JPH032922B2 - - Google Patents

Info

Publication number
JPH032922B2
JPH032922B2 JP21669982A JP21669982A JPH032922B2 JP H032922 B2 JPH032922 B2 JP H032922B2 JP 21669982 A JP21669982 A JP 21669982A JP 21669982 A JP21669982 A JP 21669982A JP H032922 B2 JPH032922 B2 JP H032922B2
Authority
JP
Japan
Prior art keywords
furnace
ore
exhaust gas
vertical
vertical furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21669982A
Other languages
Japanese (ja)
Other versions
JPS59107011A (en
Inventor
Mitsuo Kadoto
Toshihiro Inatani
Eiji Katayama
Shiko Takada
Hisao Hamada
Nobuo Tsuchitani
Tsutomu Fujita
Shunji Hamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP21669982A priority Critical patent/JPS59107011A/en
Publication of JPS59107011A publication Critical patent/JPS59107011A/en
Publication of JPH032922B2 publication Critical patent/JPH032922B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0006Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state
    • C21B13/0013Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state introduction of iron oxide into a bath of molten iron containing a carbon reductant
    • C21B13/002Reduction of iron ores by passing through a heated column of carbon

Description

【発明の詳細な説明】 この発明は、たて(竪)型溶融還元炉いわゆる
たて型炉の操業方法に関し、とくに該たて型炉内
部に充てんする塊状固体還元剤としての炭材の調
合に工夫を加えて該たて型炉から発生する還元性
の排ガス組成を適切に調整することにより、流動
層予備還元炉での粉粒状鉱石の予備還元におい
て、クロム鉱石の如き難還元性のものであつても
たて型炉からの排ガスのみの使用でもつて的確な
予備還元率の達成を、実現しようとするものであ
る。
[Detailed Description of the Invention] The present invention relates to a method for operating a so-called vertical melting reduction furnace, and in particular, to a method of operating a so-called vertical furnace, and in particular to the preparation of carbonaceous material as a lump solid reducing agent to be filled inside the vertical furnace. By appropriately adjusting the composition of the reducing exhaust gas generated from the vertical furnace, it is possible to reduce the amount of difficult-to-reducible ores such as chromium ore in the pre-reduction of powdery ore in the fluidized bed pre-reduction furnace. However, the aim is to achieve an accurate preliminary reduction rate by using only exhaust gas from a vertical furnace.

近年、鉄鉱石をはじめ主として各種の金属酸化
物よりなる原料鉱石は、塊状鉱石よりはむしろ、
粉、粒状鉱石の方が多くなりつつあり、今後もま
すますその比率は増加する傾向にあるとみられ
る。従来、粉、粒状鉱石による製錬方法として
は、流動層を用いて粉、粒状鉱石を予備還元した
のち、この予備還元鉱を電炉、転炉、その他の溶
解炉で溶融還元する方式が一般的である。
In recent years, raw material ores mainly composed of various metal oxides, including iron ore, have become more common than lump ores.
Powder and granular ore are becoming more common, and their proportion is expected to continue to increase. Conventionally, the conventional smelting method using powder and granular ore is to pre-reduce the powder and granular ore using a fluidized bed, and then melt and reduce the pre-reduced ore in an electric furnace, converter, or other melting furnace. It is.

この場合、予備還元鉱にバインダーの添加で塊
成化をし、その塊成物を溶解炉で溶融還元する方
式が多い。しかしこのような方式によれば、塊成
化のための資材、処理費および処理エネルギーな
どを必要とするだけでなく、塊成化をしたのち焼
成を必要とする場合には、その際に焼成炉から排
出されるガス中のNOx,SOxおよびダストなどを
処理するための費用が多大となるところにも難点
を伴う。
In this case, there are many methods in which a binder is added to the pre-reduced ore to agglomerate it, and the agglomerate is melted and reduced in a melting furnace. However, this method not only requires materials for agglomeration, processing costs, and processing energy, but also requires firing at that time. Another drawback is that it costs a lot of money to treat NO x , SO x and dust in the gas discharged from the furnace.

