JPS59110712A - Reduction of powdery granular ore - Google Patents

Reduction of powdery granular ore

Info

Publication number
JPS59110712A
JPS59110712A JP21916282A JP21916282A JPS59110712A JP S59110712 A JPS59110712 A JP S59110712A JP 21916282 A JP21916282 A JP 21916282A JP 21916282 A JP21916282 A JP 21916282A JP S59110712 A JPS59110712 A JP S59110712A
Authority
JP
Japan
Prior art keywords
reduction
gas
ore
furnace
cyclone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21916282A
Other languages
Japanese (ja)
Inventor
Toshihiro Inatani
稲谷 稔宏
Hisao Hamada
浜田 尚夫
Mitsuo Kadoto
角戸 三男
Nobuo Tsuchitani
槌谷 暢男
Shiko Takada
高田 至康
Eiji Katayama
英司 片山
Tsutomu Fujita
勉 藤田
Shunji Hamada
浜田 俊二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP21916282A priority Critical patent/JPS59110712A/en
Publication of JPS59110712A publication Critical patent/JPS59110712A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/14Multi-stage processes processes carried out in different vessels or furnaces

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To effectively steadily carry out the preliminary reduction of ore, by using shaft type evolved gas as reduction gas in countercurrently moving the ore and reduction gas in plural cyclones arranged in series by multi-steps. CONSTITUTION:Powdery granular ore is charged into the top stream cyclone 23 of preliminary reduction unit 2 from a raw material hopper 1 and at that time the reducing gas evolved from a cyclone 22 on down stream side is used as carrier gas. Further, the high temperature reducing gas evolved from a fusion reduction furnace 3 is utilized for the cyclone 21 positioned on the downest stream side. The reducing gas successively moves to 22 and 23 cyclones on upper stream side, flows into their insides respectively taking unreduced ore powder therewith, repeats the heating, reduction and separation and transfers the preliminary reduction product having reached required reducibility to the tuyere part of fusion reduction furance 3 via a discharge pipe 6. Thus, stable operation, high gas utilization ratio and the improvement of reducibility can be achieved.

Description

【発明の詳細な説明】 本発明は、粉粒状鉱石の還元方法に関するものであり、
とくに直列多段に設置したサイクロンよすするサスペン
ションプリヒータ方式の予備還元と炭材充填層を使うた
て型溶融還元との組合わせにかかる方法により還元生成
物ケ得る技術に関するものである。
[Detailed description of the invention] The present invention relates to a method for reducing powdery ore,
In particular, it relates to a technology for obtaining reduction products by a method that combines preliminary reduction using a suspension preheater system using cyclones installed in multiple stages in series and vertical smelting reduction using a carbonaceous packed bed.

近年、鉄鉱石をはじめ各種の金属酸化物よシ主としてな
る原料鉱石は、塊状鉱石よりはむしろ、粉、粒状鉱石の
方が多くな少つつあり、今後もますますその比率は増加
傾向にあるとみられる。粉、粒状鉱石による製錬方法と
しては、流動層を用いて粉、粒状鉱石を予備還元しこの
予備還元鉱を電炉、転炉、その他の溶解炉で溶融還元す
る方式が一般的である。
In recent years, the raw material ores that serve as the main source of various metal oxides, including iron ore, have been decreasing, with powder and granular ores being more common than lump ores, and the proportion is expected to continue to increase in the future. It will be done. A common method for smelting powder or granular ore is to pre-reduce the powder or granular ore using a fluidized bed, and then melt and reduce the pre-reduced ore in an electric furnace, converter, or other melting furnace.

