ
り吹き込む操業方法に比べフラツクスの吹込量が
著しく少なくなる。すなわちフラツクスの吹き込
み方法を、最下段の羽口を除く上部の羽口から吹
き込まれた粉状鉱石が羽口先の高温で溶解し、か
つ炭素系固体還元剤の充填層を滴下する間に充分
還元され、かつそのフラツクス吹込量が最小にな
るようにし、一方、最下段の羽口からはスラグの
排滓が円滑に行われる条件を満足し、かつそのフ
ラツクス吹き込み量が最小となるようにした場合
の方が、全体としてのフラツクス吹込量が減少
し、かつ溶融鉱石の還元率が上昇することになる
のである。上部の羽口すなわち最下段の羽口を除
く羽口から吹き込む還元促進用フラツクスとして
はCaO系フラツクスを用い、最下段の羽口から吹
込むスラグの粘度を低下させ排滓が円滑に行われ
るようにするフラツクスとしてはSiO2系フラツ
クスを用いる操業方法によつて、上記全体として
のフラツクス吹込量が減少し、かつ還元率が上昇
する結果を容易に得ることができる。
In the present invention, the amount of flux blown into the smelting reduction furnace is significantly smaller than that of the operating method in which powdered ore and flux are evenly blown into the tuyere from the upper stage or from the upper/middle stage tuyeres. In other words, the flux injection method is such that the powdered ore injected from the upper tuyere, excluding the bottom tuyere, is melted at the high temperature at the tip of the tuyere, and is sufficiently reduced while the packed bed of carbon-based solid reducing agent is dropped. and the amount of flux blown into the tuyere is set to a minimum, while the condition that slag slag is smoothly discharged from the lowest tuyere is satisfied, and the amount of flux blown into the tuyere is set to the minimum. In this case, the total amount of flux injected is reduced and the reduction rate of the molten ore is increased. A CaO-based flux is used as the reduction promoting flux injected from the upper tuyere, that is, the tuyere except for the bottom tuyere, to reduce the viscosity of the slag injected from the bottom tuyere and to ensure smooth slag removal. By using an operation method that uses SiO 2 -based flux as the flux to be used, it is possible to easily obtain results in which the overall amount of flux blown is reduced and the reduction rate is increased.

以下図面を参照して本発明を詳細に説明する。 The present invention will be described in detail below with reference to the drawings.

第1図は本発明方法の実施に用いる装置の系統
図である。堅型溶融還元炉1内には装入装置2を
経て、炭素系固体還元剤、好ましくは塊コークス
が装入され、堅型溶融還元炉1内には還元剤充填
層が形成される。堅型溶融還元炉1の下部には羽
口が2〜3段に設けられている。上、中段羽口は
予備還元鉱とその還元を促進させるフラツクスを
熱風とともに吹込む羽口3,4、最下段は排滓を
円滑にするために添加するフラツクスと熱風とを
吹込む羽口5である。
FIG. 1 is a system diagram of the apparatus used to carry out the method of the present invention. A carbon-based solid reducing agent, preferably lump coke, is charged into the vertical smelting reduction furnace 1 via a charging device 2, and a reducing agent packed layer is formed in the vertical smelting reduction furnace 1. Two to three stages of tuyeres are provided in the lower part of the vertical melting reduction furnace 1. The upper and middle tuyeres are tuyeres 3 and 4, through which hot air is blown in to pre-reduced ore and the flux that promotes its reduction, and the lowest tuyere is tuyere 5, through which hot air and flux added to smooth the removal of slag are blown in. It is.

粉状鉱石とその還元を促進させる為に添加する
フラツクスは流動予備還元炉6に供給装置7によ
つて供給され、この予備還元炉6内において、堅
型溶融還元炉1内で発生した高温排ガスを用いて
予備還元・加熱される。
Powdered ore and flux added to promote its reduction are supplied to a fluidized pre-reduction furnace 6 by a supply device 7, and in this pre-reduction furnace 6, high-temperature exhaust gas generated in the vertical smelting reduction furnace 1 is fed to the fluidized pre-reduction furnace 6. It is pre-reduced and heated using

予備還元鉱石とフラツクスは予備還元炉6の排
出口8から上、中段羽口3,4へ、重力輸送およ
び気体輸送の原理を応用して移送される。
The prereduced ore and flux are transferred from the outlet 8 of the prereduction furnace 6 to the upper and middle tuyeres 3 and 4 by applying the principles of gravity transport and gas transport.