また上記の方式の他に、アーク炉やプラズマま
たは純酸素を利用する炉を用いて、予備還元鉱
を、塊成ないしは焼成を経ずに溶融還元する方式
も企てられてはいるが、アーク炉を用いる方式に
よれば電力消費が莫大であるばかりでなく立地条
件にも制約があり、またプラズマを利用する炉を
用いる方式も電力消費が甚しく、現在のところ工
業的規模でも適用が困難であり、さらに純酸素を
利用する炉を用いる方式によれば、高温雰囲気を
得ることは容易であつても還元雰囲気の維持が難
しくまた酸素使用量が嵩むなど、何れも技術的に
解決を要する問題をはらんでいる。
In addition to the above-mentioned method, a method has also been proposed in which pre-reduced ore is melted and reduced without agglomeration or calcination using an arc furnace or a furnace that uses plasma or pure oxygen. The method using a furnace not only consumes a huge amount of power, but also has restrictions on location, and the method using a furnace that uses plasma also consumes a tremendous amount of power, making it currently difficult to apply even on an industrial scale. Furthermore, with the method using a furnace that uses pure oxygen, even though it is easy to obtain a high-temperature atmosphere, it is difficult to maintain a reducing atmosphere and the amount of oxygen used increases, both of which require technical solutions. It's fraught with problems.

ところで本発明らは先に、特願昭56−63294号
明細書において、炭素質固体還元剤主にコークス
の充てん層をたて型溶炉内部で不断に形成する一
方、このたて型炉の下部胴壁に上下2段にわたり
配設したそれぞれ複数の羽口群を通して、該たて
型炉から排出される還元性の排ガスを用いて粉、
粒状鉱石を予備還元した部分還元鉱を、必要なら
ばさらにフラツクスを加え、羽口へ送風する800
〜1300℃の高温の空気または酸素富化空気による
気流搬送でたて型炉内に吹込んで、上記部分還元
鉱を溶融還元する粉、粒状鉱石のたて型炉溶融還
元方法を提案した。
By the way, the present inventors have previously disclosed in Japanese Patent Application No. 56-63294 that a packed layer of carbonaceous solid reducing agent, mainly coke, is continuously formed inside a vertical blast furnace. The reducing exhaust gas discharged from the vertical furnace is used to produce powder,
The partially reduced ore obtained by pre-reducing the granular ore is further added with flux if necessary, and is blown into the tuyere.800
We have proposed a method for melting and reducing powder and granular ores in a vertical furnace, in which the partially reduced ore is melted and reduced by blowing air at a temperature of ~1300°C or oxygen-enriched air into the vertical furnace.

かようなたて型炉を用いる溶融還元法の開発に
より、粉、粒状鉱石の精錬が極めて効果的に行え
るようになつた。
The development of the smelting reduction method using such a vertical furnace has made it possible to smelt powder and granular ores extremely effectively.

しかしながら上記の溶融還元法においては、固
体還元剤として一般にはコークスが用いられるの
で排ガス中の還元性成分が主にCOであるため、
クロム鉱石の如き難還元性のものについては、排
ガスのみの使用では満足のいく程度に予備還元が
できないこともあつて、円滑な操業の実施は難し
かつたのである。
However, in the above smelting reduction method, coke is generally used as the solid reducing agent, and the reducing component in the exhaust gas is mainly CO.
For materials that are difficult to reduce, such as chromium ore, it is difficult to achieve a satisfactory preliminary reduction by using exhaust gas alone, making it difficult to operate smoothly.