この場合予備還元鉱はバインダーの添加で塊成化をし、
その塊成物を溶解炉で溶融還元する方式が多い。しかし
、このような方式によれは塊成化のための資材、処理費
、処理エネルギーなどを必要とするばかりでなく、塊成
化をしたのち焼成を必要とする場合にはその際に焼成炉
から排出されルカス中のNOx% SOxおよびダスト
などを処理するための費用が多大に上ぼるところにも難
点を伴う0 また上記方式の他に、アーク炉やプラズマまたは純酸素
を利用する炉を用いて、予備還元鉱を塊成ないしは焼成
を行わずに溶融還元する方式も企てられてはいるが、ア
ーク炉を用いる方式によれば電力消費が莫大であるばか
ルでなく、立地条件にも制約があり、またプラズマを利
用する炉を用いる方式も電力消費が甚しく現在のところ
工業的規模での適用が困難であシ、さらに純酸素を利用
する炉を用いる方式によれば高温雰囲気を得ることは容
易であっても還元雰囲気の維持が難しくまた散票使用量
が嵩むなど、何れも技術的に解決を要する問題をはらん
でいる。
In this case, the pre-reduced ore is agglomerated by adding a binder,
Many methods involve melting and reducing the agglomerates in a melting furnace. However, this method not only requires materials for agglomeration, processing costs, processing energy, etc., but also requires a firing furnace if firing is required after agglomeration. Another drawback is that the cost of processing SOx and dust in the gas emitted from the gas increases considerably.In addition to the above methods, arc furnaces, plasma, or furnaces that use pure oxygen are also used. Therefore, a method has been proposed in which the pre-reduced ore is smelted and reduced without agglomeration or calcination, but the method using an arc furnace would not only consume a huge amount of electricity but also Furthermore, the method using a furnace that uses plasma consumes so much power that it is difficult to apply it on an industrial scale at present.Furthermore, the method using a furnace that uses pure oxygen does not allow high-temperature atmospheres. Although it is easy to obtain, it is difficult to maintain a reducing atmosphere and the amount of powder used is large, all of which involve problems that require technical solutions.

そこで最近は、電力によらない粉、粒状鉱石のの還元技
術として、予備還元−溶融還元による方法が注目される
に至っている0例えば、流動層予備還元炉とたて型溶融
還元炉との結合にかかる設備を用い、粉粒状鉱石から直
接フェロアロイ等を製造する方法がそれである。この既
知の方法は、金属酸化物含有鉱石の予備還元に必要な還
元剤及び熱の供給源として、溶融還元炉の高温排ガスを
利用し、て流動層形式によシ予備還元する方法であ勺、
粉粒状鉱石を塊成化することなく直接使用できる点で前
述の方法に比べると低コストで溶融金属の製造が可能で
ある。
Therefore, recently, methods using pre-reduction and smelting reduction have been attracting attention as a reduction technology for powder and granular ores that does not require electricity. For example, a combination of a fluidized bed pre-reduction furnace and a vertical smelting reduction furnace. This is a method of producing ferroalloys directly from powdered ore using the equipment described above. This known method utilizes the high-temperature exhaust gas of a smelting reduction furnace as a source of the reducing agent and heat necessary for the pre-reduction of metal oxide-containing ores, and is the most popular method for pre-reduction in a fluidized bed format. ,
Since the granular ore can be used directly without agglomeration, it is possible to produce molten metal at a lower cost than the above-mentioned method.

上記した既知方法における予備還元炉としての流動層に
必要な主な条件としては、 +11  必要な還元速度が得られる反応温間維持のた
めの熱供給が容易なこと、 (81局部過熱や高温域での予備還元鉱石の粘着によっ
て焼結が起り流動化が阻害されるようなことがないこと
、 (8)  均一かつ安定な流動化現象が得られること、
(4)短い滞留時間でも必要な還元率が得られること(
流動層を多段化する)、 (5)粒子の流動層からの飛び出しによるダスト発生が
少ないこと、 などがある0 ゛ところが、こうした各種の条件というのは、一般的に
言って予備還元に必要な流動層の温度が高いほど、その
維持が難しく、シかも溶融還元炉かC8) ら発生する流動化遺児ガス中に多量のダストが含まれる
と、その操業法はさらに、難しさを増大させる。例えば
、散気装置としての分散仮にダストや凝縮物の析出が生
じそ目詰りを起す欠点があり、このことのために、各種
の新しい方法や装置の開発が必要となる。
The main conditions necessary for the fluidized bed as a pre-reduction furnace in the above-mentioned known method are: (8) Uniform and stable fluidization phenomenon can be obtained; (8) uniform and stable fluidization phenomenon can be obtained;
(4) The required reduction rate can be obtained even with a short residence time (
(5) generation of less dust due to particles flying out of the fluidized bed, etc.0 However, generally speaking, these various conditions are necessary for preliminary reduction. The higher the temperature of the fluidized bed, the more difficult it is to maintain it, and if a large amount of dust is included in the fluidized gas generated from the smelting reduction furnace (C8), the difficulty of operating the bed will be further increased. For example, dispersion as an aeration device has the disadvantage that dust and condensate deposits may occur, leading to clogging, and this requires the development of various new methods and devices.