堅型溶融還元炉1内の上段羽口3、中段羽口
4、最下段羽口5の羽口先端近傍には、熱風炉1
1から送風される熱風により、高炉の羽口先端近
傍と同様に、レースウエイが生成し、2000〜2500
℃の高温領域が形成されており、この領域内に熱
風あるいは付加される酸素とともに吹込まれる予
備還元鉱石とフラツクスは直ちに加熱され容易に
溶融する。そして溶融還元炉1の下部の炭素系固
体還元剤充填層を滴下する間に還元されて溶融金
属と溶融スラグが生成して製錬が行われる。最下
段羽口5には、最終スラグ成分調整用フラツクス
ホツパ9からスラグの排滓を円滑にさせるフラツ
クスを供給する。溶融金属は最下段羽口5より吹
込まれたフラツクスと共に溶解して最終的に炉床
部に蓄留され、出湯口10より適時炉外に出湯さ
れる。
A hot blast furnace 1 is installed near the tips of the upper tuyere 3, the middle tuyere 4, and the lower tuyere 5 in the vertical smelting reduction furnace 1.
The hot air blown from 1 generates raceways similar to those near the tip of the blast furnace tuyere, and
A high temperature region of 0.degree. C. is formed, and the pre-reduced ore and flux blown into this region with hot air or added oxygen are immediately heated and easily melted. Then, while dropping the carbon-based solid reducing agent filling bed in the lower part of the melting reduction furnace 1, it is reduced to produce molten metal and molten slag, and smelting is performed. Flux is supplied to the lowermost tuyere 5 from a flux hopper 9 for final slag component adjustment to facilitate smooth removal of slag. The molten metal is melted together with the flux injected from the lowermost tuyere 5 and is finally stored in the hearth, and is tapped out of the furnace from the tap 10 at a timely manner.

次に本発明の実施例を挙げてその効果を具体的
に説明する。
Next, the effects of the present invention will be specifically explained using examples.

実施例 第1図に示す系統方式により、本発明を試験炉
で実施した。製造金属はコレマナイト鉱石より
Fe−B−Si−C系合金を製造した。
EXAMPLE The present invention was implemented in a test reactor using the system system shown in FIG. The manufacturing metal is from colemanite ore.
A Fe-B-Si-C alloy was manufactured.

比較例としてフラツクスを各羽口から均一に供
給する操業方法も実施した。
As a comparative example, an operating method was also implemented in which flux was uniformly supplied from each tuyere.

操業条件及び操業結果は次の通りである。 The operating conditions and results are as follows.