従つてクロム鉱石を予備還元する場合は、還元
剤としてメタンを主成分とする炭化水素ガス(以
下単にCH4と略記する)がCOガスに比べてより
有効であることから、CH4源としてコークス炉ガ
スなどを用い、こられのガスをたて型炉排ガスと
共に流動層に導入して予備還元を行い、得られた
部分還元鉱を酸化性ガスに帯同させてたて型炉内
に吹込むことにより、溶融還元を行なつたのであ
る。
Therefore, when pre-reducing chromium ore, coke is used as a CH 4 source because hydrocarbon gas (hereinafter simply abbreviated as CH 4 ) whose main component is methane is more effective as a reducing agent than CO gas. Using furnace gas, etc., these gases are introduced into the fluidized bed together with the vertical furnace exhaust gas for preliminary reduction, and the obtained partially reduced ore is entrained in oxidizing gas and blown into the vertical furnace. By doing so, melting reduction was performed.

したがつて、上記したように、クロム鉱石の如
き難還元性の鉱石を予備還元する場合には、CH4
源としてのコークス炉ガスを多量に要し、またそ
の予熱も必要とするのでコストが嵩むほか、コー
クス炉ガスの供給設備が必要となるため設備的な
負担も加わる。
Therefore, as mentioned above, when pre-reducing ores that are difficult to reduce such as chromium ore, CH 4
This method requires a large amount of coke oven gas as a source and also requires preheating, which increases costs, and requires equipment for supplying coke oven gas, which adds to the equipment burden.

この点、難還元性の鉱石についても、排ガスの
みの利用でもつて適切な予備還元が実現できれば
極めて有利なわけである。
In this respect, it would be extremely advantageous if appropriate preliminary reduction could be achieved even with the use of exhaust gas only, even for hard-to-reducible ores.

この発明は上記の要請に有利に応えるもので、
コークス炉ガスなどを別途に必要とすることな
く、溶融還元によつてたて型炉で発生する排ガス
のみの使用でもつてクロム鉱石の如き難還元性の
粉粒状鉱石に対しても効果的な予備還元さらには
溶融還元を可能ならしめる、たて型溶融還元炉の
操業方法を提案することを目的とする。
This invention advantageously meets the above requirements.
It does not require separate coke oven gas, and can be used as a backup for difficult-to-reducible powder and granular ores such as chromium ore by using only the exhaust gas generated in a vertical furnace through smelting reduction. The purpose of this study is to propose a method for operating a vertical smelting reduction furnace that enables reduction and even smelting reduction.

さて、たて型炉を用いた粉、粒状鉱石の溶融還
元法の実際操業において、該炉内に充てんする塊
状固体還元剤として通常使用されるコークスの他
に石炭を添加配合した場合、排ガス中にCH4が含
まれることが判明した。
Now, in the actual operation of the smelting reduction method for powder and granular ores using a vertical furnace, if coal is added to the coke, which is usually used as a lump solid reducing agent to fill the furnace, the exhaust gas was found to contain CH4 .

発明者らは、この排ガス中に含まれるCH4に注
目し、かようなCH4の有効利用に関し数多くの実
験と検討を重ねた結果、 (イ) CH4は、たて型炉に装入した石炭が該たて型
炉の上部で乾留されることにより発生するこ
と、 (ロ) またCH4の発生量は、石炭の配合比が高くな
るにつれて増大すること、 (ハ) さらに全塊状固体還元剤中に占める石炭の割
合が所定範囲内であれば、たて型炉での溶融還
元に何ら支障をきたさないこと。
The inventors focused on CH 4 contained in this exhaust gas, and as a result of numerous experiments and studies regarding the effective use of such CH 4 , (a) CH 4 was charged into a vertical furnace. (b) The amount of CH 4 generated increases as the blending ratio of coal increases; If the proportion of coal in the reducing agent is within a specified range, there should be no problem in melting and reducing in a vertical furnace.