本発明は、上述した従来技術の欠点の克服を目的として
、たて型炉による溶融還元技術の特性を有利に利用する
一方で、流動層予備還元炉に代え上述した欠点のないサ
スペンクヨン方式の予備還元を行う還元方法の実施によ
り、安定した操業と、高いガス利用率と、還元率の向上
を達成するのに好都合な還元方法について提案する。
In order to overcome the above-mentioned drawbacks of the prior art, the present invention advantageously utilizes the characteristics of the smelting reduction technology using a vertical furnace, while replacing the fluidized bed pre-reduction furnace with a suspension-type pre-reduction furnace which does not have the above-mentioned drawbacks. We propose a reduction method that is convenient for achieving stable operation, high gas utilization rate, and improvement in reduction rate by implementing a reduction method that performs reduction.

第1図にこの発明の実施に適合する予備還元段階と溶融
還元段階からなる還元系統の模式図を示。
FIG. 1 shows a schematic diagram of a reduction system consisting of a preliminary reduction stage and a melt reduction stage suitable for carrying out the present invention.

す0図中1は、粉粒状鉱石原料ホッパー、2t−Jサス
ペンション方式の予備還元装置、8けたて型溶#l!l
I還元炉である。
1 in the figure shows a powder ore raw material hopper, a 2t-J suspension type preliminary reduction device, and an 8-digit melting system! l
I reduction furnace.

上記予備還元装置2は、複数個のサイクロン21.22
.28を移送管を介して直列に接続しく 4  ) て構成“してあり、還元ガスと粉粒状鉱石とは互いに逆
方向に移動するなかで接触反応し順次還元率が向上する
ようになっている0すなわち、粉、粒状鉱石を、サイク
ロン2′1内に還元ガスに帯同させて一緒に流入させる
と、その流入気流は円筒内壁面に沿って旋回するが、そ
の際遠心力の影響を受けながら鉱石の方は下降し、一方
還元ガスの方は上昇する。そして、そうした接触、分離
の過程の中で、しかも各サイクロッ21〜28間?移動
していく経過の中で、必要な還元率の予備還元生成物が
得られる。
The preliminary reduction device 2 includes a plurality of cyclones 21 and 22.
.. 28 are connected in series through a transfer pipe (4), so that the reducing gas and the granular ore react in contact with each other as they move in opposite directions, and the reduction rate increases sequentially. 0 In other words, when powder and granular ore are entrained with reducing gas and flowed into the cyclone 2'1, the incoming airflow swirls along the inner wall surface of the cylinder, but at that time, it is influenced by centrifugal force. The ore falls, while the reducing gas rises.In the course of such contact and separation, and as it moves between the cyclones 21 to 28, the required reduction rate is determined. A prereduction product is obtained.

上記溶融還元炉8は、本発明者らが先に提案した特願昭
56−68294号の発明を発展させたものであって、
たて如炉内に炭素質固体還元剤の充填層全形成する一方
、電炉の下部胴壁に上下複数段にわたり配設したそれぞ
れ複数の羽目群全通して、電炉から排出される還元性の
排ガスを用いて粉、粒状鉱石を予備還元した部分還元鉱
を必要により加えたフラックスとともに、800〜18
00℃程度の高温の空気または酸素富化空気をもってす
る気流搬送下にだて型炉内に吹込んで、上記予備還元鉱
全溶融還元する炉である。
The above melting reduction furnace 8 is a development of the invention of Japanese Patent Application No. 56-68294, which was previously proposed by the present inventors.
While a full packed bed of carbonaceous solid reducing agent is formed in the vertical furnace, reducing exhaust gas is discharged from the electric furnace through multiple groups of panels arranged in multiple stages on the lower body wall of the electric furnace. Partially reduced ore, which is obtained by pre-reducing powder and granular ore using
This furnace completely melts and reduces the pre-reduced ore by blowing air at a high temperature of about 00° C. or oxygen-enriched air into a vertical furnace under air flow.