(1) 硼素含有鉱石:コレマナイト 粒径:200メツシユ以下 上、中段羽口への供給量:170Kg/hr (2) 鉄鉱石 銘柄:ブラジルMBR鉱石 粒径:2mm以下 予備還元炉への供給量:740Kg/hr 上、中段羽口への供給量:600Kg/hr 予備還元率:65% (3) フラツクス (A) 均一供給方式(比較例) 石灰石:150Kg/hr ケイ石:126Kg/hr 吹込み羽口:上、中段羽口 合計のフラツクス吹込み量:276Kg/hr (B) 分割供給方式(本発明方法) 石灰石:35Kg/hr 吹込み羽口:上、中段羽口 石灰石:35Kg/hr ケイ石:82Kg/hr 吹込み羽口:最下段羽口 合計のフラツクス吹込み量:152Kg/hr (4) 炭素系固体還元剤の種類:コークス 粒径:20〜30mm 供給量:603Kg/hr (5) 堅型溶融還元炉への送風量:1800Nm3/hr 送風温度:900℃ 送風羽口:上段、下段、最下段各4本 計12本 (6) Fe−B−Si−C系溶融金属生産量およびス
ラグ排出量 (A) フラツクス均一供給方式(比較例) 430Kg/hr(成分B=3.0%、Si=2.8%、C=
3.0%、Fe=Bal) スラグ排出量:434Kg/hr (B) フラツクス分割供給方式(本発明方法) 450Kg/hr(成分B=5.1%、Si=2.1%、C=
2.8%、Fe=Bal) スラグ排出量:351Kg/hr (7) Bの還元率 コレマナイト供給量170Kg/hr中に含まれる
B2O3含有量は45.5%で、Bの量は24.0Kg/hrで
ある。
(1) Boron-containing ore: colemanite particle size: 200 mesh or less Supply amount to the upper and middle tuyeres: 170Kg/hr (2) Iron ore brand: Brazil MBR Ore particle size: 2 mm or less Supply amount to the pre-reduction furnace: 740Kg/hr Supply amount to upper and middle tuyeres: 600Kg/hr Preliminary reduction rate: 65% (3) Flux (A) Uniform supply method (comparative example) Limestone: 150Kg/hr Silica stone: 126Kg/hr Blowing blade Mouth: Upper and middle tuyere total flux injection amount: 276Kg/hr (B) Split supply method (method of the present invention) Limestone: 35Kg/hr Injection tuyere: Upper and middle tuyere Limestone: 35Kg/hr Silica stone : 82Kg/hr Injection tuyere: Total amount of flux injected into the bottom tuyere: 152Kg/hr (4) Type of carbon-based solid reducing agent: Coke particle size: 20-30mm Supply amount: 603Kg/hr (5) Air flow rate to the rigid smelting reduction furnace: 1800Nm 3 /hr Air blowing temperature: 900℃ Air tuyere: 4 each in the upper, lower, and bottom tiers, total 12 (6) Production volume of Fe-B-Si-C molten metal and slag discharge amount (A) Uniform flux supply method (comparative example) 430Kg/hr (Component B = 3.0%, Si = 2.8%, C =
3.0%, Fe=Bal) Slag discharge amount: 434Kg/hr (B) Flux divided supply method (method of the present invention) 450Kg/hr (Component B=5.1%, Si=2.1%, C=
2.8%, Fe=Bal) Slag discharge amount: 351Kg/hr (7) Reduction rate of B Contained in colemanite supply amount of 170Kg/hr
The B 2 O 3 content is 45.5% and the amount of B is 24.0 Kg/hr.

(A) 比較例 Bの溶融金属への移行量:12.9Kg/hr 未還元B量: 24.0−12.9=11.1Kg/hr Bの還元率:53.8% (B) 本発明方法 Bの溶融金属への移行量:22.95Kg/hr 未還元B量: 24.0−22.95=1.05Kg/hr Bの還元率:95.6% 以上のように多段の羽口より溶融還元炉にフラ
ツクスを吹込む場合、最下段以外の羽口からは充
填層での溶融還元に好ましいフラツクスを吹き込
み、最下段の羽口から排滓に必要な条件を満足す
るように最終スラグを調整するフラツクスを吹込
む溶融還元炉の操業方法によつて合計のフラツク
ス吹込み量を減らし溶融金属製造のエネルギーコ
ストを低下させるだけでなく、その還元率も上昇
させるという効果を持つことが明らかとなつた。
(A) Amount transferred to molten metal in Comparative Example B: 12.9Kg/hr Amount of unreduced B: 24.0−12.9=11.1Kg/hr Reduction rate of B: 53.8% (B) Transfer amount to molten metal in Method B of the present invention Transfer amount: 22.95Kg/hr Unreduced B amount: 24.0−22.95=1.05Kg/hr B reduction rate: 95.6% As described above, when flux is injected into the melting reduction furnace from the multi-stage tuyeres, The smelting reduction furnace is operated by injecting flux suitable for smelting reduction in the packed bed from the tuyere, and by injecting flux from the lowest tuyere to adjust the final slag to satisfy the conditions required for slag removal. It has become clear that this method not only reduces the total amount of flux injected and lowers the energy cost of producing molten metal, but also increases the reduction rate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の実施に用いる装置の系統
図である。 1……堅型溶融還元炉、2……原料供給装置、
3,4,5……羽口、6……予備還元炉、7……
鉱石・フラツクス供給装置、8……予備還元鉱・
フラツクス排出口、9……最終スラグ成分調整用
フラツクスホツパ、10……溶融金属・スラグの
排出口、11……熱風炉。
FIG. 1 is a system diagram of the apparatus used to carry out the method of the present invention. 1... Rigid melting reduction furnace, 2... Raw material supply device,
3,4,5...Tuyere, 6...Preliminary reduction furnace, 7...
Ore/flux supply device, 8...Preliminary reduced ore/
Flux discharge port, 9... Flux hopper for final slag component adjustment, 10... Molten metal/slag discharge port, 11... Hot blast furnace.