(ニ) 従つて全塊状固体還元剤中に占める石炭の割
合を適宜に変更して排ガス組成(CH4を主成分
とする炭化水素量)を調整することにより、た
て型炉からの排ガスのみの使用でもつて、クロ
ム鉱石の如き難還元性の鉱石であつても、容易
にしかも所期した還元率に的確に予備還元でき
ること、 の知見を得たのである。
(d) Therefore, by appropriately changing the proportion of coal in the total lump solid reducing agent and adjusting the exhaust gas composition (the amount of hydrocarbons whose main component is CH 4 ), only the exhaust gas from the vertical furnace can be reduced. It was discovered that by using this method, even difficult-to-reducible ores such as chromium ore can be pre-reduced easily and accurately to the desired reduction rate.

この発明は、上記の知見に基くものである。 This invention is based on the above findings.

すなわちこの発明は、塊状固体還元剤の充てん
層をたて型炉内部で不断に形成する一方、このた
て型炉の下部胴壁に設けた羽口群を通して予熱下
の酸化性ガスの吹込みを行い、該炉から排出され
る還元性の排ガスを用いて粉粒状鉱石を予備還元
した部分還元鉱を該酸化性ガス気流に帯同させて
たて型炉に吹込むことにより、粉粒状鉱石のたて
型炉溶融還元を行うに当り、該塊状固体還元剤中
にCH4発生源として塊状石炭を配合するものと
し、この塊状石炭の配合量を、所期した予備還元
率の部分還元鉱をを得るガス組成となる流動化予
備還元ガスに応じたたて型炉排ガスを発生させる
べく調整することをもつて、上記課題の解決手段
とするものである。
In other words, this invention continuously forms a packed layer of bulk solid reducing agent inside a vertical furnace, while injecting oxidizing gas under preheating through a group of tuyeres provided on the lower body wall of the vertical furnace. The partially reduced ore obtained by pre-reducing the granular ore using the reducing exhaust gas discharged from the furnace is entrained in the oxidizing gas stream and blown into the vertical furnace. When performing vertical furnace smelting reduction, lump coal is mixed into the lump solid reducing agent as a CH 4 generation source, and the blending amount of this lump coal is adjusted to match the partially reduced ore with the desired preliminary reduction rate. The above-mentioned problem is solved by adjusting the vertical furnace exhaust gas to be generated in accordance with the fluidized pre-reducing gas having the gas composition.

以下この発明を具体的に説明する。 This invention will be specifically explained below.

第1図に、この発明の実施に用いて好適なたて
型溶融還元炉を流動層予備還元炉と共に示し、番
号1は粉粒状鉱石の供給装置、2は流動層予備還
元炉、そして3がたて型溶融還元炉であり、4は
塊状石炭ホツパー、5は他の塊状固体還元剤たと
えばコークスのホツパー、6は上記ホツパー4,
5からの石炭およびコークスを混合し、たて型炉
の内部に不断に充てん層を形成するための供給装
置、また7,7′はたて型炉3の胴周下部で上下
2段にそれぞれ複数配置した羽口群であり、8は
排ガスの排気口である。
FIG. 1 shows a vertical smelting reduction furnace suitable for carrying out the present invention together with a fluidized bed pre-reduction furnace, where numeral 1 is a supply device for granular ore, 2 is a fluidized bed pre-reduction furnace, and 3 is a fluidized bed pre-reduction furnace. It is a vertical melting reduction furnace, 4 is a lump coal hopper, 5 is a hopper of other lump solid reducing agent such as coke, 6 is the hopper 4,
A feeding device for mixing coal and coke from 5 to continuously form a packed layer inside the vertical furnace; A plurality of tuyere groups are arranged, and 8 is an exhaust port for exhaust gas.