かかるたて型の溶融還元炉8の胴壁下部には、たとえば
上下2段にわたシそれぞれ複数づつ羽目4、Φ′が配設
してあや、この羽目群4,4′を通してたとえば空気を
加熱下に吹込むことにより、炉内の上記充填層を着火し
、かくして炉内で発生する還元性の排ガスを排気口5よ
シ発生させ、これを前記予備還元装置に導入して利用す
る。
In the lower part of the trunk wall of the vertical melting reduction furnace 8, a plurality of slats 4 and Φ' are arranged, for example, in two upper and lower stages, and air is heated, for example, through these slats 4 and 4'. By blowing downward, the packed bed in the furnace is ignited, and the reducing exhaust gas generated in the furnace is thus generated through the exhaust port 5, and is introduced into the preliminary reduction device for use.

こうして炉内に形成された充填層が羽口先端近傍で高炉
の羽口先におけると同様なレースウェイを生成して高温
領域が形成され、この領域内に予熱空気と共に吹込まれ
る粉、粒状鉱石は直ちに加熱され、容易に溶融し、炉の
下部に向は滴下する間に還元されて溶融金属と溶融スラ
グが生成して製錬が行われる。炉床部に蓄溜した溶融金
属全出湯ロアによシ適時炉外に取出す。溶融スラグにつ
いても同様にする。
The packed bed thus formed in the furnace generates a raceway near the tuyere tip similar to that at the tip of a blast furnace tuyere, forming a high temperature area, and the powder and granular ore that are blown into this area together with the preheated air are It is immediately heated and easily melted, and as it drips into the lower part of the furnace, it is reduced to produce molten metal and molten slag for smelting. All the molten metal accumulated in the hearth is removed from the furnace in a timely manner. The same applies to molten slag.

なお充てん層の高温領域を形成するレースウェイ部周辺
は塊状の炭素系還元剤の燃焼雰囲気下に散票含有量が低
く、すなわち酸素分圧が低くなっているので、炉内のレ
ースウェイ部で溶融される粉、粒状鉱石の還元は極めて
好適に行われる。
In addition, the area around the raceway that forms the high temperature region of the packed layer has a low dust content in the combustion atmosphere of the lumpy carbon-based reducing agent, that is, the oxygen partial pressure is low. The reduction of the powder and granular ore to be melted is carried out very favorably.

次に、本発明の好適実施態様について説明する。Next, preferred embodiments of the present invention will be described.

粉状もしくけ粒状の鉱石分、原料ホッパー1より予備還
元装置2の最上流サイクロン23内に供給する。このと
き搬送するガスはその下流側に位置しているサイクロン
22がら発生した還元性ガスを使う。これに対し、最下
流側に位置するサイクロン21には、前記溶融還元炉3
発生の高温還元性ガスを利用し、その還元性ガスはJl
i次上流上流側置するサイクロン22.28に移っテ、
ツレぞれ未還元鉱石粉全帯同しながら内部に流入加熱、
還元−分離を繰返して、所望の還元率に達した予備還元
生成物を生成し、これは排出管6′fr通じて、溶融還
元炉3羽口部に輸送される。
Powdered or granular ore is supplied from the raw material hopper 1 into the most upstream cyclone 23 of the preliminary reduction device 2. At this time, the gas to be transported is the reducing gas generated from the cyclone 22 located on the downstream side. On the other hand, the cyclone 21 located on the most downstream side has the melting reduction furnace 3
Utilizing the generated high temperature reducing gas, the reducing gas is Jl.
Moving on to cyclone 22.28 located on the i-th upstream side,
All the unreduced ore powder flows into the interior and is heated.
The reduction-separation process is repeated to produce a pre-reduced product that has reached a desired reduction rate, and is transported to the 3 tuyeres of the smelting reduction furnace through the discharge pipe 6'fr.