Claims (1)

【特許請求の範囲】 1 固体還元剤充填層に熱風と共に粉状鉱石を吹
込んで該吹込鉱石を溶融還元させる堅型溶融還元
炉の操業において、 上段羽口から粉状鉱石と共に還元促進用塩基性
フラツクスを吹込み、最下段の羽口から排滓を円
滑にさせる酸性フラツクスを吹込むことを特徴と
する溶融還元炉の操業方法。
[Scope of Claims] 1. In operation of a vertical smelting reduction furnace in which powdered ore is blown into a bed filled with a solid reducing agent together with hot air to melt and reduce the blown ore, basicity for promoting reduction is added together with the powdered ore from the upper tuyere. A method for operating a smelting reduction furnace characterized by injecting flux and injecting acidic flux for smooth removal of slag from the lowest tuyere.
JP58034461A 1983-03-04 1983-03-04 Operating furnace of melt reduction furnace Granted JPS59162213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58034461A JPS59162213A (en) 1983-03-04 1983-03-04 Operating furnace of melt reduction furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58034461A JPS59162213A (en) 1983-03-04 1983-03-04 Operating furnace of melt reduction furnace

Publications (2)

Publication Number Publication Date
JPS59162213A JPS59162213A (en) 1984-09-13
JPH0314889B2 true JPH0314889B2 (en) 1991-02-27

Family

ID=12414879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58034461A Granted JPS59162213A (en) 1983-03-04 1983-03-04 Operating furnace of melt reduction furnace

Country Status (1)

Country Link
JP (1) JPS59162213A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0772288B2 (en) * 1986-12-22 1995-08-02 川崎製鉄株式会社 Operation method of carbon material packed bed type smelting reduction furnace

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57198205A (en) * 1981-04-28 1982-12-04 Kawasaki Steel Corp Production of molten metal from powder and granular ore

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57198205A (en) * 1981-04-28 1982-12-04 Kawasaki Steel Corp Production of molten metal from powder and granular ore

Also Published As

Publication number Publication date
JPS59162213A (en) 1984-09-13

Similar Documents

Publication Publication Date Title
AU734001B2 (en) Method and apparatus for making metallic iron
JPS5877509A (en) Production of molten fe-b metal
JPS5938353A (en) Amorphous mother alloy, its manufacture and method for using it
CN205368456U (en) Apparatus for producing of COREX coating pelletizing
JPS5918452B2 (en) Method for producing molten metal from powdered ore
JPH0314889B2 (en)
US4106929A (en) Process for preparing a ferrochromium by using a blast furnace
JP4149531B2 (en) Metallic iron manufacturing method and manufacturing equipment
CN216445405U (en) Direct steelmaking device of iron-containing powder in reducing atmosphere
JPH0130888B2 (en)
JPS58199842A (en) Melt smelting method of powdery manganese ore
JPS59110712A (en) Reduction of powdery granular ore
JPH0242884B2 (en)
JPS59113107A (en) Melt reduction device
JP2000510536A (en) Direct charging device for direct charging of reduced fine iron ore to melt vaporizer
JPH1129807A (en) Production of molten iron
JPH0372127B2 (en)
JPS59110711A (en) Method for cooling furnace wall of shaft type fusion reduction furnace
JPS58197208A (en) Melt reduction method of metallic oxide ore
JPS5980703A (en) Melt reduction method of powder and granular ore by vertical type furnace
JPS63157807A (en) Operation of smelting reduction furnace with carbonic material packing layer
JPH032922B2 (en)
JP2014019882A (en) Method for operating fusion reduction furnace
JPH062894B2 (en) Method for producing molten metal from powdered ore
JPS61291930A (en) Manufacture of molten metal containing chromium