実際の操業に当つては、羽口群7,7′を通し
て酸化性ガスたとえば空気や酸素富化空気を予熱
して吹込むことにより、たて型炉3内の充てん層
を燃焼させ、かくしてたて型炉3内で発生する還
元性の高温排ガスを、排気口8から分岐管8′を
経て予備還元炉2の底部に導いて該炉2に装入さ
れた難難還元性粉粒状鉱石を予備還元し、この予
備還元された部分還元鉱を排鉱口9より破線で示
す給鉱管9′を通して羽口7,7′に導いて予熱空
気と共にたて型炉3内に吹き込み装入することに
より、該炉内で溶融還元するのである。なお図中
10はガス加熱炉、11は昇圧機、そして12は
出湯口である。
In actual operation, the packed layer in the vertical furnace 3 is combusted by preheating and blowing an oxidizing gas such as air or oxygen-enriched air through the tuyeres 7 and 7'. The reducible high-temperature exhaust gas generated in the mold furnace 3 is guided from the exhaust port 8 through the branch pipe 8' to the bottom of the preliminary reduction furnace 2 to remove the refractory powdery ore charged into the furnace 2. The pre-reduced partially reduced ore is led from the ore discharge port 9 to the tuyere 7, 7' through the ore feed pipe 9' shown by the broken line, and is blown into the vertical furnace 3 together with preheated air for charging. As a result, it is melted and reduced in the furnace. In the figure, 10 is a gas heating furnace, 11 is a booster, and 12 is a tap.

さてかような溶融還元において、予備還元率
は、種々の操業条件を勘案して最適の操業を実施
すべく決定されるが、この予備還元率は、予備還
元炉に導入するたて型炉排ガス中のCH4量によつ
て変化する。たとえば粉状クロム鉱石について
は、第2図に一例として該鉱石の予備還元率に及
ぼす排ガス中のCH4量の影響を示したとおり、粉
状クロム鉱石の予備還元率は排ガス中CH4量に比
例してほぼ直線的に増減する。従つて流動層で還
元すべき予備還元率が設定されたならば、この予
備還元率を達成するのに好適なCH4量を含む排ガ
スを発生させるべく、塊状固体還元剤中に占める
石炭の配合量を調整することにより、所定還元率
の予備還元が容易に達成でき、かくして円滑な溶
融還元が実現されるわけである。
Now, in such smelting reduction, the preliminary reduction rate is determined in order to carry out optimal operation by taking various operating conditions into consideration. It varies depending on the amount of CH4 in it. For example, for powdered chromium ore, as shown in Figure 2, which shows the effect of the amount of CH 4 in the exhaust gas on the preliminary reduction rate of the ore, the preliminary reduction rate of powdered chromium ore depends on the amount of CH 4 in the exhaust gas. Increases and decreases proportionally and almost linearly. Therefore, once the preliminary reduction rate to be reduced in the fluidized bed is set, the proportion of coal in the bulk solid reducing agent is adjusted in order to generate exhaust gas containing an appropriate amount of CH 4 to achieve this preliminary reduction rate. By adjusting the amount, preliminary reduction at a predetermined reduction rate can be easily achieved, thus achieving smooth melt reduction.

ここに塊状石炭は、予備還元炉へ送るべき還元
性ガス(CH4)の発生源として配合されるもので
あるが、乾留後はコークスとなつて炉下部で燃料
および還元剤として消費される。品質面からは炉
内での粘結団塊反応を避ける意味から高価な粘結
炭よりも安価な非粘結炭の方が望ましく、その大
きさは、炉上部での乾留時における団塊化の防止
および通気性の維持の面から塊状であるのが良
い。
The lump coal is mixed here as a source of reducing gas (CH 4 ) to be sent to the preliminary reduction furnace, but after carbonization, it becomes coke and is consumed as fuel and reducing agent in the lower part of the furnace. From a quality perspective, cheap non-caking coal is preferable to expensive caking coal in order to avoid caking and agglomeration reactions in the furnace, and its size is determined to prevent agglomeration during carbonization in the upper part of the furnace. Also, from the viewpoint of maintaining air permeability, it is preferable that the material be in the form of a block.

また塊状石炭以外のたて型炉に装入する固体還
元剤としては、一般にコークスが好適であり、そ
の大きさはやはり塊状とするのが好ましい。
Further, coke is generally suitable as a solid reducing agent other than lump coal to be charged into a vertical furnace, and it is preferable that the size of the coke is lump-like.