従って、粉粒状鉱石の流れは、最上流サイクロン28よ
り次第に下流側に移っていくのに対し、還元ガスの方は
逆に−H最下流サイクロン21に流入したのち、次第に
上流111!lへ向けて移っていく向流移動の形式をと
っており、その全移送の間で予備還元が進行する。そし
て、予備還元段階を終えると、溶融還元炉8内へ加熱空
気を反応性搬送ガスとして吹込み装入し仕上げ溶融還元
を行い、出湯ロアより溶融金属ならびにスラグ會排出す
る。
Therefore, the flow of granular ore gradually moves downstream from the most upstream cyclone 28, whereas the reducing gas flows into the -H most downstream cyclone 21 and then gradually moves upstream 111! It takes the form of countercurrent movement toward l, and pre-reduction proceeds during the entire transfer. After the preliminary reduction stage is completed, heated air is blown into the melting reduction furnace 8 as a reactive carrier gas to perform final melting reduction, and the molten metal and slag are discharged from the tapping lower.

なお本記載のサイクロンは8段に限定されるものではな
く鉱石条件などに応じて配設することが可能である。
Note that the cyclone described herein is not limited to eight stages, and can be arranged in accordance with ore conditions and the like.

なお、予備還元装置2内に供給する溶融還元炉発生排ガ
スには、たとえば難還元性の鉱石(クロム鉱石他)を予
備還元するようなときに、メタン等炭化水素を富化した
ものを用いるとよい。
Note that the exhaust gas generated by the smelting reduction furnace supplied to the pre-reduction device 2 may be enriched with hydrocarbons such as methane, for example, when pre-reducing ores that are difficult to reduce (chromium ore, etc.). good.

また、溶融還元炉8内に粉、粒状鉱石を加熱空気によっ
て吹込み装入を行うのに、上段の羽目群4を用い※そ匂
溺淘還元曳錬を夷■に材句鷺晦へ〜〜示tへ殉刈メ鴬%
※悪禽へへ9鴫〜吻へ前炉(丙に吹込み供給するので、
高炉におけるように強度の大きい固体還元剤は全く必要
なく、シ九がって、充填層に入れる炭素質固体還元剤は
、高価な強粘結炭でなくとも弱粘結炭や、非粘結炭でも
充分利用でき経済的にも有利である。
In addition, to blow and charge powder and granular ore into the smelting reduction furnace 8 using heated air, the upper panel group 4 is used. ~Show T to Marty Harime Utsumugi%
*Forehearth from 9 to the snout to the bad bird (Blow into the C),
There is no need for a strong solid reducing agent as in blast furnaces, and the carbonaceous solid reducing agent used in the packed bed may not be expensive strongly caking coal, but weakly caking coal or non-caking coal. Charcoal can also be used satisfactorily and is economically advantageous.

この発明において羽口群4,4゛をたとえば上下2段に
配設したのはこれらの羽口群または羽口4のみを経て予
熱空気と共に炉内に吹込まれる鉱石が羽口先端近傍で溶
融還元されるために必要な熱量がもしも不足すると、た
とえ羽口先端近傍で溶融したとしても、炉底部に向う途
中で熱の補給が不充分になって還元が阻害されるような
炉床の冷え込みにより円滑に操業できなくなるおそれを
なくするためで、この意味で粉、粒状鉱石を主として上
段の羽目群4より供給し、下段の羽口群4′によって炉
床部を高温に加熱してこ\に滴下する溶融物の還元に必
要な熱量を確保することがのぞましいわけである。
In this invention, the tuyere groups 4, 4'' are arranged, for example, in two stages, upper and lower, so that the ore that is blown into the furnace together with the preheated air through these tuyere groups or only through the tuyere 4 melts near the tips of the tuyeres. If the amount of heat required for reduction is insufficient, even if melting occurs near the tip of the tuyere, the hearth will cool down to the point where insufficient heat is supplied on the way to the bottom of the hearth, inhibiting reduction. In this sense, powder and granular ore are mainly supplied from the upper tuyere group 4, and the hearth is heated to a high temperature by the lower tuyere group 4'. It is desirable to secure the amount of heat necessary for reducing the melt that is dropped.

次に、本発明法につき、フェロクロムの製造を試験炉を
使って実施したので、その結果を報告する。
Next, according to the method of the present invention, ferrochrome was produced using a test furnace, and the results will be reported.

(1)予備還元装置 サイクロン ・・・ 8基 原料の銘柄 ・・・フイリツピン産クロム鉱石原料の粒
径 :  0.4m学以下 原料供給量 二850陽/hr 予備還元率 :80憾 (8)溶融還元炉 炭素系固体還元剤; コークス 粒    径: 20〜49mm 供給量=550梅/hr 送風量: 1B70 Nm/hr 送風温度:945℃ 送風羽口:上下各4本計8本 (上段4本に予備還元生成物を供給) (8)7エロクロム生産散: 195に9/屓組   
成: 0r54.5%、  06.1%、 Si5.8
%スラグ排出量: 295kf/hr 以上説明し友ぶりにこの発明によれば、(1)  溶融
還元炉発生排ガスを有効に利用するので、顕熱回収率が
高くなる。
(1) Pre-reduction device cyclone... 8 bases Brand of raw material... Particle size of chromium ore raw material from Philippines: 0.4 m or less Raw material supply amount 2850 yen/hr Pre-reduction rate: 80 yen (8) Melting Reduction furnace carbon-based solid reducing agent; Coke particle diameter: 20-49 mm Supply amount = 550 Ume/hr Air flow rate: 1B70 Nm/hr Air blowing temperature: 945°C Air blowing tuyeres: 8 each (4 each on the upper and lower rows) (Supplying preliminary reduction products) (8) 7Erochrome production powder: 195 to 9/group
Composition: 0r54.5%, 06.1%, Si5.8
% Slag discharge amount: 295 kf/hr As explained above, according to the present invention, (1) the waste gas generated in the smelting reduction furnace is effectively utilized, so that the sensible heat recovery rate is increased.

(IA)予備還元装置の多段化を容易に達成することが
でき、しかも鉱石−ガスを向流に移動させるので、還元
の進行とともにより高い還元能力のガスと接触すること
になりガス利用効嘉が向上する上、安定した高い予備還
元生成物を得ることができる。
(IA) Multi-stage pre-reduction equipment can be easily achieved, and since the ore and gas are moved in countercurrent flow, as the reduction progresses, the gas comes into contact with a gas having a higher reducing ability, which improves the efficiency of gas utilization. In addition to improving stability, a stable and highly prereduced product can be obtained.

(8)流動層を用いるのと違い、ガス分散板が不要であ
るから、目詰りや焼結などのトラブルがなくなり、円滑
な操業が可能である。
(8) Unlike using a fluidized bed, a gas distribution plate is not required, so troubles such as clogging and sintering are eliminated, and smooth operation is possible.

等積々の効果が期待できる。You can expect similar effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1(2)は、本発明の系統方式を示す模式図である。 l・・・原料ホッパー   2・・・予備還元装置8・
・・溶融還元炉。 (11) 第1図 (12) 0発 明 者 藤田勉 千葉市川崎町1番地川崎製鉄株 式会社千葉製鉄所内 0発 明 者 浜田俊二 千葉市川崎町1番地川崎製鉄株 式会社千葉製鉄所内
Part 1 (2) is a schematic diagram showing the system system of the present invention. l... Raw material hopper 2... Preliminary reduction device 8.
...Melting reduction furnace. (11) Figure 1 (12) 0 Inventor Tsutomu Fujita Inside the Chiba Works of Kawasaki Steel Co., Ltd., 1 Kawasaki-cho, Chiba City 0 Inventor Shunji Hamada Inside the Chiba Works of Kawasaki Steel Co., Ltd., 1 Kawasaki-cho, Chiba City

Claims (1)