そしてこの塊状石炭と、コークスなどの固体還
元剤との配合割合は、前述した如く所期した予備
還元率に応じて決定されるが、難還元性鉱石の場
合その範囲は実験結果より10〜35%が好適であつ
た、85%を超えると炉内で石炭から生成したコー
クスの強度がいくぶん低いことによつて充てん層
の通気性が低下したり、また揮発分が多くなるこ
とによつて排ガスの予備還元炉導入部での浸蝕や
閉塞などのトラブルが発生するなどの悪影響が現
われる。一方10%を下まわると還元に対する満足
な効果が得られなかつた。
The blending ratio of this lump coal and solid reducing agent such as coke is determined according to the desired preliminary reduction rate as described above, but in the case of hard-to-reducible ores, the range is 10 to 35% based on experimental results. If it exceeds 85%, the permeability of the packed layer will decrease due to the somewhat low strength of the coke generated from coal in the furnace, and the exhaust gas will increase due to the increase in volatile content. Adverse effects include problems such as erosion and blockage at the inlet of the pre-reduction furnace. On the other hand, when it was less than 10%, a satisfactory effect on reduction could not be obtained.

次にこの発明の実施例として、フエロクロムを
製造する場合について説明する。
Next, as an example of the present invention, a case of manufacturing ferrochrome will be described.

下記の操業条件の下に、第1図に示した系統方
式に従う試験炉で実施した。
The experiment was carried out in a test reactor according to the system system shown in Fig. 1 under the following operating conditions.

1 たて型炉内径 :1.2m 2 予備還元炉内径 :1.1m 3 鉱石の銘柄 :粉粒状クロム鉱石 平均粒径 :0.2mm 供給量 :190Kg/h 4 石炭の種類 :非粘結炭 粒径 :10〜30mm 供給量 :100Kg/h 5 固体還元剤の種類 :コークス 粒径 :10〜30mm 供給量 :130Kg/h 6 たて型炉への送風量:650Nm3/h 送風温度 :1250℃ (上段4本に部分還元鉱を供給) 7 目標予備還元率 :30% 8 目標排ガス中CH4量: 100Nm3/t−metal 以上の操業条件の下に操業を開始し、たて型炉
で発生した排ガスを予備還元炉に導入したとこ
ろ、難還元性の粉状クロム鉱石を所期した30%の
還元率に的確に予備還元することができ、ひいて
は円滑な溶融還元が達成された。
1 Vertical furnace inner diameter: 1.2m 2 Pre-reduction furnace inner diameter: 1.1m 3 Ore brand: Powdered chromium ore Average particle size: 0.2mm Supply amount: 190Kg/h 4 Coal type: Non-caking coal Particle size: 10-30mm Supply amount: 100Kg/h 5 Type of solid reducing agent: Coke Particle size: 10-30mm Supply amount: 130Kg/h 6 Air flow to vertical furnace: 650Nm 3 /h Air blowing temperature: 1250℃ (upper stage) 7. Target preliminary reduction rate: 30% 8. Target amount of CH4 in exhaust gas: 100Nm 3 /t-metal The operation was started under operating conditions of 100Nm 3 /t-metal or higher, and the amount of CH4 generated in the vertical furnace was When the exhaust gas was introduced into the pre-reduction furnace, it was possible to accurately pre-reduce the difficult-to-reducible powdered chromium ore to the desired reduction rate of 30%, and in turn achieved smooth smelting reduction.

なお参考のためたて型炉排ガス成分を示すと、
次のとおりであつた。
For reference, the exhaust gas components of a vertical furnace are shown below.
It was as follows.