【特許請求の範囲】 1 直列多段に設置した複数個のサイクロンの間を鉱石
と還元ガスとを自流に移動接触させながら予熱、還元を
行わせる予備還元段階と、たて型炉内に上部よ)炭素系
固体還元剤を充填する一方、その炉壁下部に上下複数段
にわたって設けた羽口からは、炉内に酸化性ガスととも
に上記予備還元生成物の粉、粒状鉱石を一緒に吹込んで
還元、溶融の反応を導く溶融還元段階とからな9、 そして、上記溶融還元用のたて型炉発生ガスを、上記予
備還元段階における還元ガスとして環流させ還元を行う
ことを特徴とする粉粒状鉱石の還元方法。
[Claims] 1. A pre-reduction stage in which preheating and reduction are performed while the ore and reducing gas are brought into contact with each other in a flowing flow between a plurality of cyclones installed in multiple stages in series; ) While filling with a carbon-based solid reducing agent, the powder and granular ore of the preliminary reduction product are injected into the furnace together with oxidizing gas through tuyeres installed in multiple stages above and below the lower part of the furnace wall for reduction. , a smelting-reduction stage that leads to a melting reaction; and a granular ore characterized in that reduction is carried out by circulating the gas generated in the vertical furnace for smelting-reduction as a reducing gas in the preliminary reduction stage. How to get back.
JP21916282A 1982-12-16 1982-12-16 Reduction of powdery granular ore Pending JPS59110712A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21916282A JPS59110712A (en) 1982-12-16 1982-12-16 Reduction of powdery granular ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21916282A JPS59110712A (en) 1982-12-16 1982-12-16 Reduction of powdery granular ore

Publications (1)

Publication Number Publication Date
JPS59110712A true JPS59110712A (en) 1984-06-26

Family

ID=16731168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21916282A Pending JPS59110712A (en) 1982-12-16 1982-12-16 Reduction of powdery granular ore

Country Status (1)

Country Link
JP (1) JPS59110712A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0790319A3 (en) * 1993-03-10 1997-09-03 Metallgesellschaft Aktiengesellschaft Process for the reduction of iron ores with reducing agents containing solid carbon

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57198205A (en) * 1981-04-28 1982-12-04 Kawasaki Steel Corp Production of molten metal from powder and granular ore

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57198205A (en) * 1981-04-28 1982-12-04 Kawasaki Steel Corp Production of molten metal from powder and granular ore

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0790319A3 (en) * 1993-03-10 1997-09-03 Metallgesellschaft Aktiengesellschaft Process for the reduction of iron ores with reducing agents containing solid carbon

Similar Documents

Publication Publication Date Title
US5584910A (en) Process for producing molten pig iron or molten steel pre-products
CN103667571B (en) System and method of fluidized direct reduction of iron ore concentrate powder
CN1036471C (en) A smelting reduction method with high productivity
CN1036075C (en) Fusion reducing iron smelting method and its equipment
CN112410494B (en) Iron-making device and method capable of applying suspension melting reduction of fine-grained fine ores
JPH0416525B2 (en)
US5258054A (en) Method for continuously producing steel or semi-steel
AU679662B2 (en) Reduction of iron oxide-containing materials with solid carbonaceous reducing agents
CN102002546A (en) Iron-containing material suspending and reducing device and process
JP2016536468A (en) Steel production in coke dry fire extinguishing system.
JPS5918452B2 (en) Method for producing molten metal from powdered ore
JPS59110712A (en) Reduction of powdery granular ore
JPH0130888B2 (en)
JPH0639608B2 (en) Iron ore preheating / reducing device
CN201762356U (en) Iron-containing material suspension and reduction device
JPS5980705A (en) Melt reduction method of powder and granular ore by vertical type furnace
JP2502976B2 (en) Iron ore preliminary reduction device
JPH0314889B2 (en)
JPS5980703A (en) Melt reduction method of powder and granular ore by vertical type furnace
JPS59110711A (en) Method for cooling furnace wall of shaft type fusion reduction furnace
JPH0726161B2 (en) Method for recovering valuable metals from by-products during stainless steel production
JPS62230922A (en) Operating method for vertical type melt reduction furnace
CN114990274A (en) Powdery DRI device system for reducing powdery iron ore through gas-based/hydrogen-based suspension
JPH032922B2 (en)
JPH024909A (en) Smelting reduction method for powdered ore