CH4:1.2〜1.3%,CO:35〜37% N2 :60〜62%,CO2:0.3〜0.4% …… またフエロクロムの生成量は100Kg/h、その
組成はCr:56%、C:8%、Si:2%であり、
さらにスラグ排出量は170Kg/hであつた。
CH 4 : 1.2-1.3%, CO: 35-37% N 2 : 60-62%, CO 2 : 0.3-0.4%... Also, the amount of ferrochrome produced is 100 kg/h, and its composition is Cr: 56%, C : 8%, Si: 2%,
Furthermore, the amount of slag discharged was 170 kg/h.

以上実施例では、この発明を粉状クロム鉱石の
予備還元に適用した場合について主に説明した
が、その他けい石やニツケル鉱石の如き易還元性
の鉱石はもとよりクロム鉱石と同じく難還元性の
マンガン鉱石に対しても同様にして適用できるの
はいうまでもない。
In the above embodiments, the present invention was mainly explained for the case where it was applied to the preliminary reduction of powdered chromium ore, but it can also be applied to other easily reducible ores such as silica and nickel ore, as well as manganese which is difficult to reduce like chromium ore. Needless to say, the same method can be applied to ores.

かくしてこの発明によれば、たて型炉で発生す
る排ガス中のCH4量を適切に調整することによ
り、この排ガスのみの使用でもつて溶融還元に先
立つ粉粒状鉱石の予備還元、しかも所期した予備
還元率への的確な予備還元が実現でき、ひいては
溶融還元の円滑な操業が達成できる。
Thus, according to the present invention, by appropriately adjusting the amount of CH 4 in the exhaust gas generated in the vertical furnace, it is possible to pre-reduce powdery ore prior to smelting reduction even by using only this exhaust gas, and moreover to achieve the desired reduction. Accurate preliminary reduction to the preliminary reduction rate can be achieved, and as a result, smooth operation of melt reduction can be achieved.

とくに難還元性鉱石については、従来不可欠と
されたコークス炉が不要になり、それに付随して
該コークス炉ガスの予熱処理も削除でき、さらに
は高温の排ガス利用によつて予備還元炉での熱消
費量も低減できるので、コスト低減に役立つ。
In particular, for hard-to-reducible ores, the coke oven, which was previously considered indispensable, is no longer necessary, and the preheating process for the coke oven gas can also be eliminated, and furthermore, the use of high-temperature exhaust gas reduces the heat in the pre-reducing oven. Since consumption can also be reduced, it is useful for cost reduction.

なおこの発明で用いる石炭としては、炉内での
粘結団塊反応を回避する上で、高価な粘結炭より
も安価な非粘結炭の方が好ましいので、石炭の配
合によるコストの上昇はほとんどない。
In addition, as for the coal used in this invention, cheap non-caking coal is preferable to expensive caking coal in order to avoid the caking and agglomeration reaction in the furnace, so the increase in cost due to the combination of coals is rare.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施に用いて好適なたて型
炉を予備還元炉と共に示した模式図、第2図はク
ロム鉱石についての予備還元率と予備還元炉へ導
入するたて型炉排ガス中のCH4量との関係の一例
を示したグラフである。
Fig. 1 is a schematic diagram showing a vertical furnace suitable for carrying out the present invention together with a preliminary reduction furnace, and Fig. 2 shows the preliminary reduction rate of chromium ore and the vertical furnace exhaust gas introduced into the preliminary reduction furnace. 2 is a graph showing an example of the relationship with the amount of CH 4 in the water.

Claims (1)

【特許請求の範囲】 1 塊状固体還元剤の充てん層をたて型炉内部で
不断に形成する一方、このたて型炉の下部胴壁に
設けた羽口群を通して予熱下の酸化性ガスの吹込
みを行い、該炉から排出される還元性の排ガスを
用いて粉粒状鉱石を予備還元した部分還元鉱を該
酸化性ガス気流に帯同させてたて型炉に吹込むこ
とにより、粉粒状鉱石の溶融還元を行うに当り、
該塊状固体還元剤中にメタンを主成分とする炭化
水素ガス発生源として塊状石炭を配合するものと
し、この塊状石炭の配合量を、所期した予備還元
率の部分還元鉱を得るガス組成となる流動化予備
還元ガスに応じたたて型炉排ガスを発生させるべ
く調整することを特徴とするたて型溶融還元炉の
操業方法。 2 全塊状固体還元剤中に占める塊状石炭の配合
率が、10〜85重量%である特許請求の範囲第1項
記載の方法。
[Scope of Claims] 1. While a packed layer of bulk solid reducing agent is continuously formed inside a vertical furnace, oxidizing gas under preheating is passed through a group of tuyeres provided on the lower body wall of the vertical furnace. The partially reduced ore obtained by pre-reducing the powdery ore using the reducing exhaust gas discharged from the furnace is entrained in the oxidizing gas stream and blown into the vertical furnace. When melting down ore,
In the lump solid reducing agent, lump coal is blended as a source of hydrocarbon gas mainly composed of methane, and the blending amount of the lump coal is adjusted to the gas composition to obtain partially reduced ore with the desired preliminary reduction rate. 1. A method for operating a vertical melting reduction furnace, which comprises adjusting the vertical furnace exhaust gas to be generated in accordance with the fluidized preliminary reducing gas. 2. The method according to claim 1, wherein the proportion of lump coal in the total lump solid reducing agent is 10 to 85% by weight.
JP21669982A 1982-12-10 1982-12-10 Operating method of vertical type melt reduction furnace Granted JPS59107011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21669982A JPS59107011A (en) 1982-12-10 1982-12-10 Operating method of vertical type melt reduction furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21669982A JPS59107011A (en) 1982-12-10 1982-12-10 Operating method of vertical type melt reduction furnace

Publications (2)

Publication Number Publication Date
JPS59107011A JPS59107011A (en) 1984-06-21
JPH032922B2 true JPH032922B2 (en) 1991-01-17

Family

ID=16692530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21669982A Granted JPS59107011A (en) 1982-12-10 1982-12-10 Operating method of vertical type melt reduction furnace

Country Status (1)

Country Link
JP (1) JPS59107011A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH082414Y2 (en) * 1989-07-29 1996-01-29 マツダ株式会社 Lubricator for multi-cylinder engine
CN103966383A (en) * 2014-04-15 2014-08-06 山西太钢不锈钢股份有限公司 Melting method of oxygen-enriched shaft furnace

Also Published As

Publication number Publication date
JPS59107011A (en) 1984-06-21

Similar Documents

Publication Publication Date Title
CN1036471C (en) A smelting reduction method with high productivity
JPH0681016A (en) Method and device for producing molten pig iron or before steel product
US5069716A (en) Process for the production of liquid steel from iron containing metal oxides
US5810905A (en) Process for making pig iron
JPH032922B2 (en)
JPS5918452B2 (en) Method for producing molten metal from powdered ore
US3832158A (en) Process for producing metal from metal oxide pellets in a cupola type vessel
MXPA97007698A (en) Procedure to make arra
JPH037723B2 (en)
JPS6256537A (en) Manufacture of molten metal from powdery ore containing metal oxide
JPH0130888B2 (en)
JPS6248749B2 (en)
JPH0242884B2 (en)
JPH01247535A (en) Method for recovering valuable metal from by-product in production of stainless steel
JPS5980706A (en) Operating method of preliminary reduction furnace with fluidized bed
JPS6232243B2 (en)
CN116949236A (en) Method and system for producing steel by reducing non-blast furnace step by step
JPS6131166B2 (en)
JPH01149911A (en) Smelting reduction process
JPH03188207A (en) Oxygen blast furnace operating method
JPS6156303B2 (en)
JPS625207B2 (en)
JPS62230907A (en) Production of molten metal from powdery ore
Edström Technology and economic viability of smelting reduction processes
JPS6187847A (en) Reducing method of chromium ore